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Formulation of an (unconstrained) optimization problem

minimize
w∈Rd

f(w)

w represents the optimization variable(s);
d is the dimension of the problem (we will assume d ≥ 1);
f(·) is the objective/cost/loss function.

Maximizing f is equivalent to minimizing −f !
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Local and global solutions

minimize
w∈Rd

f(w)

argminw∈Rd f(w): Set of solutions (can be empty).
minw∈Rd f(w): Optimal value (can be infinite).

Global and local minima
w∗ is a solution or a global minimum of f if
f(w∗) ≤ f(w) ∀w ∈ Rd.
w∗ is a local minimum of f if
f(w∗) ≤ f(w) ∀w, ∥w −w∗∥2 ≤ ϵ for some ϵ > 0.

Finding global/local minima is hard in general!
Regularity of f is needed.
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First notion of regularity: Smoothness

Class of C1 functions

f : Rd → R is continuously differentiable/C1 if
For any w ∈ Rd, the gradient ∇f(w) exists.
∇f : Rd → Rd is continuous.

Class of C1,1
L functions (L > 0)

f is C1,1
L if it is C1 and ∇f is L-Lipschitz continuous, i.e.

∀(v,w) ∈ (Rd)2, ∥∇f(v)−∇f(w)∥ ≤ L∥v −w∥.

Ex) Linear regression, logistic regression, etc.
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Aside: Computing gradients

Important for today

Function f(w) ∈ R Gradient ∇f(w) ∈ Rd

aTw + b a
1
2∥w + b∥22 w + b

Next week How to compute derivatives in ML (bring laptops!).
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Smoothness and optimality conditions
Problem: minimizew∈Rd f(w), fC1.

First-order necessary condition
If w∗ is a local minimum of the problem, then

∥∇f(w∗)∥2 = 0.

This condition is only necessary;
A point such that ∥∇f(w∗)∥2 = 0 can also be a local maximum or a
saddle point.

Picture from (Wright and Ma ’22).
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Another notion of regularity: Convexity

Generic definition (+Wikicommons picture)

A function f : Rd → R is convex if

∀(u,v) ∈ (Rd)2, ∀t ∈ [0, 1],
f(tu+ (1− t)v) ≤ t f(u) + (1− t) f(v).

Examples in ML

Linear function w 7→ aTw + b.
ℓ2 loss ∥w∥22 =

∑d
j=1w

2
j .

Logistic loss.
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Showing convexity (from Hardt and Recht ’21)

Showing convexity with more than two variables is hard.

Basic blocks

All norms (and ∥w∥22) are convex.
All linear functions w 7→ Aw + b are convex.
f convex ⇒ α f convex ∀ α ≥ 0.
f, g convex ⇒ f + g convex.
f, g convex ⇒ max(f, g) convex.
f convex ⇒ w 7→ f(Aw + b) convex.
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Smooth convex functions

Convexity and gradient

A continuously differentiable function f : Rd → R is convex if and only if

∀u,v ∈ Rd, f(v) ≥ f(u) +∇f(u)T(v − u).

A key inequality in optimization.
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Convex optimization problem

minimize
w∈Rd

f(w), f convex.

Theorem
Every local minimum of f is a global minimum.

Corollary

If f is C1,
argmin
w∈Rd

f(w) = { w̄ | ∥∇f(w̄)∥2 = 0 } .

Any point with a zero gradient is a global minimum!
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Strong convexity

Definition

A function f : Rd → R in C1 is µ-strongly convex (or strongly convex of
modulus µ > 0) if for all (u,v) ∈ (Rd)2 and t ∈ [0, 1],

f(tu+ (1− t)v) ≤ t f(u) + (1− t)f(v)−µ

2
t(1− t)∥v − u∥22.

Theorem

Any strongly convex function in C1 has a unique global minimizer.

Gradient and strong convexity

Let f : Rd → R, f ∈ C1. Then,

∀u,v ∈ Rd, f(v) ≥ f(u) +∇f(u)T(v − u)+
µ

2
∥v − u∥22.
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Examples of strongly convex functions

Key rules
For any µ > 0 and w0 ∈ Rd, w 7→ µ

2∥w −w0∥22 is µ-strongly convex.

If f is µ-strongly convex and g is convex, f + g is µ-strongly convex.
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Exercise 1.a - Convexity

Show that the SVM objective

w ∈ Rd 7−→ 1

n

n∑
i=1

max
{
1− yi x

T
i w, 0

}
+

λ

2
∥w∥2

is a convex function for any λ ≥ 0.
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Exercise 1.b - Strong convexity

Let f : Rd → R be C1 and µ-strongly convex, and denote by w∗ the
minimum of f .

1 For any w ∈ Rd, show that the function

φw : z 7−→ f(w) +∇f(w)T(z −w) +
µ

2
∥z −w∥2

is strongly convex.
2 Compute minz φw(z) and argminz φw(z).
3 Show that

∥∇f(w)∥22 ≥ 2µ (f(w)− f(w∗)) .
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Exercise 1.c - Least-squares

Let x ∈ Rd with ∥x∥2 ̸= 0 and y ∈ Rd.
1 Consider the problem

minimize
w∈R

1

2
∥wx− y∥2.

Is it convex? Is the minimum value 0?
2 Consider now the problem

W ∈ Rd×d 7−→ 1

2
∥Wx− y∥22.

Is this a convex problem?
3 Justify that

min
W∈Rd×d

1

2
∥Wx− y∥22 = 0,

and find a global minimum. Is the minimum unique?
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Exercise 1.d Co-coercivity

Let f : Rd → R be C1,1
L and convex. Suppose that w∗ ∈ argminw f(w)

and let f∗ = f(w∗).
1 Let w ∈ Rd. Show that f(w)− f(w∗) ≥ 1

2L∥∇f(w)∥22.
2 Let (w,v) ∈ (Rd)2. Show that

(∇f(v)−∇f(w))T (v −w) ≥ 1

L
∥∇f(v)−∇f(w)∥22 .

Consider z 7→ f(z)−∇f(v)Tz and z 7→ f(z)−∇f(w)Tz.
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Nonconvex problems

Convex problems: All local minima are global!
Nonconvex problems: May have local, non-global (aka spurious
minima).

Landscape analysis
Identify classes of nonconvex problems for which there are no spurious
minima (and possibly more).
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Illustration: Linear neural networks

minimize
W 1,...,WL

1

2
∥W LW L−1 · · ·W 2W 1X − Y ∥2F

W i ∈ Rdi+1×di .
X ∈ Rd1×d0 , Y ∈ RdL+1×d0 .
∥A∥2F =

∑
i

∑
j A

2
ij .

Also called deep matrix factorization.
Initially used to better understand neural networks.
Numerous landscape results, especially between 2016-2022.
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Landscape of deep linear networks

Case L = 1 (One-layer)

minimize
W 1

1

2
∥W 1X − Y ∥2F

Convex problem!
Explicit form of a solution (often costly to compute).

Case L = 2 (two-layer network)

minimize
W 1∈Rd2×d1

W 2∈Rd3×d2

1

2
∥W 2W 1X − Y ∥2F

If XXT full rank, there are no spurious minima.
If d2 ≥ max{d1, d3}, the optimal value is 0!
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Beyond two layers

Bad example for L = 3

minimize
W 1∈R1×2,W 2∈R,W 3∈R2×1

1

2

∥∥∥∥W 3W 2W 1 −
[
0 0
0 1

]∥∥∥∥2
F

→ The point
([

1 0
]
, 0,

[
1
0

])
is a local, non-global minimum!

→ Due to intermediate dimensions.

A positive result (informal)

minimize
W 1∈Rd×2,W 2∈Rd×d,W 3∈R2×d

1

2

∥∥∥∥W 3W 2W 1 −
[
0 0
0 1

]∥∥∥∥2
F

If d ≥ 2 (overparameterized regime), no spurious minima!
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More general study

minimize
W 1,...,WL

1

2
∥W LW L−1 · · ·W 2W 1X − Y ∥2F

W i ∈ Rdi+1×di .
X ∈ Rd1×d0 , Y ∈ RdL+1×d0 .
∥A∥2F =

∑
i

∑
j A

2
ij .

Full characterization of the landscape possible (Achour et al ’22).
IF all dimensions are equal and XXT full rank, no spurious local
minima!
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Summary

Basic block in optimization

Derivatives (more on that next week).
Convexity and strong convexity.

Both help characterize solutions of a problem!

Towards the nonconvex case
Challenge: Presence of spurious minima.
Overparameterization helps (often the case in ML)!
Still a lot to be understood (optional course, internships?).

For now
Material available online by tomorrow (with corrections if needed).
Questions are always welcome.
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