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@ Optimization theory
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Formulation of an (unconstrained) optimization problem

minimize f(w
Il f(w)
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Formulation of an (unconstrained) optimization problem

minimize f(w
Il f(w)

@ w represents the optimization variable(s);

@ d is the dimension of the problem (we will assume d > 1);

o f(-) is the objective/cost/loss function.
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Formulation of an (unconstrained) optimization problem

minimize f(w
Il f(w)

@ w represents the optimization variable(s);

@ d is the dimension of the problem (we will assume d > 1);

o f(-) is the objective/cost/loss function.

Maximizing f is equivalent to minimizing — f! |

C. W. Royer Optim. ML 1/8 M2 IASD 4



Local and global solutions

minimize f(w)
weRd

@ argmin,,cra f(w): Set of solutions (can be empty).

® min,cra f(w): Optimal value (can be infinite).
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Local and global solutions

minimize f(w)
weRd

@ argmin,,cra f(w): Set of solutions (can be empty).

® min,cra f(w): Optimal value (can be infinite).

Global and local minima

@ w* is a solution or a global minimum of f if
fw*) < f(w) Yw € RY,

o w* is a local minimum of f if
f(w*) < f(w) Yw, ||lw — w*||2 < € for some € > 0.
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Local and global solutions

minimize f(w)
weRd

@ argmin,,cra f(w): Set of solutions (can be empty).

® min,cra f(w): Optimal value (can be infinite).

Global and local minima
@ w* is a solution or a global minimum of f if
fw*) < f(w) Yw € RY,
o w* is a local minimum of f if
f(w*) < f(w) Yw, ||lw — w*||2 < € for some € > 0.

e Finding global/local minima is hard in general!

o Regularity of f is needed.

4
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First notion of regularity: Smoothness

Class of C! functions

f:R?Y — R is continuously differentiable/C! if
o For any w € RY, the gradient V f(w) exists.
o Vf:R% - R?is continuous.
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First notion of regularity: Smoothness

Class of C! functions

f:R?Y — R is continuously differentiable/C! if
o For any w € RY, the gradient V f(w) exists.
o Vf:R% - R?is continuous.

Class of Ci’l functions (L > 0)

fisCplifitis C' and Vf is L-Lipschitz continuous, i.e.
V(v,w) € (RY)?,  |[Vf(v) = Vf(w)|| < Lllv —w]|.

Ex) Linear regression, logistic regression, etc.
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Aside: Computing gradients

Important for today

Function f(w) € R Gradient V f(w) € RY

atw+b a
3w + bll3 w+b
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Aside: Computing gradients

Important for today

Function f(w) € R Gradient V f(w) € RY

atw+b a
3w + bll3 w+b
Next week How to compute derivatives in ML (bring laptops!). J
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Smoothness and optimality conditions

Problem: minimize,,cga f(w), fC'.

First-order necessary condition
If w* is a local minimum of the problem, then

IVF(w*)l2 = 0.

@ This condition is only necessary;
@ A point such that ||V f(w*)||2 = 0 can also be a local maximum or a

saddle point.

.
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Smoothness and optimality conditions

Problem: minimize,,cga f(w), fC'.

First-order necessary condition
If w* is a local minimum of the problem, then

IVF(w*)l2 = 0.

@ This condition is only necessary;
@ A point such that ||V f(w*)||2 = 0 can also be a local maximum or a

saddle point.

Picture from (Wright and Ma '22).

.
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Another notion of regularity: Convexity

Generic definition (+Wikicommons picture)

A function f : R — R is convex if

fly)
tf(x) + (1-t) fy)

V(u, ’U) S (Rd)2; vt € [07 1]7 fixt +y(1-))
fltu+ (1 —t)v) <t flu)+(1-1) f(v). %

3 - Xt+y(I- Y
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Another notion of regularity: Convexity

Generic definition (+Wikicommons picture)

A function f : R — R is convex if

fly)
tf(x) + (1-t) fy)

V(u, ’U) S (Rd)27 vt € [07 1]7 fixt +y(1-t)
fltu+ (1 —t)v) <t flu)+(1-1) f(v). %

X Xt+y(I-0 ¥

Examples in ML

@ Linear function w — atw + b.

o £y loss [lw|3 = Y0, w?.

o Logistic loss.

C. W. Royer Optim. ML 1/8 M2 IASD 9



Showing convexity (from Hardt and Recht '21)

Showing convexity with more than two variables is hard. |
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Showing convexity (from Hardt and Recht '21)

Showing convexity with more than two variables is hard. J

Basic blocks

o All norms (and ||w||3) are convex.

o All linear functions w — Aw -+ b are convex.
o f convex = a f convex V a > 0.
o f,g convex = f + g convex.

e f,g convex = max(f,g) convex.

o f convex = w — f(Aw + b) convex.

.
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Smooth convex functions

Convexity and gradient

A continuously differentiable function f : R? — R is convex if and only if

Vu,v €RY, f(v) > f(u) + V() (v —u).
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Smooth convex functions

Convexity and gradient

A continuously differentiable function f : R? — R is convex if and only if
Vu,v €RY, f(v) > f(u) + V() (v —u).

A key inequality in optimization.
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Convex optimization problem

minimize f(w), f convex.
weR?
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Convex optimization problem

minimize f(w), f convex.
weR?

Every local minimum of f is a global minimum.
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Convex optimization problem

minimize f(w), f convex.
weR?
Every local minimum of f is a global minimum.

If fisC!,

argmin f(w) ={ w | [Vf(w)[2=0}.

wecRd

Any point with a zero gradient is a global minimum/!
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Strong convexity

Definition
A function f : R? — R in C! is p-strongly convex (or strongly convex of

modulus i > 0) if for all (u,v) € (R%)? and t € [0, 1],

Fltut (1= tv) < tfu)+ 1 =0f@)-5i(1 - 0)lv - ul.
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Strong convexity

Definition

A function f : R? — R in C! is p-strongly convex (or strongly convex of
modulus i > 0) if for all (u,v) € (R%)? and t € [0, 1],

Fltut (1= tv) < tfu)+ 1 =0f@)-5i(1 - 0)lv - ul.

Any strongly convex function in C! has a unique global minimizer.

Gradient and strong convexity
Let f: RY - R, f €CL Then,

Vu,v €RY, f(v) 2 f(u) + VW) (0 — u)+ 5o - ul.
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Examples of strongly convex functions

Key rules

e Forany >0 and wy € R, w — L|jw — wy|3 is p-strongly convex.
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Examples of strongly convex functions

Key rules
e Forany >0 and wy € R, w — L|jw — wy|3 is p-strongly convex.

o If fis u-strongly convex and g is convex, f + g is u-strongly convex.
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@ Exercises
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Exercise 1.a - Convexity

Show that the SVM objective

1 & A

d

weRY — n‘Elmax{l—yixiTw,O}—i-2HwH2
1=

is a convex function for any A > 0.
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Exercise 1.b - Strong convexity

Let f: R? = R be C! and p-strongly convex, and denote by w* the
minimum of f.
@ For any w € RY, show that the function

pwiz — f(w)+ VW) (z - w)+ S|z — wl?

is strongly convex.
@ Compute min, @, (2) and argmin, g, (2).
© Show that

IVF)llZ > 24 (f(w) - f(w")).
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Exercise 1.c - Least-squares

Let € R? with ||x||2 # 0 and y € R%.
© Consider the problem
minimize < |wa — |
inimize = ||lwx — .
weR 2 y
Is it convex? Is the minimum value 07
@ Consider now the problem

1
W e R>4 §||Wm—y||%

Is this a convex problem?
© Justify that

1
q & _ 2 _ 0’
iy Iwe =gl

and find a global minimum. Is the minimum unique?
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Exercise 1.d Co-coercivity

Let f:R? = R be CL and convex. Suppose that w* € argmin,, f(w)
and let f* = f(w*).

Q@ Let w € R% Show that f(w) — f(w*) > 5 || V.f(w)|3.
Q Let (w,v) € (RY)2. Show that

(VF(w) = Vi)' (v—w)> % IV f(v) = V f(w)ll5-

Consider z + f(z) — Vf(v)Tz and z — f(z) — Vf(w)'z
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Q Bonus
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Nonconvex problems

@ Convex problems: All local minima are global!

@ Nonconvex problems: May have local, non-global (aka spurious
minima).

Landscape analysis

Identify classes of nonconvex problems for which there are no spurious
minima (and possibly more).
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[llustration: Linear neural networks

1
minimize — HWLWL 1 WaWi X — Y”%
Wi,.., Wy 2
o W, e R&i+1Xd;i
o X € Rd1><do, Y € Rér+1xdo

° |AE =2, Zj Azzj'
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[llustration: Linear neural networks

1
minimize — HWLWL 1 WaWi X — Y”%
Wi, ,Wg 2
Wi € Rft1xd,
X e Rd1><do, Y € Rér+1xdo

||AH% = Zz Zj Azzj'

(]

Also called deep matrix factorization.

(]

Initially used to better understand neural networks.

(<]

Numerous landscape results, especially between 2016-2022.
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Landscape of deep linear networks
Case L =1 (One-layer)

1
inimize = ||[W1X — Y ||2
mlryvrrlﬂze2|| 1 I

o Convex problem!

@ Explicit form of a solution (often costly to compute).

.
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Landscape of deep linear networks

Case L =1 (One-layer)

1
inimize - |[W1 X — Y||7
Sz o A7 I

o Convex problem!

@ Explicit form of a solution (often costly to compute).

Case L = 2 (two-layer network)

minimize *”WQ WiX -Y|%
W ERdzxdl
erRd3><d2

o If X X7 full rank, there are no spurious minima.

o If dy > max{d;,ds}, the optimal value is 0!
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Beyond two layers
Bad example for L = 3
2

0 0
minimize WsWoW
W1ERIX2 WoeR, W 3cR2x1 2 H 3 2 1— |:O 1:|

.
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Beyond two layers
Bad example for L = 3

0 0
minimize WsWoW
W1ERIX2 WoeR, W 3cR2x1 2 H 3 2 1— |:O 1:|

— The point ([1 O] ,0, {(1)]> is a local, non-global minimum!

— Due to intermediate dimensions.

.

C. W. Royer Optim. ML 1/8 M2 IASD 25



Beyond two layers
Bad example for L = 3
2

0 0
minimize WsWoW
Wi ER1*2, W2€RW3€R2X12 H ST [0 J

— The point ([1 O] ,0, {(1)]> is a local, non-global minimum!

— Due to intermediate dimensions.

A

A positive result (informal)

minimize WsWoW, — 00
W1 ERIX2 WocRIXd W5 cR2Xd 2 0 1

If d > 2 (overparameterized regime), no spurious minimal
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More general study

1

minimize = [|[W W, ;- -WoW X - Y%
1 Wp 2

o W; e Rbi+1xdi,

o X c Rltxdo y ¢ Rir+1%do,

O ||A||% =2 Zj Azzj'
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More general study

Lo 1 2
S WL W - WaW, X —Y
Vni}llr?.l.wéi2” Wi 2 W1 |7
W, e Ri+1%d;i

X € Rhxdo Yy ¢ RéL+1xdo,

1Al2 = ¥, 5, 42

(]

Full characterization of the landscape possible (Achour et al '22).

(]

IF all dimensions are equal and X X7 full rank, no spurious local
minima!
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Summary
Basic block in optimization

@ Derivatives (more on that next week).

o Convexity and strong convexity.
Both help characterize solutions of a problem!

Towards the nonconvex case
@ Challenge: Presence of spurious minima.

@ Overparameterization helps (often the case in ML)!

o Still a lot to be understood (optional course, internships?).
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Summary
Basic block in optimization

@ Derivatives (more on that next week).
o Convexity and strong convexity.

Both help characterize solutions of a problem! )

Towards the nonconvex case

@ Challenge: Presence of spurious minima.

@ Overparameterization helps (often the case in ML)!

o Still a lot to be understood (optional course, internships?). )
(Foroow ..........Bo |

e Material available online by tomorrow (with corrections if needed).

@ Questions are always welcome.

C. W. Royer Optim. ML 1/8 M2 IASD 27



	Optimization theory
	Exercises
	Bonus

