Tutorial 1: Basics of optimization

Optimization for machine learning, M2 MIAGE ID Apprentissage
September 21, 2023

Dauphine \mid PSL

Exercise 1: Linear least squares

We consider a dataset $\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$, wherein $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in \mathbb{R}$ for every $i=1, \ldots, n$. We seek a linear model that best fits the data, which we formulate as the following optimization problem:

$$
\begin{equation*}
\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\operatorname{minimize}} f(\boldsymbol{w}):=\frac{1}{2}\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|^{2}=\frac{1}{2} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{w}-y_{i}\right)^{2}, \tag{1}
\end{equation*}
$$

where $\boldsymbol{X} \in \mathbb{R}^{n \times d}$ and $\boldsymbol{y} \in \mathbb{R}^{n}$ are given by

$$
\boldsymbol{X}=\left[\begin{array}{c}
\boldsymbol{x}_{1}^{\mathrm{T}} \\
\vdots \\
\boldsymbol{x}_{n}^{\mathrm{T}}
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

This problem is among the most classical in data analysis. Its objective function is \mathcal{C}^{2}, and the problem (1) always has at least one solution.
a) Let $\boldsymbol{w}^{*} \in \mathbb{R}^{d}$ satisfy $\boldsymbol{X} \boldsymbol{w}^{*}=\boldsymbol{y}$ (hence \boldsymbol{w}^{*} is a solution of the linear system $\boldsymbol{X} \boldsymbol{w}=\boldsymbol{y})$. Justify then that \boldsymbol{w}^{*} is a global minimum of the objective function.
b) The gradient of f at any $\boldsymbol{w} \in \mathbb{R}^{d}$ is given by $\nabla f(\boldsymbol{w})=\boldsymbol{X}^{\mathrm{T}}(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y})$. If \boldsymbol{w}^{*} is a local minimum of f, what is the value of $\nabla f\left(\boldsymbol{w}^{*}\right)$?
c) The Hessian matrix of f at $\boldsymbol{w} \in \mathbb{R}^{d}$ is given by $\nabla^{2} f(\boldsymbol{w})=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$. Note that it is constant with respect to \boldsymbol{w}, and that it only depends on the data matrix \boldsymbol{X}.
i) By construction, we have $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \succeq \mathbf{0}$. What property on f does this imply?
ii) Suppose that $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \succeq \mu \boldsymbol{I}_{d}$ with $\mu>0$. Given $\boldsymbol{w} \in \mathbb{R}^{d}$, what can we say about $\nabla^{2} f(\boldsymbol{w})$ in that case? What information does this provide about the set of solutions of problem (1)?

Exercise 2: Convex function

Let $q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be defined as $q(\boldsymbol{w})=\frac{1}{4}\|\boldsymbol{w}\|^{4}$. This function is \mathcal{C}^{2}, and for every $\boldsymbol{w} \in \mathbb{R}^{d}$, we have

$$
\nabla q(\boldsymbol{w})=\|\boldsymbol{w}\|^{2} \boldsymbol{w}, \quad \nabla^{2} q(\boldsymbol{w})=2 \boldsymbol{w} \boldsymbol{w}^{\mathrm{T}}+\|\boldsymbol{w}\|^{2} \boldsymbol{I}_{d}
$$

a) Using the expression of the Hessian matrix of q, show that the function q is convex. What does it imply on its local minima?
b) Show that the zero vector $\mathbf{0}_{\mathbb{R}^{d}}$ is a local minimum of q. Does it satisfy the secondorder sufficient condition?
c) Given the answer to the previous question, can the function q be strongly convex?
d) Justify that the function has a single global minimum.

Exercise 3: Quasiconvex functions

A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called quasiconvex if

$$
\begin{equation*}
\forall \boldsymbol{w}, \boldsymbol{v} \in \mathbb{R}^{d}, \forall t \in[0,1], \quad f(t \boldsymbol{w}+(1-t) \boldsymbol{v}) \leq \max \{f(\boldsymbol{w}), f(\boldsymbol{v})\} \tag{2}
\end{equation*}
$$

Any convex function is quasiconvex, but the converse is not true.
Let f be a quasiconvex, \mathcal{C}^{2} function. We consider:

$$
\begin{equation*}
\underset{\boldsymbol{w} \in \mathbb{R}^{d}}{\operatorname{minimize}} f(\boldsymbol{w}) \tag{3}
\end{equation*}
$$

a) Write the first- and second-order optimality conditions for problem (3).
b) Since f is quasiconvex, it can be shown that

$$
\begin{equation*}
\forall \boldsymbol{w} \in \mathbb{R}^{d}, \forall \boldsymbol{v} \in \mathbb{R}^{d}, \quad \boldsymbol{v}^{\mathrm{T}} \nabla f(\boldsymbol{w})=0 \Rightarrow \boldsymbol{v}^{\mathrm{T}} \nabla^{2} f(\boldsymbol{w}) \boldsymbol{v} \geq 0 \tag{4}
\end{equation*}
$$

Let \boldsymbol{w}^{*} be a first-order stationary point. Justify that \boldsymbol{w}^{*} is also a second-order stationary point.

Solutions

Solutions for Exercise 1

Underlying goal: Introduce least-squares formulations. Apply the definitions of global minima/solutions and that of convexity.
a) If $\boldsymbol{X} \boldsymbol{w}^{*}=\boldsymbol{y}$, then

$$
f\left(\boldsymbol{w}^{*}\right)=\frac{1}{2}\left\|\boldsymbol{X} \boldsymbol{w}^{*}-\boldsymbol{y}\right\|^{2}=\frac{1}{2}\|\mathbf{0}\|^{2}=0
$$

Since f is always nonnegative (definition of a norm), we also have

$$
\forall \boldsymbol{w} \in \mathbb{R}^{d}, f(\boldsymbol{w}) \geq 0=f\left(\boldsymbol{w}^{*}\right)
$$

The latter property corresponds to the definition of a global minimum for f, from which we conclude that \boldsymbol{w}^{*} is a global minimum of f or, equivalently, a solution of the unconstrained problem (1).
b) The function f is continuously differentiable $\left(\mathcal{C}^{2}\right.$, so $\left.\mathcal{C}^{1}\right)$. If \boldsymbol{w}^{*} is a local minimum of f, then $\nabla f\left(\boldsymbol{w}^{*}\right)=\mathbf{0}$ per the first-order optimality condition.
i) If $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \succeq \mathbf{0}$, then $\nabla^{2} f(\boldsymbol{w}) \succeq \mathbf{0}$ for any $\boldsymbol{w} \in \mathbb{R}^{d}$. This property is a characterization of convexity for a \mathcal{C}^{2} function, from which we conclude that f is a convex function.
ii) Similarly to the previous question, the fact that $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \succeq \mu \boldsymbol{I}_{d}$ means that $\nabla^{2} f(\boldsymbol{w}) \succeq \mu \boldsymbol{I}_{d}$ for any $\boldsymbol{w} \in \mathbb{R}^{d}$. This is again a characterization of strong convexity for \mathcal{C}^{2} functions, and therefore f is μ-strongly convex. As a result, there exists a unique solution for the optimization problem (or equivalently, f has a unique global minimum).

Solutions for Exercise 2

Goal: Introduce a bit more calculus to get students comfortable with scalar products and matrixvector products. Give an example of global minimum that does not satisfy the sufficient optimality condition.
a) For any $\boldsymbol{w} \in \mathbb{R}^{d}$ and any $\boldsymbol{v} \in \mathbb{R}^{d}$, the linearity of both scalar products and matrix-vector products gives:

$$
\begin{aligned}
\boldsymbol{v}^{\mathrm{T}} \nabla^{2} q(\boldsymbol{w}) \boldsymbol{v} & =\boldsymbol{v}^{\mathrm{T}}\left(2 \boldsymbol{w} \boldsymbol{w}^{\mathrm{T}}+\|\boldsymbol{w}\|^{2} \boldsymbol{I}_{d}\right) \boldsymbol{v} \\
& =\boldsymbol{v}^{\mathrm{T}}\left(2 \boldsymbol{w} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{v}+\|\boldsymbol{w}\|^{2} \boldsymbol{v}\right) \\
& =2 \boldsymbol{v}^{\mathrm{T}} \boldsymbol{w} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{v}+\|\boldsymbol{w}\|^{2} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{v} \\
& =2\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{v}\right)^{2}+\|\boldsymbol{w}\|^{2} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{v} \\
& =2\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{v}\right)^{2}+\|\boldsymbol{w}\|^{2}\|\boldsymbol{v}\|^{2} \\
& \geq 0
\end{aligned}
$$

Thus, for any $\boldsymbol{w} \in \mathbb{R}^{d}$, the Hessian matrix $\nabla^{2} q(\boldsymbol{w})$ is positive semidefinite, i.e. $\nabla^{2} q(\boldsymbol{w}) \succeq \mathbf{0}$. Consequently, the $\left(\mathcal{C}^{2}\right)$ function q is convex, and all its local minima are global.
b) Since the function q is convex, every local minimum is global. Moreover, we have

$$
q(\boldsymbol{w})=\frac{1}{4}\|\boldsymbol{w}\|^{4} \geq 0=q\left(\mathbf{0}_{\mathbb{R}^{d}}\right)
$$

for any $\boldsymbol{w} \in \mathbb{R}^{d}$. The zero vector $\mathbf{0}_{\mathbb{R}^{d}}$ is thus a global minimum of q. If the zero vector were to satisfy the second-order sufficient optimality conditions, we would have $\nabla^{2} q\left(\mathbf{0}_{\mathbb{R}^{d}}\right) \succ \mathbf{0}$. However, the expression for $\nabla^{2} q$ gives

$$
\nabla^{2} q\left(\mathbf{0}_{\mathbb{R}^{d}}\right)=\mathbf{0}
$$

and the zero matrix is only positive semidefinite (instead of positive definite). As a result, the zero vector does not satisfy the second-order sufficient optimality conditions. Note: This does not contradict the fact that this vector is a global minimum, as the condition is sufficient but not necessary.
c) If the function were strongly convex, there would exist $\mu>0$ such that $\nabla^{2} q(\boldsymbol{w}) \succeq \mu \boldsymbol{I}_{d} \succ \mathbf{0}$ for any \boldsymbol{w}, including the zero vector. Since the Hessian is zero at the zero vector, this cannot be true, from which we conclude that q is not strongly convex.
d) For every $\boldsymbol{w} \in \mathbb{R}^{d}$, we have $q(\boldsymbol{w}) \geq q\left(\mathbf{0}_{\mathbb{R}^{d}}\right)=0$, hence the zero vector is a global minimum. Moreover, $q(\boldsymbol{w})=0$ if and only if $\boldsymbol{w}=\mathbf{0}_{\mathbb{R}^{d}}$, and thus the zero vector is the only global minimum of q.
Note: Classical argument in this last question, typical first question of an exam.

Solutions for Exercise 3

a) The result is expected to be known. The first-order necessary optimality conditions can be stated as follows. If a vector $\boldsymbol{w}^{*} \in \mathbb{R}^{d}$ is a local minimum of a \mathcal{C}^{1} function f, then $\nabla f\left(\boldsymbol{w}^{*}\right)=\mathbf{0}$. The second-order necessary optimality conditions are a stronger characterization. If $\boldsymbol{w}^{*} \in \mathbb{R}^{d}$ is a local minimum of f, then

$$
\nabla f\left(\boldsymbol{w}^{*}\right)=\mathbf{0} \quad \text { and } \quad \nabla^{2} f\left(\boldsymbol{w}^{*}\right) \succeq \mathbf{0} .
$$

b) Since \boldsymbol{w}^{*} is a first-order stationary point, it satisfies the first-order necessary conditions, hence $\nabla f\left(\boldsymbol{w}^{*}\right)=\mathbf{0}$ and

$$
\forall \boldsymbol{v} \in \mathbb{R}^{d}, \quad \boldsymbol{v}^{\mathrm{T}} \nabla f\left(\boldsymbol{w}^{*}\right)=\boldsymbol{v}^{\mathrm{T}} \mathbf{0}=0
$$

The left-hand side of the implication (4) thus holds for \boldsymbol{w}^{*} and any vector \boldsymbol{v}. Thus the right-hand also holds, i.e.

$$
\boldsymbol{v}^{\mathrm{T}} \nabla^{2} f\left(\boldsymbol{w}^{*}\right) \boldsymbol{v} \geq 0 \forall \boldsymbol{v} \in \mathbb{R}^{d}
$$

which is equivalent to $\nabla^{2} f\left(\boldsymbol{w}^{*}\right) \succeq \mathbf{0}$. Therefore, the vector \boldsymbol{w}^{*} satisfies the second-order necessary optimality conditions, and it is a second-order stationary point.

