
Lecture notes on regularized,
large-scale and distributed optimization

Clément W. Royer

M2 IASD & M2 MASH - 2023/2024

• The last version of these notes can be found at:
https://www.lamsade.dauphine.fr/∼croyer/ensdocs/RLD/LectureNotesOML-RLD.pdf.

• Comments, typos, etc, can be sent to clement.royer@lamsade.dauphine.fr.

• Major updates of the document

– 2023.12.12: Full version.

– 2023.11.08: First version of the notes.

https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/RLD/LectureNotesOML-RLD.pdf

Foreword

The purpose of these lecture notes is to discuss several characteristics of optimization problems
arising in machine learning, that preclude from applying (stochastic) gradient methods as seen in
the previous parts of the course. We are particularly interested in the use of regularization to bring
structure into an optimization problem, and in techniques that allow to deploy algorithms at scale.
More precisely, the learning goals are the following:

• Understand the key principles of proximal algorithms, and why those are useful for regularized
problems.

• Understand the purpose of regularization terms in data science problems, with a focus on
sparsity-inducing regularizers.

• Understand the main principle behind coordinate descent methods, and their interest in a
distributed environment.

• Apply duality to design algorithms for distributed and decentralized optimization.

2

Regul. Distrib. Opti. - 2023/2024 3

Notations

• Scalars (i.e. reals) are denoted by lowercase letters: a, b, c, α, β, γ.

• Vectors are denoted by bold lowercase letters: a, b, c,α,β,γ.

• Matrices are denoted by bold uppercase letters: A,B,C.

• Sets are denoted by bold uppercase cursive letters : A,B, C.

• The set of natural numbers (nonnegative integers) is denoted by N; the set of integers is
denoted by Z.

• The set of real numbers is denoted by R. Our notations for the subset of nonnegative real
numbers and the set of positive real numbers are R+ and R++, respectively.

• The notation Rd is used for the set of vectors with d ∈ N real components; although we may
not explicitly indicate it in the rest of these notes, we always assume that d ≥ 1.

• A vector x ∈ Rd is thought as a column vector, with xi ∈ R denoting its i-th coordinate in

the canonical basis of Rd. We thus write x =

 x1
...
xd

, or, in a compact form, x = [xi]1≤ı≤d.

• Given a column vector x ∈ Rd, the corresponding row vector is denoted by xT, so that
xT = [x1 · · · xd] and [xT]T = x. The scalar product between two vectors in Rd is defined as
xTy = yTx =

∑d
i=1 xiyi.

• The Euclidean norm of a vector x ∈ Rd is defined by ∥x∥2 =
√
xTx.

• We use Rn×d to denote the set of real rectangular matrices with n rows and d columns, where
n and d will always be assumed to be at least 1. If n = d, Rd×d refers to the set of square
matrices of size d.

• We identify a matrix in Rd×1 with its corresponding column vector in Rd.

• Given a matrixA ∈ Rn×d, Aij refers to the coefficient from the i-th row and the j-th column of
A: the diagonal of A is given by the coefficients Aii. Provided this notation is not ambiguous,
we use the notations A, [Aij]1≤i≤n

1≤j≤d
and [Aij] interchangeably.

• For every d ≥ 1, Id refers to the identity matrix in Rd×d (with 1s on the diagonal and 0s
elsewhere).

Contents

1 Proximal methods and regularization 6
1.1 Regularized problems . 6
1.2 Proximal methods . 7

1.2.1 Proximal operator . 7
1.2.2 Proximal point method . 8
1.2.3 Proximal gradient methods . 9

1.3 The case of ℓ2 regularization . 10
1.3.1 General principles . 11
1.3.2 Linear least squares . 11

1.4 Conclusion . 12

2 Sparse optimization 13
2.1 Sparse regularization terms . 13

2.1.1 Motivation : Sparse models and the ℓ0 norm 13
2.1.2 Convex sparse regularizers . 13

2.2 The case of ℓ1 regularization . 14
2.2.1 Proximal gradient and ℓ1 regularization . 14
2.2.2 Subgradient approach . 15
2.2.3 The LASSO estimator . 17

3 Coordinate descent methods 18
3.1 Basics of coordinate descent . 18

3.1.1 Algorithm . 18
3.1.2 Coordinate descent and stochastic gradient 19

3.2 Theoretical guarantees of coordinate descent methods 20
3.3 Applications of coordinate descent methods . 21
3.4 Conclusion . 22

4 Distributed and constrained optimization 23
4.1 Linear constraints and dual problem . 23
4.2 Dual algorithms . 24

4.2.1 Dual ascent . 24
4.2.2 Augmented Lagrangian . 24

4.3 Dual methods and decomposition . 25
4.3.1 Dual decomposition . 25
4.3.2 ADMM . 25

4

Regul. Distrib. Opti. - 2023/2024 5

4.4 Decentralized optimization . 26
4.5 Conclusion . 27

5 Exercises 28

Chapter 1

Proximal methods and regularization

1.1 Regularized problems

A common practice in machine learning problems consists in enforcing a specific structure of the
machine learning model through the objective function rather than by using constraints on the
model parameters. Such regularized problems have the following form :

minimize
x∈Rd

f(x)︸︷︷︸
data−fitting term

+ λΩ(x)︸ ︷︷ ︸
regularization term

. (1.1.1)

where λ > 0 is called a regularization parameter. This parameter controls the weight of the regular-
ization term compared to the data-fitting term. It is common for one of the terms in (1.1.1) (and
sometimes both) to be nonsmooth, in the sense that the associated functions may not possess a
gradient at every point. Such problems are called composite optimization problems in general, and
regularized problems in specific settings such as data science and inverse problems.

When λ → 0, the problem becomes essentially equivalent to minimizing the data-fitting term
f(x) only, and regularization no longer matters (numerically, this occurs for small values of λ). When
λ → ∞, the problem amounts to minimizing the regularization term, without accounting for the
data-dependent term. A key issue in regularization consists in finding the right balance between data
fitting and regularization.

Example 1.1.1 The following functions are common choices for regularization terms:

• ℓ2/ridge regularization: Ω(x) = 1
2∥x∥

2
2;

• ℓ1/LASSO regularization: Ω(x) = ∥x∥1;

• Elastic net: Ω(x) = γ
2∥x∥

2
2 + ∥x∥1 for γ > 0;

• Group LASSO: Given a partition G of {1, . . . , d}, set Ω(x) =
∑

g∈G ∥[x]g∥2, where [x]g ∈ R|g|

is the vector formed by the subset of coordinates of x corresponding to g.

At a broader level, regularization terms can be used to promote generalization capabilities of
the solution, by reducing the sensitivity of the solution with respect to the problem data. They
are also used to enforce sparsity in the problem solution. Finally, they can be used to improve the
optimization landscape of a problem, for instance by guaranteeing that the regularized problem has
a unique solution.

6

Regul. Distrib. Opti. - 2023/2024 7

Constrained optimization and regularization The regularization approach bears a connection
with the introduction of constraints on the problem variables. In fact, any set of constraints x ∈ X
can be encoded as a regularization function using the so-called indicator function

Ω(x) =

{
0 if x ∈ X
+∞ otherwise.

Conversely, it is possible to describe the solution of a regularized problem as that of a constrained
optimization problem. However, the philosophy behind regularization is to penalize points that do
not satisfy a certain property instead of excluding those points like in a constrained formulation. The
interest of regularization lies in the possibility of weighing the regularization term relatively to the
data-fitting term.

In this chapter, we review the main algorithmic approaches that can be used to tackle problems
involving regularized optimization problems.

1.2 Proximal methods

Proximal methods are not restricted to nonsmooth optimization problems, but have proven partic-
ularly useful in the presence of nonsmoothness. Those techniques rely on the proximal operator, a
mathematical object that is both defined as the solution to an optimization problem and used as a
step in other optimization algorithms.

1.2.1 Proximal operator

The proximal operator is a fundamental tool used to both analyze problems with regularization and
build algorithms for these problems.

Definition 1.2.1 Let φ : Rd → R and x ∈ Rd. The proximal operator of φ at x, denoted by
prox [φ] [x], is given by

proxφ [x] := argmin
u∈Rd

{
φ(u) +

1

2
∥u− x∥2

}
. (1.2.1)

As stated, the proximal operator is a set-valued mapping, i.e. its value is a set of vectors
(possibly empty or infinite!). However, for certain classes of functions, the value of the proximal
operator is a singleton. It is then convenient to identify it with the corresponding vector. We make
this identification below in the case of convex functions, which will be our focus throughout these
notes.

Definition 1.2.2 Let φ : Rd → R be a convex function. Then the proximal operator of φ is defined
as the function proxφ [·] : Rd → Rd such that

∀x ∈ Rd, proxφ [x] := u∗, {u∗} = argmin
u∈Rd

{
φ(u) +

1

2
∥u− x∥2

}
. (1.2.2)

Example 1.2.1 For any x ∈ Rd and any λ > 0, the following properties hold:

• prox0 [x] = x.

8 Regul. Distrib. Opti. - 2023/2024

• proxλ
2 ∥·∥

2
[x] = x

1+λ .

• proxλ∥·∥1 [x] is defined componentwise by

∀j = 1, . . . , d,
[
proxλ∥·∥1 [x]

]
j
=

xj − λ if xj > λ
0 if xj ∈ [−λ, λ]
xj + λ if xj < −λ

• If h is the indicator function of a convex set X (i.e. h(x) = 0 if x ∈ X and h(x) = ∞
otherwise), then proxh [x] corresponds to the projection on x onto X .

In general, proximal operators are useful when they are uniquely defined (which is always the case
when the original function is convex) and when they are easy to compute numerically. The next two
sections describe two algorithms built on proximal operator calculations.

1.2.2 Proximal point method

In this section, we consider
minimize

x∈Rd
h(x) (1.2.3)

where h : Rd → R is a convex function. Without assumptions on the differentiability of h, we cannot
rely on a gradient-type method for optimizing this problem. However, a clever algorithm based on
proximal operators was proposed in the 1970s, that builds a sequence of approximate solutions of
problem (1.2.3).

Algorithm 1: Proximal point method.

Initialization: x0 ∈ Rd.
for k = 0, 1, ... do

1. Compute a steplength αk > 0.

2. Compute xk+1 such that

xk+1 ∈ argmin
z∈Rd

{
h(z) + 1

2αk
∥z − xk∥22

}
. (1.2.4)

end

The process is given in Algorithm 1. At every iteration, the next iterate xk+1 is computed by
solving

minimize
z∈Rd

{
h(z) + 1

2αk
∥z − xk∥22

}
. (1.2.5)

At first glance, this problem is not easier than the original one, because it involves the original
objective h. However, the presence of the proximal term 1

2αk
∥z−xk∥22 actually makes the problem

easier to solve. In particular, the subproblem (1.2.5) is strongly convex (and thus the update (1.2.4)
is uniquely defined), and solving this subproblem always improves the objective.

Regul. Distrib. Opti. - 2023/2024 9

Lemma 1.2.1 At the kth iteration of Algorithm 1, we have

h(xk+1) ≤ h(xk)−
1

2αk
∥xk+1 − xk∥22. (1.2.6)

Using the definition of the proximal operator, note that an iteration of Algorithm 1 can be
rewritten as

xk+1 = proxαkh
[xk] .

1.2.3 Proximal gradient methods

In this section, we consider a specific class of regularized optimization problems, often termed as
composite optimization problems.

Definition 1.2.3 (Composite optimization) A composite optimization problem is of the form:

minimize
x∈Rd

f(x) + λΩ(x), (1.2.7)

where f : Rd → R is a smooth, C1 function, λ > 0 and Ω : Rd → R is a convex, nonsmooth
regularizer.

Because of the nonsmoothness of Ω, the overall objective of problem (1.2.7) is nonsmooth, and
one may then consider applying a subgradient method to tackle this problem. However, knowledge
about the particular problem structure, and the fact that f is a smooth function, allows for deriving
better methods for this problem, that do not require direct calculations of subgradients.

Proximal gradient techniques, that are described in Algorithm 2, exploit the smoothness of f to
iteratively solve a sequence of subproblems approximating the original one.

Algorithm 2: Proximal gradient method.

Initialization: x0 ∈ Rd.
for k = 0, 1, ... do

1. Compute the gradient of the smooth part ∇f(xk).

2. Compute a steplength αk > 0.

3. Compute xk+1 such that

xk+1 ∈ argmin
x∈Rd

{
f(xk) +∇f(xk)

T(x− xk) +
1

2αk
∥x− xk∥22 + λΩ(x)

}
. (1.2.8)

end

The cost of an iteration of Algorithm 2 includes a gradient calculation as well as solving an
auxiliary optimization problem (1.2.8), called the proximal subproblem. Such a method is only
practical if the subproblems are easier to solve than the original problem.

10 Regul. Distrib. Opti. - 2023/2024

Connection with the proximal operator If Ω ≡ 0 (i. e. Ω is the zero function and the problem
is un-regularized), one can show that the solution of (1.2.8) is given by

xk+1 = xk − αk∇f(xk).

We thus recognize the gradient descent iteration. For arbitrary Ω, the following formula applies:

xk+1 = proxαkλΩ
[xk − αk∇f(xk)] .

As such, proximal gradient bears a close connection with the proximal operator.

However, note that applying the proximal point to problem (1.2.7) yields a different iteration,
even in the case Ω ≡ 0! Indeed, in that case, and assuming convexity of f , the proximal point
iteration can be written as

xk+1 = proxαkf
[xk] = xk − αk∇f(xk+1).

The proximal point method is thus an implicit method, in the sense that its iteration is defined
implicitly by the above equation to be solved for xk+1.

Remark 1.2.1 Proximal gradient methods can be designed using most of the tools that can be
applied to gradient descent : this includes stepsize choices, acceleration as well as stochastic aspects.
Moreover, theoretical guarantees have been established for both nonconvex and convex f , though
the latter has attracted more attention in the optimization literature. Note that the analysis of such
methods is performed by looking at the vector

1

αk

(
xk − proxαkλΩ

[xk − αk∇f(xk)]
)
,

that plays a similar role than the gradient in analyzing gradient descent (and reduces to the gradient
when Ω ≡ 0).

1.3 The case of ℓ2 regularization

A regularized problem with ℓ2 regularization, also known as ridge regularized problem, has the
form

minimize
x∈Rd

f(x) +
λ

2
∥x∥2. (1.3.1)

The ridge regularizer x 7→ 1
2∥x∥

2 has several interpretations. It effectively penalizes xs with
large components, and can be shown to be equivalent to a constraint on the squared norm ∥w∥2.
In addition, a ridge regularizer has the effect to reduce the variance of the problem solution with
respect to the data. Finally, when the regularizer λ > 0 is big enough, this often turns the objective
function into a strongly convex one, with the positive implications in terms of convergence speed
and uniqueness of the (global) minimum.

Regul. Distrib. Opti. - 2023/2024 11

1.3.1 General principles

Suppose that the function f in (1.3.1) is C1. Then, the kth iteration of gradient descent applied
to (1.3.1) is given by

xk+1 = xk − αk (∇f(xk) + λxk) = (1− λαk)xk − αk∇f(xk) (1.3.2)

where αk > 0 is a positive stepsize. When λ = 0, we recover the classical gradient descent iteration.
When λ > 0, however, the algorithm will modify the coefficients of the vector xk. In this case,
one typically chooses αk so that 1 − λαk ∈ (0, 1), and thus the coefficients of xk are reduced in
magnitude at every iteration in the update formula. This process corresponds to weight decay in
deep learning.

Suppose now that we apply proximal gradient to problem (1.3.1). The corresponding iteration is

xk+1 = proxαkλΩ
[xk − αk∇f(xk)] =

1

1 + λαk
[xk − αk∇f(xk)] =

1

1 + λαk
xk−

αk

1 + λαk
∇f(xk).

(1.3.3)
As λ increases, this iteration decays both the coordinates of the iterate xk and that of the gradient
step. In fact, it can be shown that the coordinates of the iterates decrease uniformly in a smooth
fashion as λ → 0.

1.3.2 Linear least squares

To illustrate further the use of proximal methods, we consider a simple linear least-squares problem.
Given data under the form of a matrix A ∈ Rn×d and a vector y ∈ Rn, we seek to solve

minimize
x∈Rd

1

2n
∥Ax− y∥2 + λ

2
∥x∥2 (1.3.4)

for λ ≥ 0.

Gradient descent VS proximal point The iteration of gradient descent applied to this problem
gives

xk+1 = xk − αk

[
1

n
AT(Axk − y) + λxk

]
, (1.3.5)

where αk > 0 and 1
nA

T(Axk−y) is the gradient of the data fitting term at xk. On the other hand,
the iteration of the proximal point method gives

xk+1 = xk − αk

[
1

n
AT(Axk+1 − y) + λxk+1

]
,

which can be rewritten as

xk+1 =

[
(1 + λαk)I +

1

n
ATA

]−1(
xk + αk

1

n
ATy

)
. (1.3.6)

One then sees that each iteration of the proximal point method requires to solve a linear system,
which is more expensive than the cost of one gradient descent iteration. However, it can be shown
that (1.3.6) has good stability properties. Note also that the linear system solve becomes easier as
λ increases.

12 Regul. Distrib. Opti. - 2023/2024

1.4 Conclusion

Proximal methods are a class of algorithms that rely on proximal operators to perform optimization
steps on possibly complex functions. They are particularly useful in the context of regularized
optimization, in which

The most classical regularization techniques in optimization and beyond are ℓ2 and ℓ1 regulariza-
tion. In a data-related setting, the former is typically used to reduce the dependency of the solution
with respect to the data, while the latter promotes solutions that have zero coordinates.

In both cases, the proximal gradient method can then be written in closed form, leading to
algorithms that are implementable quite efficiently. In particular, the case of regularized linear least
squares has been widely studied, and the resulting problems are now part of numerous statistics and
signal processing toolboxes.

Chapter 2

Sparse optimization

In this chapter, we investigate regularized problems in which the goal is to produce a solution vector
with a significant number of zero coefficients that still provide a good model with respect to the
data-fitting term in the regularized problem. Such vectors, called sparse, are often thought as a way
to simplify the original model. For instance, in the case of linear models, zero coefficients means that
some features are ignored by the model, and thus learning can be performed using less features. This
feature selection process can be done a posteriori (i.e. once the learning problem has been solved),
but it can also be encoded into the optimization problem through the use of regularization terms.

2.1 Sparse regularization terms

2.1.1 Motivation : Sparse models and the ℓ0 norm

While computing a model to explain some data, we might want to compute a model that explains
the data using as few features as possible1. Mathematically speaking, if our model is parameterized
by a vector x ∈ Rd, our goal is to compute a vector that explains the data with as few nonzero
coordinates as possible.

There exists a regularizer that penalized vectors with nonzero components (not just large as
opposed to the ridge regularizer), called the ℓ0 norm 2. An ℓ0-regularized problem has the form

minimize
x∈Rd

f(x) + λ∥x∥0, ∥v∥0 = |{i|[v]i ̸= 0}|.

However, this function is nonsmooth and discontinuous; its combinatorial nature also introduces
more complexity to the original problem.

2.1.2 Convex sparse regularizers

Researchers have investigated numerous alternatives to the ℓ0. The main surrogate for the ℓ0 norm
is the ℓ1 norm, defined by

∥x∥1 =
d∑

i=1

|[x]i|. (2.1.1)

1The goal of this process is feature selection.
2Though technically this function defines a semi-norm.

13

14 Regul. Distrib. Opti. - 2023/2024

It can be shown that this function is the closest convex upper bound to the ℓ0 norm. This function is
continuous and convex; moreover, it is actually a norm function, which endows it with many desirable
properties. As a result, the class of problems of the form

minimize
x∈Rd

f(x) + λ∥x∥1, (2.1.2)

called ℓ1 regularized problems or lasso regularized problems, has emerged as a tractable alter-
native to the ℓ0 regularized formulation.

Variations on ℓ1 A number of regularizing terms have been proposed based on the ℓ1 norm, as
well as the ℓ2 norm

∥x∥2 =

√√√√ d∑
i=1

[x]2i .

The later is also a convex approximation to the ℓ0 norm, but it is not as tight as the ℓ1 norm.
Nevertheless, one can combine the ℓ1 and ℓ2 norms to build special regularizers, such as the so-called
group LASSO regularizer

Ω(x) =
∑
g∈G

∥xg∥2,

where G is a partition of {1, . . . , d} and xg denotes the vector in R|g| formed by the coordinates of x
corresponding to g. Other variations on this concept are presented in Figure 2.1 via their level sets.

2.2 The case of ℓ1 regularization

2.2.1 Proximal gradient and ℓ1 regularization

A natural way to tackle problems of the form 2.1.2 is through the proximal gradient framework of
Algorithm 2. Indeed, unlike for general regularizers, one can obtain a closed-form solution of the
subproblem (1.2.8). Indeed, the proximal subproblem, given by

minimize
x∈Rd

{
f(xk) +∇f(xk)

T(x− xk) +
1

2αk
∥x− xk∥22 + λ∥x∥1

}
,

has a unique solution. To obtain it, one computes the usual gradient step xk −αk∇f(xk), then one
applies the soft-thresholding function sαkλ(•) to each component, where this function is given by

∀µ > 0, ∀t ∈ R, sµ(t) =

t+ µ if t < −µ
t− µ if t > µ
0 otherwise.

(Note that this function encodes the proximal operator for the ℓ1 norm.) As a result, the solution
of the proximal subproblem is defined component-wise according to the components of the gradient
step. The resulting update is at the heart of the corresponding proximal algorithm, popularized
in signal and image processing under the name ISTA (Iterative Soft-Thresholding Algorithm). A
description of ISTA is given in Algorithm 3.

It can be shown that the use of the soft-thresholding function does promote zero components in
the new iterates, which results in sparser solutions at the end of the algorithmic run.

Regul. Distrib. Opti. - 2023/2024 15

Figure 2.1: Level sets (balls of fixed radius) for sparse regularizers. Source:[1].

Remark 2.2.1 A notable improvement on ISTA was the inclusion of momentum, which resulted in
a new algorithm called FISTA (Fast ISTA): this method is now the most widely used instance of
ISTA.

2.2.2 Subgradient approach

In smooth optimization, the gradient is a vector that quantifies the rate of local change in the function.
Generalized notions of gradient have been defined, especially in the case of convex, nonsmooth
functions. We provide below the most common definition of a subgradient.

Definition 2.2.1 (Subgradient and subdifferential) Let f : Rd → R be a convex function. A
vector g ∈ Rd is called a subgradient of f at x ∈ Rd if

∀z ∈ Rn, f(z) ≥ f(x) + gT(z − x).

The set of all subgradients of f at x is called the subdifferential of f at x, and denoted by ∂f(x).

16 Regul. Distrib. Opti. - 2023/2024

Algorithm 3: ISTA: Iterative Soft-Thresholding Algorithm.

Initialization: x0 ∈ Rd.
for k = 0, 1, ... do

1. Compute the gradient of the smooth par ∇f(xk).

2. Compute a steplength αk > 0.

3. Compute xk+1 component-wise through the following rule

[xk+1]i =

[xk − αk∇f(xk)]i + αkλ if [xk − αk∇f(xk)]i < −αkλ
[xk − αk∇f(xk)]i − αkλ if [xk − αk∇f(xk)]i > αkλ
0 if [xk − αk∇f(xk)]i ∈ [−αkλ, αkλ].

(2.2.1)

end

Note that when the function f is differentiable at x, we have ∂f(x) = {∇f(x)}, thus the notion of
subdifferential matches that of the gradient for differentiable functions. In addition, the subdifferential
provides a characterization of the global minima of f , as shown by the following result.

Theorem 2.2.1 Let f : Rd → R be a convex function, and x̄ ∈ Rd.

0 ∈ ∂f(x̄) ⇔ x̄ ∈ argmin
x∈Rd

f(x).

Again, the result of Theorem 2.2.1 generalizes that of the smooth setting, since in that case the
subdifferential consists in a single element.

Example 2.2.1 Let f : R → R, f(x) = |x|.

∂f(x) =

−1 if x < 0
1 if x > 0
[−1, 1] if x = 0.

The set [−1, 1] contains 0, which confirms that x∗ = 0 is the minimum of f .

Note that the subdifferential of the ℓ1 norm is defined componentwise according to the example
above.

By analogy with gradient descent, we can design a subgradient method, as shown by Algorithm 4.
Such a method offers a flexibility in choosing the subgradient, which can be an issue. Moreover,

choosing the stepsize is more difficult than for gradient descent, due to the nonsmooth nature of the
problem. In fact, a subgradient can lead to increase in the function value for any stepsize, hence
the choice of subgradient is critical to the success of this method. A convenient choice consists in
setting gk such that

gk ∈ argmin
g∈Rd

{ ∥g∥ | g ∈ ∂f(xk) } . (2.2.2)

Regul. Distrib. Opti. - 2023/2024 17

Algorithm 4: Generic subgradient method.

Initialization: x0 ∈ Rd.
for k = 0, 1, ... do

1. Compute a subgradient gk ∈ ∂f(xk).

2. Compute a steplength αk > 0.

3. Set xk+1 = xk − αkgk.

end

With this choice, Algorithm 4 will not change the iterate once it reaches a point with 0Rd in its
subdifferential (i.e. a minimum for a convex function). Computing gk according to (2.2.2) may
however be an expensive procedure as it could require to compute the entire subdifferential.

In the context of ℓ1 norm regularization, it is possible to define the subdifferential of f + λ∥ · ∥1
explicitly when f is C1. Otherwise, calculus rules about subdifferentials come into play.

2.2.3 The LASSO estimator

As for ℓ2 regularization, using ℓ1 regularization together with a linear least-squares loss is an important
class of problems. Such problems have the form

minimize
x∈Rd

1

2
∥Ax− y∥2 + λ∥x∥1, (2.2.3)

where A ∈ Rn×d and y ∈ Rn form the problem data, and λ > 0. This problem is often referred to as
the LASSO (Least Absolute Shrinkage and Selection Operator) problem, though other terminologies
such as basis pursuit can be found in the literature.

The properties of the solution of problem (2.2.3) can be described according to the columns of
A. Every column contains all the observed values for a specific feature captured by the linear model.

Theorem 2.2.2 Let b1, . . . , bd denote the columns of A, and let x∗ be a solution of problem (2.2.3).
Then, for any j = 1, . . . , d, we have{

|bTj (Ax∗ − y)| ≤ λn if [x∗]j = 0

bTj (Ax∗ − y) = −λnsgn([x∗]j) otherwise,
(2.2.4)

where sgn(t) = 1 if t > 0 and sgn(t) = −1 if t < 0.

The result of Theorem 2.2.2 implies that the larger λ is, the more components of x∗ will be zero.
In that sense, the use of ℓ1 regularization leads to sparser solutions than in absence of regularization.

Chapter 3

Coordinate descent methods

In this chapter, we address the treatment of large-scale optimization problems, where the number
of parameters to be optimized over is extremely large. As we witness a growth in both the model
complexity (i.e. the number of parameters) and the amount of data available (i.e. the size of the
dataset), standard optimization techniques may suffer from the curse of dimensionality and their
performance may deteriorate as dimensions grow. As a result, the practical difficulty of the problem
increases with the dimension, simply because there are more variables to consider. However, on
structured problems such as those arising in data science, there often exists a low-dimensional or
separable structure that allows for optimization steps to be taken over a subset of variables. This is
the underlying idea of coordinate descent methods, that have regained interest in the early 2000s
due to their applicability in certain data science settings.

3.1 Basics of coordinate descent

3.1.1 Algorithm

Consider the unconstrained optimization problem

minimize
x∈Rd

f(x), (3.1.1)

where f ∈ C1(Rd). The idea of coordinate descent methods consist in taking a gradient step with
respect to a single decision variable at every iteration. To this end, we observe that for every x ∈ Rd,
the gradient of f at x can be decomposed as

∇f(x) =
d∑

j=1

∇jf(x)ej ,

where ∇j denotes the partial derivative with respect to the j-th variable of the function f (that
is, the jth coordinate of f) and ej ∈ Rd is the jth coordinate vector of the canonical basis in Rd.
The coordinate descent approach replaces the full gradient by a step along a coordinate gradient, as
formalized in Algorithm 5.

The variants of coordinate descent are mainly identified by the way they select the coordinate
sequence {jk}. There exist numerous rules for choosing the coordinate index, among which:

18

Regul. Distrib. Opti. - 2023/2024 19

Algorithm 5: Coordinate descent method.

Initialization: x0 ∈ Rd.
for k = 0, 1, ... do

1. Select a coordinate index jk ∈ {1, . . . , d}.

2. Compute a steplength αk > 0.

3. Set
xk+1 = xk − αk∇jkf(xk)ejk . (3.1.2)

end

• Cyclic: Select the indices by cycling over {1, . . . , d} in that order. After d iterations, all indices
have been selected.

• Randomized cyclic: Cycle through a random ordering of {1, . . . , d}, that changes every d steps.

• Randomized: Draw jk at random in {1, . . . , d} at every iteration.

The last two strategies are those for which the strongest results can be obtained.

Block coordinate descent Rather than using a single index, it is possible to select a subset of the
coordinates (called “block” in the literature). The kth iteration of such a block coordinate descent
algorithm thus is

xk+1 = xk − αk

∑
j∈Bk

∇jf(xk)ej , (3.1.3)

where Bk ⊂ {1, . . . , d}.

3.1.2 Coordinate descent and stochastic gradient

Our description of coordinate descent, and particularly the randomized variant, is reminiscent of the
stochastic gradient algorithm. In fact, randomized coordinate descent can be viewed as a special
case of stochastic gradient, in which the formula

∇f(x) =
1

d

d∑
j=1

d∇jf(x)ej

is used to define a finite sum with d gradients that can be sampled using any distribution that one
would use in a stochastic gradient setting. Note that, unlike in a stochastic gradient framework, any
coordinate descent step (even randomized ones) uses a descent direction.

Consider a finite-sum problem of the form

minimize
x∈Rd

1

n

n∑
i=1

fi(x), fi(x) := ℓi(a
T
i x), (3.1.4)

20 Regul. Distrib. Opti. - 2023/2024

where aT
i x is a linear model of the data vector ai, and ℓi : R → R is a convex loss function specific to

the ith data point (such as ℓi(h) =
1
2(h− yi)

2 for linear least squares). If the number of data points
is large, it is natural to think of applying stochastic gradient to this problem. Another approach
consists in considering an equivalent formulation of (3.1.4) through (Fenchel) duality, given by

maximize
v∈Rn

g(v) := − 1

n

n∑
i=1

f∗
i (vi) (3.1.5)

where for any convex function ϕ : Rm → R, the convex conjugate function ϕ∗ is defined by

ϕ∗(a) = sup
b∈Rm

{
aTb− ϕ(b)

}
.

The so-called dual problem (3.1.5) has a finite-sum, separable form. It can thus be tackled using
(dual) coordinate ascent, the counterpart of coordinate descent for minimization: the iteration of
this method is given by

vk+1 = vk + αk∇ig(vk), (3.1.6)

leading to updating the iterate one coordinate at a time. Under appropriate assumptions on the
problem, the iteration (3.1.6) is equivalent to the original stochastic gradient iteration, with xk =
1
λn

∑n
i=1[vk]iai. For this reason, stochastic gradient is sometimes viewed as applying coordinate

ascent to the dual problem.

3.2 Theoretical guarantees of coordinate descent methods

A famous 3-dimensional example designed by M. J. D. Powell in 1973 shows that coordinate descent
methods do not necessarily converge.

Nevertheless, it is possibly to provide guarantees on coordinate descent methods under appropriate
assumptions. In particular, a linear rate of convergence can be obtained for coordinate descent
methods on strongly convex problems: we provide below the necessary assumptions to arrive at such
a result.

Assumption 3.2.1 The objective function f in (3.1.1) is C1 and µ-strongly convex, with f∗ =
minx∈Rd f(x). Moreover, for every j = 1, . . . , d, the partial derivative ∇if is Li-Lipschitz continu-
ous, i.e.

∀x ∈ Rd, ∀h ∈ R, |∇jf(x+ hej)−∇jf(x)| ≤ Lj |h|. (3.2.1)

We let Lmax = max1≤j≤d Lj .

Theorem 3.2.1 Suppose that Assumption 3.2.1 holds, and that Algorithm 5 is applied to prob-
lem (3.1.1) with αk = 1

Lmax
for all k and jk being drawn uniformly at random in {1, . . . , d}. Then,

for any K ∈ N, we have

E [f(xk)− f∗] ≤
(
1− µ

dLmax

)K

(f(x0)− f∗) . (3.2.2)

Other results have been established in the convex and nonconvex settings, under additional
assumptions. In all cases, properties on the partial derivatives are required.

Regul. Distrib. Opti. - 2023/2024 21

Acceleration In a convex optimization setting, it is possible to combine randomized coordinate
descent with the accelerated gradient paradigm 1. Starting from x0 ∈ Rd et v0 = x0, every iteration
k draws ik uniformly at random between 1 and d, then performs the following calculations:

uk := λkvk + (1− λk)xk

xk+1 := uk − 1
Ljk

∇jkf(uk)ejk
vk+1 := µkvk + (1− µk)uk − γk

Ljk
∇jkf(u)ejk ,

where {λk, µk, γk} are sequences that depend on the dimension d, and possibly on a strong convexity
constant if f happens to be strongly convex. Although this method possesses better complexity
guarantees than randomized coordinate descent, it requires to maintain additional vector sequences.
In terms of accesses to the coefficients, the cost of this accelerated method is thus higher than that
of a basic coordinate descent iteration.

3.3 Applications of coordinate descent methods

Coordinate descent techniques are particularly useful for large-scale sparse optimization. Consider a
regularized problem of the form

minimize
x∈Rd

1

n

n∑
i=1

f̃i(a
T
i x) +

d∑
j=1

Ω(wj), (3.3.1)

where f̃i : R → R is (possibly) data-dependent, xi ∈ Rd is a sparse data vector, and Ω : R → R is
a regularization function applied componentwise to the vector x.

Example 3.3.1 (Regularized least squares with sparse data) Given X ∈ Rn×d with sparse rows
and y ∈ Rn, consider the problem

minimize
x∈Rd

f(x) :=
1

2n

n∑
i=1

∥Xx− y∥2 + λ
d∑

j=1

w2
i .

Apply Algorithm 5 to this problem. For any iteration k, if we move along the jkth coordinate, the
partial derivative under consideration is

∇jkf(xk) = xT
jk
(Xxk − y) + 2λ[xk]jk .

By storing the vector {Xxk} across all iterations, the calculation of ∇jkf(xk) can be greatly reduced
when xjk is sparse, to the point that the cost of a coordinate descent iteration will be of the order
of the number of nonzero elements in xjk .

Coordinate descent techniques are quite prominent in parallel optimization algorithms. In this
setting, several cores are cooperating to solve problem (3.1.1): each core can then run its own
coordinate descent method and all cores update the same shared iterate vector. The most efficient
parallel coordinate descent techniques perform these iterations in an asynchronous fashion, which
does not prevent from guaranteeing convergence of this framework!

1See Irène Waldspurger’s lecture on this topic.

22 Regul. Distrib. Opti. - 2023/2024

Link with stochastic gradient

3.4 Conclusion

Large-scale problems have always pushed optimization algorithms to their limits, and have lead to
reconsidering certain algorithms in light of their applicability to large-scale settings. Coordinate
descent methods are the perfect example of classical techniques that regained popularity because
of their efficiency in data science settings. On some instances, randomized coordinate descent
techniques bear a close connection with stochastic gradient methods. More globally, coordinate
descent methods are quite efficient on large-dimensional problems that have a separable structure.
Finally, the use of coordinate descent methods in parallel environments has also contributed to their
revival in optimization.

Chapter 4

Distributed and constrained
optimization

In this chapter, we describe the theoretical insights behind distributed optimization formulations, in
which several agents collaborate to solve an optimization problem. This paradigm can be modeled
using a linearly constrained optimization formulation, and handling such formulations requires dedi-
cated algorithms. We first set the mathematical foundations of these methods via a brief introduction
to duality, then present our algorithms of interest.

4.1 Linear constraints and dual problem

Consider the following optimization problem with linear equality constraints:

minimize
x∈Rd

f(x) subject to Ax = b, (4.1.1)

whereA ∈ Rm×d and b ∈ Rm. For simplicity, we will assume that the feasible set {x ∈ Rd |Ax = b}
is not empty.

Duality theory consists in handling constraints formulations by reformulating the problem into an
unconstrained optimization problem. We present the theoretical arguments for the special case of
problem (4.1.1), which yields a much simpler analysis.

Definition 4.1.1 The Lagrangian function of problem (4.1.1) is given by

L(x,y) := f(x) + yT (Ax− b) . (4.1.2)

The Lagrangian function combines the objective function and the constraints, and allows to
restate the original problem as an unconstrained one, called the primal problem:

minimize
x∈Rd

max
y∈Rm

L(x,y). (4.1.3)

The solutions of the primal problem are identical to that of problem (4.1.3) in our case. The difficulty
of solving problem (4.1.3) lies in the definition of its objective function as the optimal value of a
maximization problem.

23

24 Regul. Distrib. Opti. - 2023/2024

Definition 4.1.2 The dual problem of (4.1.1) is the maximization problem

maximize
y∈Rm

min
x∈Rd

L(x,y), (4.1.4)

where the function y 7→ minx∈Rd L(x,y) is called the dual function of the problem.

Unlike the primal problem, the dual problem is always concave (i.e. the opposite of the dual
function is convex), which facilitates its resolution by standard optimization techniques. The goal is
then to solve the dual problem in order to get the solution of the primal problem, thanks to properties
such as the one below.

Assumption 4.1.1 We suppose that strong duality holds between problem (4.1.1) and its dual,
that is,

min
x∈Rd

max
y∈Rm

L(x,y) = max
y∈Rm

min
x∈Rd

L(x,y).

Assumption 4.1.1 is typically satisfied when f is convex, but strong duality may hold even on non-
convex problems.

4.2 Dual algorithms

We are now concerned with solving the dual problem (4.1.4), and we will present three methods for
this purpose.

4.2.1 Dual ascent

The dual ascent method is implicitly a subgradient method applied to the dual problem (which we
recall is a maximimization problem). At every iteration, it starts from a primal-dual pair (xk,yk)
and performs the following iteration:{

xk+1 ∈ argminx∈Rd L(x,yk)
yk+1 = yk + αk(Axk+1 − b),

(4.2.1)

where αk > 0 is a stepsize for the dual ascent step, and Axk+1 − b is a subgradient for the dual
function y 7→ minx∈Rd L(x,y) at yk.

4.2.2 Augmented Lagrangian

The dual ascent method generally has weak convergence guarantees. For this reason, the optimization
literature has introduced other frameworks based on a regularized version of the Lagrangian function.

Definition 4.2.1 The augmented Lagrangian of problem (4.1.1) is the function on Rd×Rm×R++

by

La(x,y;λ) := f(x) + yT (Ax− b) +
λ

2
∥Ax− b∥2. (4.2.2)

Regul. Distrib. Opti. - 2023/2024 25

Augmented Lagrangians thus are a family of functions parameterized by λ > 0, that put more
emphasis on the constraint violation as λ grows.

The augmented Lagrangian algorithm, also called method of multipliers, performs the following
iteration: {

xk+1 ∈ argminx∈Rd La(x,yk;λ)
yk+1 = yk + λ(Axk+1 − b).

(4.2.3)

In this algorithm, λ is constant and used as a constant stepsize: many more sophisticated choices
of both the augmented Lagrangian function and the stepsizes have been proposed. In general, the
advantages of augmented Lagrangian techniques are that the subproblems defining xk+1 become
easier to solve (thanks to regularization) and that the overall guarantees on the primal-dual pair are
stronger.

4.3 Dual methods and decomposition

A key idea in modern optimization, that has resulted in numerous theoretical and numerical improve-
ments, consists in exploiting the structure of a given problem as much as possible. The underlying
idea is that a decomposition of a large, complex problem can lead to many smaller and simpler
(sub)problems that will be easier and cheaper to solve than the original one. We describe below how
this idea can be carried out in the context of dual algorithms.

4.3.1 Dual decomposition

Suppose that we consider a linearly constrained problem with a separable form:{
minimizeu∈Rd1 ,v∈Rd2 f(u) + g(v)

subject to Au+Bv = c,
(4.3.1)

where A ∈ Rd1×m, B ∈ Rd2×m and c ∈ Rm. Given the particular structure (sometimes called
splitting) between the variables u and v, one may want to update those variables separately rather
than gathering them into a single vector x and performing a single update.

This idea is precisely that of dual decomposition. At iteration k, the dual decomposition method
applied to problem (4.3.1) computes

uk+1 ∈ argminu∈Rd1 L(u,vk,yk)
vk+1 ∈ argminv∈Rd2 L(uk,v,yk)
yk+1 = yk + αk(Auk+1 +Bvk+1 − c),

(4.3.2)

where αk > 0. Interestingly, the calculations for uk+1 and vk+1 are completely independent, and
can be carried out in parallel. This observation and its practical realization have lead to successful
applications of dual decomposition in several fields.

4.3.2 ADMM

The Alternated Direction Method of Multipliers, or ADMM, is an increasingly popular varia-
tion on the augmented Lagrangian paradigm that bears some connection with coordinate descent
approaches, in that it splits the problem in two sets of variables.

26 Regul. Distrib. Opti. - 2023/2024

Recall problem (4.3.1) above. For any λ > 0, the augmented Lagrangian of problem (4.3.1) has
the form

La(u,v,y;λ) = f(u) + g(v) + yT(Au+Bv − c) +
λ

2
∥Au+Bv − c∥2 .

The ADMM iteration exploits the separable nature of the problem by computing the values u and v
independently. Starting from (uk,vk,yk), the ADMM counterpart to iteration (4.2.3) is

uk+1 ∈ argminu∈Rd1 La(u,vk,yk;λ)
vk+1 ∈ argminv∈Rd2 La(uk+1,v,yk;λ)
yk+1 = yk + λ(Auk+1 +Bvk+1 − c).

(4.3.3)

The first two updates of the iteration (4.3.3) cannot be run in parallel, but the philosophy is slightly
different from that of the dual decomposition method. Indeed, in ADMM, it is common that solving
for a subset of the variables will be much easier than solving for all variables at once (see our example
in the next section). The ADMM framework gives the possibility to exploit this property within an
augmented Lagrangian method.

Remark 4.3.1 The idea of splitting the objective and the constraints across two groups of variables
can be declined into as many groups of variables as possible, depending on the structure of the
problem.

To end this section, we briefly mention that there exist convergence results for ADMM-type
frameworks, typically under convexity assumptions on the problem [3]. A typical result consist in
showing that

∥Auk +Bvk − c∥ → 0
f(uk) + g(vk) → minu,v f(u) + g(v)
yk → y∗,

where y∗ is a solution of the dual problem.

4.4 Decentralized optimization

We end this chapter by describing an increasingly common setup in optimization over large datasets,
often termed consensus optimization or decentralized optimization. In this setup, we consider a
dataset that is split across m entities called agents. Every agent uses its own data to train a certain
learning model parameterized by a vector in Rd. To this end, each agent not only has its own
function f (i), but also its own copy of the model parameters x(i). The optimization problem at hand
considers a master iterate x, and attempts to reach consensus between all the agents. This leads to
the following formulation:

minimizex,x(1),...,x(m)∈Rd

∑m
i=1 f

(i)(x(i))

subject to x = x(i) ∀i = 1, . . . ,m.
(4.4.1)

This problem is a proxy for minimizex∈Rd

∑m
i=1 f

(i)(x), but the latter problem cannot be solved by
a single agent since every agent has exclusive access to its data by design. The formulation (4.4.1)

Regul. Distrib. Opti. - 2023/2024 27

models the fact that all agents are involved in computing x by acting on xi. It is possible to apply
ADMM to problem (4.4.1) by setting

u =

x(1)

...

x(m)

 ∈ Rmd, v = x ∈ Rd.

Generalization The idea behind the formulation (4.4.1) can be extended to the case of data spread
over a network, represented by a graph G = (V, E): every vertex s ∈ V of the graph represents an
agent, while every edge (s, s′) ∈ E represents a channel of communication between two agents in the
graph. Letting x(s) ∈ Rd and f (s) : Rd → R represent the parameter copy and objective function
for agent s ∈ V, respectively, the consensus optimization problem can be written as:

minimize{x(s)}s∈V∈(Rd)|V|
∑

s∈V f (s)(x(s))

subject to x(s) = x(s′) ∀(s, s′) ∈ E .
(4.4.2)

When the graph is fully connected, i.e. all agents communicate, this problem reduces to an uncon-
strained problem. However, in general, the solutions of this problem are much difficult to identify, and
one must work through minimizing the objective and satisfying the so-called consensus constraints.

Decentralized gradient methods To wrap up this chapter, we describe an increasingly popular
class of algorithms that extends gradient descent to the decentralized setting. The decentralized
gradient framework is designed for problems of the form

minimize
x(1),...,x(m)∈Rd

m∑
i=1

fi(x
(i)),

without consensus constraints but with an implicit graph structure (V, E) connecting the agents.
Given a matrix W ∈ Rm×m that is doubly stochastic (i.e. with nonnegative coefficients such that
the sum of all rows and all columns are 1) and satisfies [W]ij ̸= 0 if and only if i = j or (i, j) ∈ E ,
the kth iteration of the decentralized gradient method at agent i reads

x
(i)
k+1 =

m∑
j=1

[W]ijx
(j)
k − αk∇fi(x

(i)
k). (4.4.3)

The iteration (4.4.3) thus combines a gradient step for agent i together with a so-called mixing step
(or consensus step) in which the current value of the iterate for agent i is combined with that of its
neighbors. This framework is steadily gaining popularity in the machine learning community.

4.5 Conclusion

In modern data science tasks, the amount of data available requires distributed storage, and possibly
agents cooperating in order to solve the optimization problem at hand. Linearly constrained formula-
tions can capture this behavior, and such constraints can be handled in a efficient manner using dual
variables. Augmented Lagrangian techniques are among the most popular methods in this category,
and these methods can be further specialized to account for structure in the problem. The ADMM
framework has emerged as one of the most interesting formulations used to split the calculation
into (presumably) cheaper subproblems. It is also very well suited for operating in a distributed or
decentralized environment.

Chapter 5

Exercises

Exercise 1: Proximal gradient and regularization

In this exercise, we revisit the proximal operator and the proximal gradient method on a specific
problem. Given a point w ∈ Rd, we consider

minimizex∈Rd ∥x∥1 +
1

2α
∥x− w∥22, (5.0.1)

where ∥x∥1 =
∑d

i=1 |[x]i|, ∥x∥22 =
∑d

i=1[x]
2
i and α > 0.

a) Using the properties of x 7→ ∥x∥1, explain why the objective function of (5.0.1) cannot be
optimized by gradient-type techniques.

b) Justify that problem (5.0.1) and

minimizex∈Rd α∥x∥1 +
1

2
∥x− w∥22 (5.0.2)

have the same solution set (argmin). Since both functions are strongly convex, what can be said
about this solution set?

c) Write down an optimality condition for problem (5.0.1).

d) In this question, we view problem (5.0.1) as computing a proximal operator.

i) Using the definition of the proximal operator, write down the solution of problem (5.0.1) as
the value of a proximal operator of a certain function.

ii) By repeatedly solving instances of problem (5.0.1) using the last solution find as w, what
algorithm do we obtain?

e) In this question, we view problem (5.0.2) in a composite form, where 1
2∥x−w∥22 is a data-fitting

term and α∥x∥1 is a regularization term.

i) What is the purpose of such a regularization term? Why is it computationally worth using?

ii) Write down an iteration of proximal gradient applied to this problem with xk = w and stepsize
α. What do you observe then? Is it to be expected?

28

Regul. Distrib. Opti. - 2023/2024 29

Exercise 2: Second-difference regularization

In this exercise, we consider a regularized optimization problem of the form

minimizex∈Rd f(x) +
λ

2
∥Lx∥22, (5.0.3)

where f : Rd → R is continuously differentiable, ∥v∥22 =
∑d

j=1[v]
2
j for any v ∈ Rd and L ∈ Rd×d is

the second-difference matrix defined by

Lij =

1 if j = i+ 1 or j = i− 1
−2 if j = i
0 otherwise.

Such problems arise when the vector x represents a discretization of a real-valued function. Using
the proposed regularization promotes solutions whose components vary continuously.

a) In this question, we assume that d ≫ 1 and that the function f is separable, in that it can be
written as

f(x) =
d∑

j=1

f j([x]j),

where every f j : R → R only depends on the jth coordinate of the output vector x.

i) Justify that the second term in the objective is partially separable (which implies that its
gradient also is).

ii) Recall that the gradient of the second term is given by λLx for any x ∈ Rd. Suppose that
we apply a basic coordinate descent method to problem (5.0.3). Justify how an iteration of
such a method can be considered cheaper than an iteration of gradient descent.

iii) Suggest a block variant of that method that makes use of the structure of the second term
in the objective.

b) In this question, we suppose that f is strongly convex. We modify problem (5.0.3) by introducing
an auxiliary variable z ∈ Rd, leading to

minimizex∈Rd

z∈Rd

f(x) + λ
2∥z∥

2
2

s.t. Lx− z = 0.
(5.0.4)

i) Write down the Lagrangian for problem (5.0.4). Using this function, how can we rewrite
problem (5.0.4)?

ii) What is the difference between a Lagrangian and an augmented Lagrangian?

iii) How does the introduction of the variable z allows for applying ADMM to this problem?
What is the advantage of such an approach here?

c) Finally, we suppose that the objective function f can be expressed as a finite sum

f(x) =
n∑

i=1

fi(x),

where every fi is strongly convex and continuously differentiable. We consider that all fi are
spread across different agents, but that all agents know the regularization term.

30 Regul. Distrib. Opti. - 2023/2024

i) Consider first the formulation (5.0.3). Rewrite this problem under the assumption that every
agent has its own copy of the problem variable, and is using its own function fi instead of f .

ii) Using the same idea as for obtaining (5.0.4), explain how the problem from the previous
question can be reformulated as a linearly-constrained problem in order to apply ADMM.

Bibliography

[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties.
Foundations and Trends in Machine Learning, 4:1–106, 2012.

[2] A. Beck. First-Order Methods in Optimization. MPS-SIAM Series on Optimization. Society for
Industrial and Applied Mathematics, Philadelphia, 2017.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning, 3:1–122, 2010.

[4] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1:123–231,
2013.

[5] S. J. Wright. Coordinate descent algorithms. Math. Program., 151:3–34, 2015.

[6] S. J. Wright and B. Recht. Optimization for Data Analysis. Cambridge University Press, 2022.

31

	Proximal methods and regularization
	Regularized problems
	Proximal methods
	Proximal operator
	Proximal point method
	Proximal gradient methods

	The case of 2 regularization
	General principles
	Linear least squares

	Conclusion

	Sparse optimization
	Sparse regularization terms
	Motivation : Sparse models and the 0 norm
	Convex sparse regularizers

	The case of 1 regularization
	Proximal gradient and 1 regularization
	Subgradient approach
	The LASSO estimator

	Coordinate descent methods
	Basics of coordinate descent
	Algorithm
	Coordinate descent and stochastic gradient

	Theoretical guarantees of coordinate descent methods
	Applications of coordinate descent methods
	Conclusion

	Distributed and constrained optimization
	Linear constraints and dual problem
	Dual algorithms
	Dual ascent
	Augmented Lagrangian

	Dual methods and decomposition
	Dual decomposition
	ADMM

	Decentralized optimization
	Conclusion

	Exercises

