
Tutorial 1: Basics of optimization
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September 21, 2023

Exercise 1: Linear least squares

We consider a dataset {(xi, yi)}ni=1, wherein xi ∈ Rd and yi ∈ R for every i = 1, . . . , n.
We seek a linear model that best fits the data, which we formulate as the following
optimization problem:

minimize
w∈Rd

f(w) :=
1

2
∥Xw − y∥2 = 1

2

n∑
i=1

(xT
i w − yi)

2, (1)

where X ∈ Rn×d and y ∈ Rn are given by

X =

 xT
1
...
xT
n

 , y =

 y1
...
yn

 .

This problem is among the most classical in data analysis. Its objective function is C2,
and the problem (1) always has at least one solution.

a) Let w∗ ∈ Rd satisfy Xw∗ = y (hence w∗ is a solution of the linear system
Xw = y). Justify then that w∗ is a global minimum of the objective function.

b) The gradient of f at any w ∈ Rd is given by ∇f(w) = XT(Xw − y). If w∗ is a
local minimum of f , what is the value of ∇f(w∗)?

c) The Hessian matrix of f at w ∈ Rd is given by ∇2f(w) = XTX. Note that it is
constant with respect to w, and that it only depends on the data matrix X.

i) By construction, we have XTX ⪰ 0. What property on f does this imply?

ii) Suppose that XTX ⪰ µId with µ > 0. Given w ∈ Rd, what can we say
about ∇2f(w) in that case? What information does this provide about the set
of solutions of problem (1)?
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Exercise 2: Convex function

Let q : Rd → R be defined as q(w) = 1
4∥w∥4. This function is C2, and for every w ∈ Rd,

we have
∇q(w) = ∥w∥2w, ∇2q(w) = 2wwT + ∥w∥2Id.

a) Using the expression of the Hessian matrix of q, show that the function q is convex.
What does it imply on its local minima?

b) Show that the zero vector 0Rd is a local minimum of q. Does it satisfy the second-
order sufficient condition?

c) Given the answer to the previous question, can the function q be strongly convex?

d) Justify that the function has a single global minimum.

Exercise 3: Quasiconvex functions

A function f : Rd → R is called quasiconvex if

∀w,v ∈ Rd, ∀t ∈ [0, 1], f(tw + (1− t)v) ≤ max{f(w), f(v)}. (2)

Any convex function is quasiconvex, but the converse is not true.

Let f be a quasiconvex, C2 function. We consider:

minimize
w∈Rd

f(w). (3)

a) Write the first- and second-order optimality conditions for problem (3).

b) Since f is quasiconvex, it can be shown that

∀w ∈ Rd, ∀v ∈ Rd, vT∇f(w) = 0 ⇒ vT∇2f(w)v ≥ 0. (4)

Let w∗ be a first-order stationary point. Justify that w∗ is also a second-order
stationary point.
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Solutions

Solutions for Exercise 1

Underlying goal: Introduce least-squares formulations. Apply the definitions of global minima/solutions
and that of convexity.

a) If Xw∗ = y, then

f(w∗) =
1

2
∥Xw∗ − y∥2 = 1

2
∥0∥2 = 0.

Since f is always nonnegative (definition of a norm), we also have

∀w ∈ Rd, f(w) ≥ 0 = f(w∗).

The latter property corresponds to the definition of a global minimum for f , from which we
conclude that w∗ is a global minimum of f or, equivalently, a solution of the unconstrained
problem (1).

b) The function f is continuously differentiable (C2, so C1). If w∗ is a local minimum of f , then
∇f(w∗) = 0 per the first-order optimality condition.

i) If XTX ⪰ 0, then ∇2f(w) ⪰ 0 for any w ∈ Rd. This property is a characterization of
convexity for a C2 function, from which we conclude that f is a convex function.

ii) Similarly to the previous question, the fact that XTX ⪰ µId means that ∇2f(w) ⪰ µId

for any w ∈ Rd. This is again a characterization of strong convexity for C2 functions,
and therefore f is µ-strongly convex. As a result, there exists a unique solution for the
optimization problem (or equivalently, f has a unique global minimum).

Solutions for Exercise 2

Goal: Introduce a bit more calculus to get students comfortable with scalar products and matrix-
vector products. Give an example of global minimum that does not satisfy the sufficient optimality
condition.

a) For any w ∈ Rd and any v ∈ Rd, the linearity of both scalar products and matrix-vector products
gives:

vT∇2q(w)v = vT(2wwT + ∥w∥2Id)v

= vT(2wwTv + ∥w∥2v)
= 2vTwwTv + ∥w∥2vTv

= 2(wTv)2 + ∥w∥2vTv

= 2(wTv)2 + ∥w∥2∥v∥2

≥ 0.

Thus, for any w ∈ Rd, the Hessian matrix ∇2q(w) is positive semidefinite, i.e. ∇2q(w) ⪰ 0.
Consequently, the (C2) function q is convex, and all its local minima are global.
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b) Since the function q is convex, every local minimum is global. Moreover, we have

q(w) = 1
4∥w∥4 ≥ 0 = q(0Rd)

for any w ∈ Rd. The zero vector 0Rd is thus a global minimum of q. If the zero vector were to
satisfy the second-order sufficient optimality conditions, we would have ∇2q(0Rd) ≻ 0. However,
the expression for ∇2q gives

∇2q(0Rd) = 0,

and the zero matrix is only positive semidefinite (instead of positive definite). As a result, the
zero vector does not satisfy the second-order sufficient optimality conditions. Note: This does
not contradict the fact that this vector is a global minimum, as the condition is sufficient but not
necessary.

c) If the function were strongly convex, there would exist µ > 0 such that ∇2q(w) ⪰ µId ≻ 0 for
any w, including the zero vector. Since the Hessian is zero at the zero vector, this cannot be
true, from which we conclude that q is not strongly convex.

d) For every w ∈ Rd, we have q(w) ≥ q(0Rd) = 0, hence the zero vector is a global minimum.
Moreover, q(w) = 0 if and only if w = 0Rd , and thus the zero vector is the only global minimum
of q.
Note: Classical argument in this last question, typical first question of an exam.

Solutions for Exercise 3

a) The result is expected to be known. The first-order necessary optimality conditions can be stated
as follows. If a vector w∗ ∈ Rd is a local minimum of a C1 function f , then ∇f(w∗) = 0. The
second-order necessary optimality conditions are a stronger characterization. If w∗ ∈ Rd is a local
minimum of f , then

∇f(w∗) = 0 and ∇2f(w∗) ⪰ 0.

b) Since w∗ is a first-order stationary point, it satisfies the first-order necessary conditions, hence
∇f(w∗) = 0 and

∀v ∈ Rd, vT∇f(w∗) = vT0 = 0.

The left-hand side of the implication (4) thus holds for w∗ and any vector v. Thus the right-hand
also holds, i.e.

vT∇2f(w∗)v ≥ 0 ∀v ∈ Rd,

which is equivalent to∇2f(w∗) ⪰ 0. Therefore, the vectorw∗ satisfies the second-order necessary
optimality conditions, and it is a second-order stationary point.


