# Optimization for Machine Learning

Lecture 1: Basics of optimization

Clément W. Royer

M2 IASD - 2025/2026

September 18, 2025



# Outline

- Optimization theory
- 2 Exercises
- Bonus

# Outline

- Optimization theory
- 2 Exercises
- Bonus

# Formulation of an (unconstrained) optimization problem

 $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$ 

### Formulation of an (unconstrained) optimization problem

$$egin{aligned} & \mathsf{minimize} \ f(oldsymbol{w}) \ & oldsymbol{w} \in \mathbb{R}^d \end{aligned}$$

- w represents the optimization variable(s);
- d is the dimension of the problem (we will assume  $d \ge 1$ );
- $f(\cdot)$  is the objective/cost/loss function.

### Formulation of an (unconstrained) optimization problem

```
egin{aligned} & \mathsf{minimize} \ f(oldsymbol{w}) \ & oldsymbol{w} \in \mathbb{R}^d \end{aligned}
```

- w represents the optimization variable(s);
- d is the dimension of the problem (we will assume  $d \ge 1$ );
- $f(\cdot)$  is the objective/cost/loss function.

Maximizing f is equivalent to minimizing -f!

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$$

- ullet argmin $_{oldsymbol{w}\in\mathbb{R}^d}f(oldsymbol{w})$ : Set of solutions (can be empty).
- $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$ : Optimal value (can be infinite).

# Local and global solutions

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$$

- $\operatorname{argmin}_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$ : Set of solutions (can be empty).
- $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$ : Optimal value (can be infinite).

#### Global and local minima

- $w^*$  is a solution or a global minimum of f if  $f(w^*) \leq f(w) \ \forall w \in \mathbb{R}^d$ .
- $w^*$  is a local minimum of f if  $f(w^*) \le f(w) \ \forall w, \|w w^*\|_2 \le \epsilon \text{ for some } \epsilon > 0.$

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$$

- ullet argmin $_{oldsymbol{w}\in\mathbb{R}^d}f(oldsymbol{w})$ : Set of solutions (can be empty).
- $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$ : Optimal value (can be infinite).

#### Global and local minima

- $w^*$  is a solution or a global minimum of f if  $f(w^*) \leq f(w) \ \forall w \in \mathbb{R}^d$ .
- $w^*$  is a local minimum of f if  $f(w^*) \le f(w) \ \forall w, \|w w^*\|_2 \le \epsilon$  for some  $\epsilon > 0$ .
- Finding global/local minima is hard in general!
- ullet Regularity of f is needed.

# First notion of regularity: Smoothness

### Class of $\mathcal{C}^1$ functions

```
f:\mathbb{R}^d 	o \mathbb{R} is continuously differentiable/\mathcal{C}^1 if
```

- ullet For any  $oldsymbol{w} \in \mathbb{R}^d$ , the  $oldsymbol{\mathsf{gradient}} \ 
  abla f(oldsymbol{w})$  exists.
- $\nabla f: \mathbb{R}^d \to \mathbb{R}^d$  is continuous.

# First notion of regularity: Smoothness

### Class of $C^1$ functions

 $f:\mathbb{R}^d o \mathbb{R}$  is continuously differentiable/ $\mathcal{C}^1$  if

- ullet For any  $oldsymbol{w} \in \mathbb{R}^d$ , the gradient  $abla f(oldsymbol{w})$  exists.
- $\bullet \ \nabla f: \mathbb{R}^d \to \mathbb{R}^d$  is continuous.

# Class of $\mathcal{C}_L^{1,1}$ functions (L>0)

f is  $\mathcal{C}_L^{1,1}$  if it is  $\mathcal{C}^1$  and  $\nabla f$  is L-Lipschitz continuous, i.e.

$$\forall (\boldsymbol{v}, \boldsymbol{w}) \in (\mathbb{R}^d)^2, \qquad \|\nabla f(\boldsymbol{v}) - \nabla f(\boldsymbol{w})\| \le L \|\boldsymbol{v} - \boldsymbol{w}\|.$$

Ex) Linear regression, logistic regression, etc.

# Aside: Computing gradients

### Important for today

Function 
$$f(m{w}) \in \mathbb{R}$$
 Gradient  $abla f(m{w}) \in \mathbb{R}^d$  
$$m{a}^{\mathrm{T}} m{w} + m{b}$$
 
$$m{a} \\ m{\frac{1}{2}} \| m{w} + m{b} \|_2^2$$
  $m{w} + m{b}$ 

### Aside: Computing gradients

### Important for today

Function 
$$f(m{w}) \in \mathbb{R}$$
 Gradient  $abla f(m{w}) \in \mathbb{R}^d$   $m{a}$   $m{a}$   $m{b}$   $m{a}$   $m{b}$   $m{b}$   $m{b}$   $m{b}$ 

Next week How to compute derivatives in ML (bring laptops!).

# Smoothness and optimality conditions

Problem: minimize  $w \in \mathbb{R}^d$  f(w),  $fC^1$ .

### First-order necessary condition

If  $w^*$  is a local minimum of the problem, then

$$\|\nabla f(\boldsymbol{w}^*)\|_2 = 0.$$

- This condition is only necessary;
- A point such that  $\|\nabla f(\boldsymbol{w}^*)\|_2 = 0$  can also be a local maximum or a saddle point.

# Smoothness and optimality conditions

Problem: minimize  $w \in \mathbb{R}^d$  f(w),  $fC^1$ .

### First-order necessary condition

If  $w^*$  is a local minimum of the problem, then

$$\|\nabla f(\boldsymbol{w}^*)\|_2 = 0.$$

- This condition is only necessary;
- A point such that  $\|\nabla f(\boldsymbol{w}^*)\|_2 = 0$  can also be a local maximum or a saddle point.



Picture from (Wright and Ma '22).

### Another notion of regularity: Convexity

### Generic definition (+Wikicommons picture)

A function  $f: \mathbb{R}^d \to \mathbb{R}$  is convex if

$$\begin{aligned} &\forall (\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], \\ &f(t\boldsymbol{u} + (1 - t)\boldsymbol{v}) \leq t \, f(\boldsymbol{u}) + (1 - t) \, f(\boldsymbol{v}). \end{aligned}$$



# Another notion of regularity: Convexity

### Generic definition (+Wikicommons picture)

A function  $f: \mathbb{R}^d \to \mathbb{R}$  is convex if

$$\forall (u, v) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], f(tu + (1 - t)v) \le t f(u) + (1 - t) f(v).$$



### Examples in ML

- Linear function  $w \mapsto a^{\mathrm{T}}w + b$ .
- $\ell_2$  loss  $\|\boldsymbol{w}\|_2^2 = \sum_{i=1}^d w_i^2$ .
- Logistic loss.

# Showing convexity (from Hardt and Recht '21)

Showing convexity with more than two variables is hard.

# Showing convexity (from Hardt and Recht '21)

Showing convexity with more than two variables is hard.

### Basic blocks

- All norms (and  $\|\boldsymbol{w}\|_2^2$ ) are convex.
- ullet All linear functions  $w\mapsto Aw+b$  are convex.
- f convex  $\Rightarrow \alpha f$  convex  $\forall \alpha \geq 0$ .
- $f, g \text{ convex} \Rightarrow f + g \text{ convex}$ .
- $f, g \text{ convex} \Rightarrow \max(f, g) \text{ convex}$ .
- f convex  $\Rightarrow w \mapsto f(Aw + b)$  convex.

### Smooth convex functions

### Convexity and gradient

A continuously differentiable function  $f:\mathbb{R}^d \to \mathbb{R}$  is convex if and only if

$$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d, \quad f(\boldsymbol{v}) \geq f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\mathrm{T}}(\boldsymbol{v} - \boldsymbol{u}).$$

### Convexity and gradient

A continuously differentiable function  $f:\mathbb{R}^d \to \mathbb{R}$  is convex if and only if

$$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d, \quad f(\boldsymbol{v}) \geq f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\mathrm{T}}(\boldsymbol{v} - \boldsymbol{u}).$$

A key inequality in optimization.

# Convex optimization problem

 $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}), f \text{ convex}.$ 

# Convex optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}), f \text{ convex}.$$

#### Theorem

Every local minimum of f is a global minimum.

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}), f \text{ convex}.$$

#### $\mathsf{Theorem}$

Every local minimum of f is a global minimum.

### Corollary

If f is  $C^1$ ,

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{argmin}} f(\boldsymbol{w}) = \left\{ \ \bar{\boldsymbol{w}} \mid \|\nabla f(\bar{\boldsymbol{w}})\|_2 = 0 \ \right\}.$$

Any point with a zero gradient is a global minimum!

# Strong convexity

#### **Definition**

A function  $f: \mathbb{R}^d \to \mathbb{R}$  in  $\mathcal{C}^1$  is  $\mu$ -strongly convex (or strongly convex of modulus  $\mu > 0$ ) if for all  $(\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$  and  $t \in [0, 1]$ ,

$$f(t\boldsymbol{u} + (1-t)\boldsymbol{v}) \le t f(\boldsymbol{u}) + (1-t)f(\boldsymbol{v}) - \frac{\mu}{2}t(1-t)\|\boldsymbol{v} - \boldsymbol{u}\|_2^2.$$

#### Definition

A function  $f:\mathbb{R}^d\to\mathbb{R}$  in  $\mathcal{C}^1$  is  $\mu$ -strongly convex (or strongly convex of modulus  $\mu>0$ ) if for all  $(\boldsymbol{u},\boldsymbol{v})\in(\mathbb{R}^d)^2$  and  $t\in[0,1]$ ,

$$f(t\boldsymbol{u} + (1-t)\boldsymbol{v}) \le t f(\boldsymbol{u}) + (1-t)f(\boldsymbol{v}) - \frac{\mu}{2}t(1-t)\|\boldsymbol{v} - \boldsymbol{u}\|_2^2.$$

#### Theorem

Any strongly convex function in  $C^1$  has a unique global minimizer.

### Gradient and strong convexity

Let  $f: \mathbb{R}^d \to \mathbb{R}, \ f \in \mathcal{C}^1$ . Then,

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

### Examples of strongly convex functions

### Key rules

• For any  $\mu>0$  and  ${\boldsymbol w}_0\in\mathbb{R}^d$ ,  ${\boldsymbol w}\mapsto \frac{\mu}{2}\|{\boldsymbol w}-{\boldsymbol w}_0\|_2^2$  is  $\mu$ -strongly convex.

### Examples of strongly convex functions

### Key rules

- For any  $\mu>0$  and  ${\boldsymbol w}_0\in\mathbb{R}^d$ ,  ${\boldsymbol w}\mapsto \frac{\mu}{2}\|{\boldsymbol w}-{\boldsymbol w}_0\|_2^2$  is  $\mu$ -strongly convex.
- If f is  $\mu$ -strongly convex and g is convex, f + g is  $\mu$ -strongly convex.

- M. Hardt and B. Recht, Patterns, Predictions and Actions, Princeton University Press, 2021.
- J. Wright and Y. Ma, High-Dimensional Data Analysis with Low-Dimensional Models, Cambridge University Press, 2022.
- S. J. Wright and B. Recht, Optimization for Data Analysis, Cambridge University Press, 2022.

# Outline

- Optimization theory
- 2 Exercises
- Bonus

# Exercise 1.a - Convexity

Show that the SVM objective

$$\boldsymbol{w} \in \mathbb{R}^d \longmapsto \frac{1}{n} \sum_{i=1}^n \max \left\{ 1 - y_i \, \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}, 0 \right\} + \frac{\lambda}{2} \| \boldsymbol{w} \|^2$$

is a convex function for any  $\lambda \geq 0$ .

# Exercise 1.b - Strong convexity

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be  $\mathcal{C}^1$  and  $\mu$ -strongly convex, and denote by  $\boldsymbol{w}^*$  the minimum of f.

 $oldsymbol{0}$  For any  $oldsymbol{w} \in \mathbb{R}^d$ , show that the function

$$\varphi_{\boldsymbol{w}}: \boldsymbol{z} \longmapsto f(\boldsymbol{w}) + \nabla f(\boldsymbol{w})^{\mathrm{T}}(\boldsymbol{z} - \boldsymbol{w}) + \frac{\mu}{2} \|\boldsymbol{z} - \boldsymbol{w}\|^{2}$$

is strongly convex.

- 2 Compute  $\min_{z} \varphi_{w}(z)$  and  $\operatorname{argmin}_{z} \varphi_{w}(z)$ .
- Show that

$$\|\nabla f(\boldsymbol{w})\|_2^2 \geq 2\mu \left(f(\boldsymbol{w}) - f(\boldsymbol{w}^*)\right).$$

### Exercise 1.c - Least-squares

Let  $\boldsymbol{x} \in \mathbb{R}^d$  with  $\|\boldsymbol{x}\|_2 \neq 0$  and  $\boldsymbol{y} \in \mathbb{R}^d$ .

Consider the problem

$$\mathop{\mathsf{minimize}}_{w \in \mathbb{R}} \frac{1}{2} \|w \boldsymbol{x} - \boldsymbol{y}\|^2.$$

Is it convex? Is the minimum value 0?

2 Consider now the problem

$$oldsymbol{W} \in \mathbb{R}^{d imes d} \ \longmapsto \ rac{1}{2} \| oldsymbol{W} oldsymbol{x} - oldsymbol{y} \|_2^2.$$

Is this a convex problem?

Justify that

$$\min_{\boldsymbol{W} \in \mathbb{R}^{d \times d}} \frac{1}{2} \|\boldsymbol{W}\boldsymbol{x} - \boldsymbol{y}\|_2^2 = 0,$$

and find a global minimum. Is the minimum unique?

Let  $f:\mathbb{R}^d\to\mathbb{R}$  be  $\mathcal{C}_L^{1,1}$  and convex. Suppose that  ${\pmb w}^*\in\mathop{\rm argmin}_{\pmb w} f({\pmb w})$  and let  $f^*=f({\pmb w}^*).$ 

- **①** Let  $\boldsymbol{w} \in \mathbb{R}^d$ . Show that  $f(\boldsymbol{w}) f(\boldsymbol{w}^*) \geq \frac{1}{2L} \|\nabla f(\boldsymbol{w})\|_2^2$ .
- 2 Let  $(\boldsymbol{w}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$ . Show that

$$(\nabla f(\boldsymbol{v}) - \nabla f(\boldsymbol{w}))^{\mathrm{T}} (\boldsymbol{v} - \boldsymbol{w}) \ge \frac{1}{L} \|\nabla f(\boldsymbol{v}) - \nabla f(\boldsymbol{w})\|_{2}^{2}.$$

Consider  $z \mapsto f(z) - \nabla f(v)^{\mathrm{T}}z$  and  $z \mapsto f(z) - \nabla f(w)^{\mathrm{T}}z$ .

# Outline

- Optimization theory
- 2 Exercises
- Bonus

### Nonconvex problems

- Convex problems: All local minima are global!
- Nonconvex problems: May have local, non-global (aka spurious minima).

### Landscape analysis

Identify classes of **nonconvex problems** for which there are no spurious minima (and possibly more).

$$\underset{\boldsymbol{W}_{1},\dots,\boldsymbol{W}_{L}}{\operatorname{minimize}}\,\frac{1}{2}\,\|\boldsymbol{W}_{L}\boldsymbol{W}_{L-1}\cdots\boldsymbol{W}_{2}\boldsymbol{W}_{1}\boldsymbol{X}-\boldsymbol{Y}\|_{F}^{2}$$

- $\bullet$   $W_i \in \mathbb{R}^{d_{i+1} \times d_i}$ .
- ullet  $oldsymbol{X} \in \mathbb{R}^{d_1 imes d_0}$ ,  $oldsymbol{Y} \in \mathbb{R}^{d_{L+1} imes d_0}$ .
- $\|A\|_F^2 = \sum_i \sum_j A_{ij}^2$ .

$$\underset{\boldsymbol{W}_{1},\dots,\boldsymbol{W}_{L}}{\text{minimize}}\,\frac{1}{2}\,\|\boldsymbol{W}_{L}\boldsymbol{W}_{L-1}\cdots\boldsymbol{W}_{2}\boldsymbol{W}_{1}\boldsymbol{X}-\boldsymbol{Y}\|_{F}^{2}$$

- $W_i \in \mathbb{R}^{d_{i+1} \times d_i}$ .
- ullet  $oldsymbol{X} \in \mathbb{R}^{d_1 imes d_0}$ ,  $oldsymbol{Y} \in \mathbb{R}^{d_{L+1} imes d_0}$ .
- $||A||_F^2 = \sum_i \sum_j A_{ij}^2$ .
- Also called deep matrix factorization.
- Initially used to better understand neural networks.
- Numerous landscape results, especially between 2016-2022.

# Landscape of deep linear networks

### Case L = 1 (One-layer)

$$\underset{\boldsymbol{W}_{1}}{\operatorname{minimize}}\,\frac{1}{2}\|\boldsymbol{W}_{1}\boldsymbol{X}-\boldsymbol{Y}\|_{F}^{2}$$

- Convex problem!
- Explicit form of a solution (often costly to compute).

## Case L = 1 (One-layer)

$$\mathop{\mathsf{minimize}}_{\boldsymbol{W}_1} \frac{1}{2} \| \boldsymbol{W}_1 \boldsymbol{X} - \boldsymbol{Y} \|_F^2$$

- Convex problem!
- Explicit form of a solution (often costly to compute).

## Case L=2 (two-layer network)

$$\begin{array}{l} \underset{\boldsymbol{W}_1 \in \mathbb{R}^{d_2 \times d_1}}{\text{minimize}} \frac{1}{2} \| \boldsymbol{W}_2 \, \boldsymbol{W}_1 \boldsymbol{X} - \boldsymbol{Y} \|_F^2 \\ \boldsymbol{W}_2 \in \mathbb{R}^{d_3 \times d_2} \end{array}$$

- ullet If  $XX^{\mathrm{T}}$  full rank, there are no spurious minima.
- If  $d_2 \ge \max\{d_1, d_3\}$ , the optimal value is 0!

# Beyond two layers

#### Bad example for L=3

$$\min_{\boldsymbol{W}_1 \in \mathbb{R}^{1 \times 2}, \boldsymbol{W}_2 \in \mathbb{R}, \boldsymbol{W}_3 \in \mathbb{R}^{2 \times 1}} \frac{1}{2} \left\| \boldsymbol{W}_3 \, \boldsymbol{W}_2 \, \boldsymbol{W}_1 - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\|_F^2$$

#### Bad example for L=3

$$\min_{\boldsymbol{W}_1 \in \mathbb{R}^{1 \times 2}, \boldsymbol{W}_2 \in \mathbb{R}, \boldsymbol{W}_3 \in \mathbb{R}^{2 \times 1}} \frac{1}{2} \left\| \boldsymbol{W}_3 \, \boldsymbol{W}_2 \, \boldsymbol{W}_1 - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\|_F^2$$

- $\rightarrow$  The point  $\left(\begin{bmatrix}1&0\end{bmatrix},0,\begin{bmatrix}1\\0\end{bmatrix}\right)$  is a local, non-global minimum!
- → Due to intermediate dimensions.

### Bad example for L=3

$$\min_{\boldsymbol{W}_1 \in \mathbb{R}^{1 \times 2}, \boldsymbol{W}_2 \in \mathbb{R}, \boldsymbol{W}_3 \in \mathbb{R}^{2 \times 1}} \frac{1}{2} \left\| \boldsymbol{W}_3 \, \boldsymbol{W}_2 \, \boldsymbol{W}_1 - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\|_F^2$$

- $\rightarrow$  The point  $\left(\begin{bmatrix}1 & 0\end{bmatrix}, 0, \begin{bmatrix}1\\0\end{bmatrix}\right)$  is a local, non-global minimum!
- → Due to intermediate dimensions.

### A positive result (informal)

$$\min_{\boldsymbol{W}_1 \in \mathbb{R}^{d \times 2}, \boldsymbol{W}_2 \in \mathbb{R}^{d \times d}, \boldsymbol{W}_3 \in \mathbb{R}^{2 \times d} } \frac{1}{2} \left\| \boldsymbol{W}_3 \, \boldsymbol{W}_2 \, \boldsymbol{W}_1 - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\|_F^2$$

If  $d \geq 2$  (overparameterized regime), no spurious minima!

$$\underset{\boldsymbol{W}_{1},\dots,\boldsymbol{W}_{L}}{\text{minimize}}\,\frac{1}{2}\left\|\boldsymbol{W}_{L}\boldsymbol{W}_{L-1}\cdots\boldsymbol{W}_{2}\boldsymbol{W}_{1}\boldsymbol{X}-\boldsymbol{Y}\right\|_{F}^{2}$$

- $W_i \in \mathbb{R}^{d_{i+1} \times d_i}$ .
- ullet  $oldsymbol{X} \in \mathbb{R}^{d_1 imes d_0}$ ,  $oldsymbol{Y} \in \mathbb{R}^{d_{L+1} imes d_0}$ .
- $||A||_F^2 = \sum_i \sum_j A_{ij}^2$ .

$$\underset{\boldsymbol{W}_{1},\dots,\boldsymbol{W}_{L}}{\text{minimize}}\,\frac{1}{2}\left\|\boldsymbol{W}_{L}\boldsymbol{W}_{L-1}\cdots\boldsymbol{W}_{2}\boldsymbol{W}_{1}\boldsymbol{X}-\boldsymbol{Y}\right\|_{F}^{2}$$

- $W_i \in \mathbb{R}^{d_{i+1} \times d_i}$ .
- ullet  $oldsymbol{X} \in \mathbb{R}^{d_1 imes d_0}$ ,  $oldsymbol{Y} \in \mathbb{R}^{d_{L+1} imes d_0}$ .
- $\|A\|_F^2 = \sum_i \sum_j A_{ij}^2$ .
- Full characterization of the landscape possible (Achour et al '22).
- ullet IF all dimensions are equal and  $XX^{\mathrm{T}}$  full rank, no spurious local minima!

### Basic block in optimization

- Derivatives (more on that next week).
- Convexity and strong convexity.

Both help characterize solutions of a problem!

#### Towards the nonconvex case

- Challenge: Presence of spurious minima.
- Overparameterization helps (often the case in ML)!
- Still a lot to be understood (optional course, internships?).

### Basic block in optimization

- Derivatives (more on that next week).
- Convexity and strong convexity.

Both help characterize solutions of a problem!

#### Towards the nonconvex case

- Challenge: Presence of spurious minima.
- Overparameterization helps (often the case in ML)!
- Still a lot to be understood (optional course, internships?).

## Basic block in optimization

- Derivatives (more on that next week).
- Convexity and strong convexity.

Both help characterize solutions of a problem!

#### Towards the nonconvex case

- Challenge: Presence of spurious minima.
- Overparameterization helps (often the case in ML)!
- Still a lot to be understood (optional course, internships?).

#### For now

- Material available online by tomorrow (with corrections if needed).
- Questions are always welcome.