IASD Project:
Optimization for Machine Learning *

Tentative deadline: December 19, 2025 AOE.

Pauphine | PSL

UNIVERSITE PARIS

Introduction

This course project aims at revisiting the course's notebooks by replacing the use of gradients and
derivatives with zeroth-order approximations. Those bear resemblance with the finite difference
techniques described in the course's second session, but we focus here and randomized techniques
that provide good approximations in a probabilistic sense.

Guidelines

e Students may discuss the project with their classmates, but the submitted version must be
worked out, written, and submitted individually.

e Any Python library can be used in the project as long as they do not provide direct answers to
the questions. For instance, if a question consists in implementing Algorithm A, then students
are expected to code A themselves instead of using a routine from an existing toolbox.

e NumPy structures and numerical procedures from the scipy library (except optimization ones!)
are recommended, but not mandatory.

e A comparison between methods consists in reporting numerical results (final function values,
convergence plots) given a budget (number of iterations, epochs,...) and commenting on them.
Is there a clear winner in the comparison? Are there results that are surprising to you?

e When details of the implementation are left open, you should choose settings that allow for
fast convergence, or that look informative to you. Your comments should reflect these choices.

*Version of October 24, 2025. The last version of this document can be found at:
https://www.lamsade.dauphine.fr/~croyer/ensdocs/OML /ProjectOML.pdf.
Typos, questions, etc, can be sent to clement.royer@lamsade.dauphine.fr

https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/OML/ProjectOML.pdf

2 IASD - 2025/2026

e The goal of testing several values of an hyperparameter (e.g. a constant step size) is to assess
the robustness of a given method with respect to this hyperparameter. Are the results sensitive
to changes in the value of the hyperparameter? Can you identify regimes of values that yield
similar results (such as the large batch and mini-batch regimes for the batch size in stochastic
gradient)?

An MNIST-based regression problem

The MNIST dataset [1] is one of the most classical datasets in machine learning. It consists of
handwritten digits (from 0 to 9) given as pixel images in R?®*28_ There are numerous ways to obtain
this dataset. An old-fashioned one would consist in downloading it from the libsvm repository:

https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html#mnist
The dataset can also be directly imported in Python, e.g. through PyTorch.
Question 0 /mport the MNIST dataset and build your own dataset by making the following changes:
i) Select two digit classes ¢; and cy such that {c1,ca} # {0,1}. *
ii) Change the labels so that they correspond to —1 for one class and 1 for the other class.

iii) Consider the images as vectors.

Given a subset of two classes in MNIST {(x;, %)}, with ; € R?, d = 282 = 784 and
y; € {—1,+1}. we consider a classification problem of the form

1 & 1 2
minimize f(w) := — » fi(w), fi(w) =y — : (1)
n ; (y —m?w))

weRd 1+ exp(
This problem is nonconvex in general. The function t — ﬁp(_t) is called the sigmoid function,
and acts as an approximation to the sign function. For any ¢ = 1,...,n, the gradient of f; is given

by
oy 2exp(aw) (exp(ziw)(y — 1) + i)
Viilw) = - (1 + exp(zlw))3

Question 1 Given a data point (a;,y;) from your dataset, use the Autograd framework described
in the second lab session to implement a code for the function f; that enables to compute V f;(x) for
any x through automatic differentiation. Validate your implementation using the explicit formula (2).

Regularized version We will also be interested in a regularized version of problem (1), of the form

minimize f(w) + A|w]|1, (3)
weR?

where A > 0 and [Jwll; = 3-7_; |w].

1This requirement is merely to promote different answers among students. This still leaves you 44 digit pairs to
choose from!

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist

IASD - 2025/2026 3

First-order algorithms

Question 2 Adapt the code of gradient descent provided during the lab sessions (or use your own
implementation) to run it on problem (1).

i) What convergence rate is expected for gradient descent on this problem? Do you observe this
rate empirically?

i) Can you find a good constant value for the stepsize?

Question 3 Adapt the code of batch stochastic gradient provided during the lab sessions (or use
your own implementation) to compare gradient descent and stochastic gradient on problem (1).

i) Are your results consistent with what the theory predicts?
i) Can you find a good constant stepsize choice for stochastic gradient?

iii) What appears to be the best value for the batch size on this problem?

Question 4 Adapt the code of Adagrad provided during the lab sessions (or use your own imple-
mentation) to include that method in the comparison. How does this method compare to the best
stochastic gradient method from Question 3 on problem (1)?

Question 5 Consider the best method from Question 4, and apply it to problem (3) using proximal
gradient (consider the implementation used as illustration in class, or implement your own). Can you
find a value for \ that yields a good yet sparse solution vector?

Zeroth-order algorithms

In this final section, we consider optimization techniques that do not rely on exact gradient calcula-
tions (let alone differentiation). Instead, one computes steps by querying only function values. The
classical iteration of such a method has the form

fwy, + huy) — f(wy)
hy,

Whyl = Wy — O Uy, (4)

where o, > 0 is a stepsize, h > 0 plays the role of a finite-difference parameter and uy ~ N (0, 1)
is a Gaussian random vector. This approach was popularized by Nesterov [2]? and algorithms of the
form (4) are nowadays referred to as zeroth-order optimization methods.

Question 6 /mplement an algorithm based on iteration 4 and validate your implementation on the
linear regression problem from the notebooks.

i) Try different values for h in order to find one that leads to convergence.

i) Try different choices for cy, to obtain the best possible performance.

2The paper remained a technical report and an updated version was published in 2017 with an additional co-
author [3]. Understanding these papers is not necessary for this project.

4 IASD - 2025/2026

It is worth comparing the proposed method with both exact gradient descent (using exact deriva-
tives) and a finite-difference version of the method

f(wg + he;) — f(wy)

h (5)

Wi41 = W — OkGg, gi = .
j=1,...,d

Question 7 Compare the performance of your algorithm with that of gradient descent and the
finite-difference method (5) on problem (1).

i) How do the variants behave with constant stepsize? Decreasing stepsizes?

i) Propose a unit of comparison (other than the number of iterations) for all three algorithms. Plot
the behavior of the methods for a fixed budget of the cost you propose.

In a stochastic setting, there are two ways to implement iteration 4. The first considers that a
batch of indices Sy, is given at every iteration, and performs

h _
Wip1 = W) — ok fSk (wk + ’ZZ) fS;€ (wk)uk7 (6)

where]
VS C {1}, fs(w) = — Zfi(w).
€S
The second approach considers that the same sample cannot be queried twice in a row, yielding

the iteration
fst (wg + huy) — fs, (wy)

hy,

Wiyl = Wi — uy, (7)

where S;, and S,j are random batches of same size.

Question 8 Adapt the code from the previous questions to allow for iterations (6) and (7).

i) Compare the variants with batch size 1 with the deterministic method (4). Do you recover
observations from the first-order part of this project?

i) Assuming samples are drawn uniformly at random, find a good value for the batch size in both (6)
and (7).

Question 9 Propose an adaptation of your best stochastic zeroth-order variant to the proximal
setting. Compare the resulting method with the algorithm from Question 5 on problem (3) with
exact gradients and finite-difference gradients.

References

[1] Y. Le Cun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proc. of the IEEE, 86(11):2278-2324, 1998.

[2] Yu. Nesterov. Random gradient-free minimization of convex functions. Technical Report 2011/1,
CORE, Université Catholique de Louvain, 2011.

[3] Yu. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. Found.
Comput. Math., 17:527-566, 2017.

