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Exercise 1: Huber loss

We consider a dataset {(xi, yi)}ni=1, where n ≥ 1, xi ∈ Rd with d ≥ 1 and yi ∈ R. We
seek a linear model that best predicts every yi given the corresponding xi. To this end,
we consider a family of models parameterized by w ∈ Rd of the form

hw : Rd → R
x 7→ xTw =

∑d
i=1[x]i[w]i.

Given a model hw, we consider that this model perfectly predicts yi given xi if ℓ (hw(xi)− yi) =
ℓ
(
xT
i w − yi

)
= 0, where ℓ : R→ R is the Huber loss given by

ℓ(t) =

{
1
2 t

2 if |t| < 1
|t| − 1

2 otherwise.
(1)

This function behaves like t 7→ t2

2 for |t| < 1 and like t 7→ |t| when |t| is large enough.
Unlike what its expression could suggest, the function ℓ is C1.

The term ℓ (hw(xi)− yi) represents the error corresponding to the data point (xi, yi),
and we seek a model (i.e. a vector w ∈ Rd) that yields the minimum sum of these errors.
As a result, we consider the problem:

minimize
w∈Rd

f(w) :=
1

n

n∑
i=1

ℓ(xT
i w − yi). (2)

a) Justify that 0 is a lower bound of the objective f of problem (2). Is it necessarily
its minimum value?

b) The gradient of f at w ∈ Rd is given by

∇f(w) =
1

n

n∑
i=1

ℓ′(xT
i w − yi)xi, (3)
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with

ℓ′(t) =


1 if t > 1
t if |t| ≤ 1
−1 if t < −1.

Write down the gradient descent iteration with a constant stepsize α and using the
formula (3) for the gradient. If the current point is a local minimum, what happens
to this iteration?

c) The gradient ∇f is L-Lipschitz continuous with L = 1
n

∑n
i=1 ∥xi∥2. How can this

constant be used to define the stepsize? Give two other strategies for choosing the
stepsize that do not require knowledge of L.

d) The function f has the form f = 1
n

∑n
i=1 fi, where fi(w) = ℓ(xT

i w − yi). The
gradient of fi at w is

∇fi(w) = ℓ′(xT
i w − yi)xi.

Write the iteration of stochastic gradient for problem (2), using a generic choice
for the stepsize.

e) For the rest of the exercise, we consider that our unit of cost is one access to a
single xi. Using the unit, what is the cost of a gradient descent iteration? What is
the cost of a stochastic gradient iteration?

f) Discuss the interest of stochastic gradient in the following two cases:

i) n ≫ 1 and there are redundancies in the dataset {(xi, yi)} in the form of
duplicate elements;

ii) n = d and the xi are the coordinate vectors in Rn.

g) Suppose that we run stochastic gradient with a constant stepsize on our problem,
and that we observe that the method generates iterates with increasingly large
norm, leading to a memory overflow. Provide a justification for this behavior.

h) We consider a batch variant of stochastic gradient where we draw nb elements of
{(xi, yi)} at every iteration.

i) Write the corresponding iteration.

ii) If nb corresponds to the number of processors available for parallel calculations,
what can be the interest of choosing nb as batch size?

iii) What is the statistical advantage of batch methods over vanilla stochastic
gradient?

iv) Suppose that we compare several batch sizes. We observe that the practical
convergence rate of the method improves as nb increases from 1 to n

10 , but
that it deteriorates as nb increases from n/10 to n. How can you explain these
observations?
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Exercise 2: Importance sampling

We consider a finite-sum problem of the form

minimize
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w), (4)

where, for any i = 1, . . . , n, the function fi is C1,1Li
, i.e. it is C1 and its gradient ∇fi is

Li-Lipschitz continuous. We also suppose that the function f is µ-strongly convex.

We consider a variant on stochastic gradient where every index ik corresponding to a
stochastic gradient is drawn according to its importance. The importance of an index
is a probability defined according to the quantities ci =

nLi∑n
j=1 Lj

defined for every i =

1, . . . , n. The importance sampling rule is then given by:

∀i ∈ {1, . . . , n}, P (ik = i) =
ci∑n
j=1 cj

. (5)

The iteration of stochastic gradient of importance sampling is then given by

wk+1 ← wk −
αk

cik
∇fik(wk). (6)

a) Show that

P (ik = i) =
Li∑n
j=1 Lj

.

According to this result, what values of i are the most likely to be chosen?

b) Show that the resulting stochastic gradient is unbiased, in the sense that

Eik

[
1

cik
∇fik(wk)

]
= ∇f(wk).

c) Under the problem’s assumptions, we can show that ∇f is L-Lipschitz continuous
with L = 1

n

∑n
i=1 Li. Suppose that we fix a constant stepsize αk = 1

L for every k.
Given an index ik, we wish to compare an iteration of vanilla stochastic gradient
with an iteration of the form (6).

i) Justify that αk
cik

= 1
Lik

.

ii) Using the previous question, when can we get αk
cik
≥ αk ? What does this

imply on the iteration (6) ?
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Solutions

Solutions for Exercise 1

a) The function ℓ is nonnegative on R. For any w ∈ Rd, we thus have

f(w) =
1

n

n∑
i=1

ℓ(xT
i w − yi) ≥

1

n

n∑
i=1

0 = 0.

Therefore, the value 0 is a lower bound for the objective of problem (2). This value is reached
only when there exists a point w such that xT

i w− yi = 0 for every i. This is not always possible
(take for instance n = 2, d = 1,x1 = 1,x2 = −1, y1 = y2 = 1), hence 0 is not necessarily the
minimum value for the problem.

b) At wk ∈ Rd, the gradient descent iteration with a constant stepsize α on this specific problem is

wk+1 = wk −
α

n

n∑
i=1

ℓ′(xT
i wk − yi)xi.

If wk is a local minimum, then ∇f(wk) = 0, and the iteration becomes wk+1 = wk.

c) If the Lispchitz constant L is known, then choosing α = 1
L is a good value.

If this value is unknown, we can instead use a decreasing stepsize sequence (such as αk = 1
k+1)

or use a line search to compute a stepsize tailored to the given iteration.

d) An iteration of stochastic gradient at wk ∈ Rd using stepsize αk first draws an index ik in
{1, . . . , n} at random. Then, the new iterate wk+1 is given by

wk+1 = wk − αk∇fik(wk) = wk − αkℓ
′(xT

ik
wk − yik)xik .

e) Every gradient descent iteration must access all data points in order to compute the full gradient.
Since our cost unit corresponds to an access to one point xi, the cost of one gradient descent
iteration according to this metric is n. As for an iteration of stochastic gradient, its cost is 1
because it only requires one data point (namely xik at iteration k, where ik is the random index
drawn at that iteration).

i) When n ≫ 1 and there are redundancies in the data, it is not necessary to “see” all data
points in order to perform optimization. As a result, stochastic gradient can be more efficient
than gradient descent, in that it will perform more optimization steps given the same amount
of accesses to data points. This is a situation in which stochastic gradient is relevant. N.B.
More broadly, when the data points are correlated, but not necessarily identical, we expect a
similar argument to hold in favor of stochastic gradient.

ii) When n = d and xi = ei (where ei is the ith coordinate vector in Rn defined by [ei]i = 1
and [ei]j = 0 for i ̸= j), the problem can be rewritten as

min
w∈Rn

1

n

n∑
i=1

ℓ(eTi w − yi) =
1

n

n∑
i=1

ℓ([w]i − yi).
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It can then be seen that the objective function is a sum of n terms, each involving a dif-
ferent coordinate of w. An iteration of gradient descent will then update all coordinates at
once, whereas an iteration of stochastic gradient will only modify one (random) coordinate
at a time. In that context, gradient descent is more interesting than stochastic gradient.
N.B. Here all terms in the finite sum must be considered to compute the solution of the
optimization problem. The data points are independent, and not correlated.

f) Stochastic gradient is a randomized method, implying that the result of a particular run depends
on a random draw of a sequence of indices. As a result, it is possible that a particular run does
not converge (even though the theory guarantees convergence in expectation), and this is an
explanation for the observed behavior.

i) The kth iteration of a batch stochastic gradient with batch size nb, starting from a point
wk ∈ Rd proceeds as follows. First, a random subset of indices of cardinality nb is drawn
such that Sk ⊂ {1, . . . , n}nb . Then, the next iterate is computed through the formula

wk+1 = wk −
αk

|Sk|
∑
i∈Sk

∇fi(wk),

where αk > 0 is a stepsize.

ii) If nb are available and the gradients of the fis can be computed in parallel, then the evaluation
of the batch stochastic gradient can be distributed over these nb processors.

iii) Batch stochastic gradient methods rely on a gradient estimate of the form 1
|Sk|

∑
i∈Sk
∇fi(wk).

The variance of this estimator (as defined in the lectures) is smaller than that of a standard
stochastic gradient estimate, of the form ∇fik(wk).

iv) If we observe that the convergence improves while increasing the batch size, it means that
considering more than one data point is beneficial (typically because of the variance reduction
effect, but also because more information is captured by those gradient estimators). However,
increasing the batch size too much leads to a drop in performance, as the method then gets
more expensive (with a per-iteration cost being significantly higher than stochastic gradient)
while being more sensitive to redundancies in the data. This explains that the performance
worsens as nb gets above n/10.

Solutions for Exercise 2

a) Using the definition of the cis, we obtain:

P (ik = i) =
ci∑n
j=1 cj

=

nLi∑n
k=1 Lk∑n

j=1
nLj∑n
k=1 Lk

=
nLi∑n
j=1 nLj

=
Li∑n
j=1 Lj

.

As a result, the indices that have the highest probability of being drawn are those corresponding
to the largest Lipschitz constants (these constants characterize the variation in the gradients).
Importance sampling gives priority to these components.
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b) Using the definition of the expected value gives

Eik

[
1

cik
∇fik(wk)

]
=

n∑
i=1

P (ik = i)
1

ci
∇fi(wk)

=
n∑

i=1

ci∑n
j=1 cj

1

ci
∇fi(wk)

=
n∑

i=1

1∑n
j=1 cj

∇fi(wk)

=
n∑

i=1

1

n
∇fi(wk) = ∇f(wk),

where the last line comes from
∑n

j=1 cj =
∑n

j=1
nLj∑n
k=1 Lk

= n
∑n

j=1 Lj∑n
k=1 Lk

= n.

i) Since αk = 1
L , we have

αk

cik
=

1

L

∑n
j=1 Lj

nLik

=
n∑n

j=1 Lj

∑n
j=1 Lj

nLik

=
1

Lik

.

ii) From the previous question, given an index ik drawn at random, the standard stochastic
gradient iteration is

wk+1 = wk − αk∇fik(wk) = wk −
1

L
∇fik(wk),

whereas iteration (5) corresponds to

wk+1 = wk −
αk

cik
∇fik(wk) = wk −

1

Li
∇fik(wk).

Consequently, the second iteration takes a smaller step (in the sense of using a smaller
stepsize) in the direction of −∇fik(wk) whenever Li ≥ 1

n

∑n
j=1 Lj , that is whenever the

ith Lipschitz constant is larger than the average of all constants. This is precisely what
importance sampling promotes, and it does so by adapting the stepsize according to the
Lipschitz constants. The components with larger Lipschitz constants are selected more often,
but they correspond to small steps.


