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Foreword

The purpose of these lectures is to introduce the stochastic gradient method. Like any presentation
of such a widely studied topic, these notes have their own biases. Those include that of the author
as well as the references they are mainly based upon [1, 3, 4]. Rather than giving a necessarily
incomplete literature review of all variants of this method, and their applications, these notes intend
to convey the main principles behind stochastic gradient. More precisely, the goals that the lectures
aim for are the following.

• Understand the motivation behind the stochastic gradient algorithm, and its relevance in a
learning setting;

• Provide a comparison between stochastic gradient and gradient descent on both a theoretical
and a practical standpoint;

• Review major variants on the stochastic gradient framework;

• Observe the performance of stochastic gradient in practice.
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Notations

• Scalars (i.e. reals) are denoted by lowercase letters: a, b, c, α, β, γ.

• Vectors are denoted by bold lowercase letters: a, b, c,α,β,γ.

• Matrices are denoted by bold uppercase letters: A,B,C.

• Sets are denoted by bold uppercase cursive letters : A,B, C.

• The set of natural numbers (nonnegative integers) is denoted by N; the set of integers is
denoted by Z.

• The set of real numbers is denoted by R. Our notations for the subset of nonnegative real
numbers and the set of positive real numbers are R+ and R++, respectively.

• The notation Rd is used for the set of vectors with d ∈ N real components; although we may
not explicitly indicate it in the rest of these notes, we always assume that d ≥ 1.

• A vector x ∈ Rd is thought as a column vector, with xi ∈ R denoting its i-th coordinate in

the canonical basis of Rd. We thus write x =

 x1
...
xd

, or, in a compact form, x = [xi]1≤ı≤d.

• Given a column vector x ∈ Rd, the corresponding row vector is denoted by xT, so that
xT = [x1 · · · xd] and [xT]T = x. The scalar product between two vectors in Rd is defined as
xTy = yTx =

∑d
i=1 xiyi.

• The Euclidean norm of a vector x ∈ Rd is defined by ∥x∥ =
√
xTx.

• We use Rn×d to denote the set of real rectangular matrices with n rows and d columns, where
n and d will always be assumed to be at least 1. If n = d, Rd×d refers to the set of square
matrices of size d.

• We identify a matrix in Rd×1 with its corresponding column vector in Rd.

• Given a matrixA ∈ Rn×d, Aij refers to the coefficient from the i-th row and the j-th column of
A: the diagonal of A is given by the coefficients Aii. Provided this notation is not ambiguous,
we use the notations A, [Aij ]1≤i≤n

1≤j≤d
and [Aij ] interchangeably.

• For every d ≥ 1, Id refers to the identity matrix in Rd×d (with 1s on the diagonal and 0s
elsewhere).
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Chapter 1

Introduction

This course is concerned with optimization problems arising in data-related applications. Such formu-
lations have gained tremendous interest in recent years, due to the increase in computational power
that enable significant advances in fields such as image processing. One of the most fundamental
tools behind data science is optimization,that combines mathematical formulations and algorithmic
procedures. We describe below the motivation behind studying optimization techniques tailored to
data-related applications, as well as the characteristics of the associated problems.

1.1 Motivation

The words machine learning are widely used as a way to characterize any task that involves manipu-
lating data : nevertheless, their precise meaning can be difficult to formalize, as other keywords such
as data mining, data analysis, artificial intelligence or Big Data also denote fields that involve data
and/or a learning process. In these notes, we focus on the link between data-related tasks and opti-
mization; although we will denote our applications of interest as pertaining to machine learning, we
point out that a more general, possibly better suited categorization would be that of data science.
For the purpose of these lectures, we will indeed consider machine learning through two main goals:

1) Extract patterns from data, possibly in terms of statistical properties;

2) Use this information to infer or make predictions about yet unseen data.

A number of such machine learning tasks involve an optimization component. As a result, for
the purpose of these notes, we will view machine learning as a field making use of statistics and
optimization, with the latter being our area of interest. Nevertheless, we point out that computer
science features such as data management and parallel computing have also been instrumental to
the success of machine learning, and thus should eventually be integrated with optimization to form
efficient algorithms.

1.2 General formulation

1.2.1 From expected to empirical risk

We consider an input space A and an output space Y. Our goal is to determine a mapping h : A → Y
such that, for every input a ∈ A, the value h(a) is an accurate prediction of the true output y ∈ Y.

6



Stochastic gradient methods - 2023/2024 7

Suppose that the examples in our dataset are sampled from a joint distribution p(a,y). We seek a
predictor function h that yields a small expected risk, where

R(h) := P (h(a) ̸= y) = E [1(h(a) ̸= y)] , (1.2.1)

where 1(·) denotes the indicator function of an event. In practice, we rarely know the distribution
of the data, and we can only access a sample {(ai,yi)}ni=1 of the distribution. In this case, we
can quantify how good our prediction is on this dataset by considering the empirical risk function
defined as

Rn(h) :=
1

n

n∑
i=1

1(h(ai) ̸= yi). (1.2.2)

Unlike the expected risk function, the empirical risk function can usually be computed, as it corre-
sponds to data points that are available. Through arguments based on the law of large numbers,
one can ensure that, with sufficiently many samples, the difference between empirical and expected
risk can be bounded with high probability.

1.2.2 Loss and prediction functions

The previous measures of risk are exact, in that they directly measure whether a model correctly
predicts an output given the input. Their definition can however lead to functions of h that are
discontinuous or combinatorial in nature. This can pose numerous challenges in designing algorithms
that compute the model with the lowest risk possible. For this reason, a common practice consists in
introducing a loss function, that quantifies the discrepancy (or lack thereof) between the output of
a model h(a) and the true output y. That is, for every sample (a,y) from the desired distribution,
we use

1(h(a) ̸= y) ≈ ℓ(h(a),y),

where ℓ : Y × Y → Y is a given loss function.
In addition, rather than considering a generic set of models, we assume that models can be

characterized by means of a vector in Rd (where d can be extremely large). Therefore, we will use
the notation h(·;x) : a 7→ h(a;x).

Overall, we will approximate the expected risk as follows:

R(h) ≈ R(x) :=

∫
A×Y

ℓ(h(a;x);y)) = E [ℓ(h(a;x);y)] , (1.2.3)

while the empirical risk will be estimated by

Rn(h) ≈ Rn(x) :=
1

n

n∑
i=1

ℓ(h(ai;x);yi)). (1.2.4)

Our learning goal will then be to compute a model (that is, a vector x) that yields the lowest
value of the empirical risk. As a result, we consider the following empirical risk minimization
(ERM) problem :

minimize
x∈Rd

1

n

n∑
i=1

ℓ(h(ai;x);yi)). (1.2.5)

In the next section, we will see some examples of such ERM problems.
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Remark 1.2.1 Although computing a model based on the empirical risk represents a reasonable
approach to computing a good model, the ideal goal would be to compute a solution that would
generalize to unseen examples from the distribution. This is a very challenging issue from an opti-
mization perspective, as optimization classically assumes that the problem formulation encapsulates
all there is to know about this problem.

1.3 Examples of learning models

1.3.1 Linear regression

Linear least squares is arguably the most classical problem in data analysis. We consider a dataset
{(ai, yi)}ni=1 with ai ∈ Rd and yi ∈ R. Our goal is to compute a linear model that best fits (or
explains) the data. We define this model as a function h : Rd → R, and we parameterize it through
a vector x ∈ Rd, so that for any a ∈ Rd, we have h(a) = aTx. For every example (ai, yi) in the
dataset, we evaluate how we fit the data based on the squared error (aT

i x− yi)
2. We then compute

a model by solving the following optimization problem

min
x∈Rd

1

2n
∥Ax− y∥2 + λ

2
∥w∥2. = 1

n

n∑
i=1

1
2

[
(aT

i x− yi)
2 + λ∥x∥2

]
, (1.3.1)

where λ > 0 is a regularization parameter. From an optimizer’s point of view, problem (1.3.1) is
well understood: this is a strongly convex, quadratic problem, and its solution can be computed in
close form.

In a typical linear regression setting, one assumes that there exists an underlying truth but that
the measurements are noisy, i.e.

y = Ax∗ + ϵ,

where ϵ ∈ N (0, I) is a vector with i.i.d. entries following a standard normal distribution: this is
illustrated in Figure 1.1.

Figure 1.1: Noisy data generated from a linear model with Gaussian noise.
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In this setting, we wish to compute the most likely value for x∗, while being robust to variance
in the data. To this end, we suppose that y follows a Gaussian distribution of mean Ax and of
covariance matrix I. We also assume a prior Gaussian distribution on the entries of x, in order to
reduce the variance with respect to the data. As a result, an estimate of x∗, called the maximum a
posteriori estimator, can be computed by solving

max
x∈Rd

L(y1, . . . , yn;x) :=

[
1√
2π

]m
exp

(
−1

2

m∑
i=1

(aT
i x− yi)

2 − λ

2
∥x∥2

)
. (1.3.2)

The solutions of this maximization problem are the same than the solutions of the linear least-squares
problem (1.3.1). The resulting solution can be shown to possess very favorable statistical properties:
in particular, for λ close to 0, its expected value is close to x∗.

Linear regression (with or without regularization) has been extensively studied in optimization
and statistics; however, when the number of samples is extremely large, it still poses a number of
challenges in practice, as the solution of the problem cannot be computed exactly.

1.3.2 Neural networks

Neural networks have enabled the most impressive, recent advances in perceptual tasks such as
image recognition and classification. Thanks to the increase in computational capabilities over the
past decade, it is now possible to train extremely deep and wide neural networks, so that they can
learn efficient representations of the data.

Given an input vector ai ∈ Rd0 , a neural network represents a prediction function h : Rd0 → RdJ ,

which applies a series of transformations in layers ai = a
(0)
i 7→ a

(1)
i 7→ · · · 7→ a

(J−1)
i 7→ a

(J)
i . The

j-th layer typically performs the following transformation:

a
(j)
i = σ

(
W ja

(j−1)
i + bj

)
∈ Rdj , (1.3.3)

where W j ∈ Rdj×dj−1 , bj ∈ Rdj and σ : Rdj → Rdj is a componentwise nonlinear function,

e.g. σ(y) =
[

1
1+exp(−yi)

]
i
(sigmoid function) or σ(y) = [max(0, yi)]i. As a result, we have

a
(J)
i = h(ai;x), where x ∈ Rd gathers all the parameters {(W 1, b1), . . . , (W J , bJ)} of the layers.
The optimization problem corresponding to training this neural network architecture involves a

training set {(ai, yi)}ni=1 and the choice of a loss function ℓ. It usually results in the following
formulation

minimize
x∈Rd

1

n

n∑
i=1

ℓ (h(ai;x), yi) . (1.3.4)

This optimization problem is highly nonlinear and nonconvex in nature, which makes it particularly
difficult to solve using algorithms such as gradient descent. Moreover, it typically involves costly
algebraic operations, as the number of layers and/or parameters is tremendously large in modern
deep neural network architectures. Therefore, problem (1.3.4) also possesses characteristics that are
not accounted for in its formulation. The optimization algorithms that efficiently tackle this problem
are those that can both guarantee convergence and perform well in practice.



Chapter 2

Stochastic gradient methods

In this chapter, we describe the stochastic gradient method in the context of finite-sum problems,
which we introduce in the next section. We will then motivate the use of stochastic gradient methods
in this setting, then discuss a basic framework from an algorithmic and theoretical point of view.

2.1 Finite-sum optimization and gradient descent

Suppose that we have access to data samples {(ai, yi)}ni=1, ai ∈ Rda , yi ∈ R, that are drawn from
an unknown distribution. As in the examples described in the previous chapter, we seek a predictor
function or a model h such that h(ai) ≈ yi for every i = 1, . . . , n. Rather than optimizing over
a space of models, we assume that a given model is defined by means of a vector x ∈ Rd (i.e.
h(ai) = h(ai;x)). Therefore, we only need to determine the vector x in order to obtain the model.

To assess the accuracy of our model in predicting the data, we make use of a loss function
ℓ : (h, y) 7→ ℓ(h, y), that penalizes pairs (h, y) for which h ̸= y. The loss at a given sample of the
dataset thus is ℓ(h(ai;x), yi): in order to account for all samples, we consider the average of all
losses as our objective to be minimized. This gives rise to the following optimization problem.

Definition 2.1.1 (Finite-sum optimization problem) Let {(ai, yi)}ni=1 be a dataset where for ev-
ery i = 1, . . . , n, ai ∈ Rda and yi ∈ R, a class of predictor functions {h(·;x)}x∈Rd and a loss
function ℓ, we define the corresponding optimization problem:

minimize
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), fi(x) := ℓ(h(ai;x), yi) ∀i = 1, . . . , n. (2.1.1)

One key property of the formulation (2.1.1) is that every term in the finite sum only involves one
example from the dataset.

Solving the problem with gradient descent Suppose that the functions fi are continously dif-
ferentiable. In that case, the objective function f in (2.1.1) also is continuously differentiable, and
we can apply the gradient descent method.1 The k-th iteration of this method is

xk+1 = xk − αk∇f(xk) = xk −
αk

n

n∑
i=1

ℓ(h(x;ai), yi),

1See the notes from the first three sessions by Gabriel Peyré for more details about gradient descent.

10



Stochastic gradient methods - 2023/2024 11

where αk > 0 is a given stepsize. From this update, we see that one iteration of gradient descent
requires to go over the entire dataset in order to compute the gradient vector. In a big data setting
where the number of samples n is very large, this cost can be prohibitive.

Remark 2.1.1 In stochastic optimization, the data samples might be generated directly from the
distribution, and be available in a streaming fashion. Instead of involving a discrete average on the
sample, the resulting optimization problem would involve a mathematical expectation of the form

min
x∈Rd

E(a,y)

[
f(a,y)(x)

]
.

In such a context, the full gradient may not be computable, even if the underlying function is smooth.
However, most of the reasoning in the next sections will apply to this setting.

2.2 Stochastic gradient framework

2.2.1 Algorithm

At its core, the idea of the stochastic gradient method is remarkably simple. Starting from the
problem minx∈Rd

1
n

∑n
i=1 fi(x), and assuming each component function fi is differentiable, the

method picks an index i at random and takes a step in the direction of the negative gradient of the
component function fi.

Algorithm 1: Stochastic gradient method.

Initialization: x0 ∈ Rd.
for k = 0, 1, ... do

Compute a stepsize or learning rate αk > 0.
Draw a random index ik ∈ {1, . . . , n}.
Compute the new iterate as

xk+1 = xk − αk∇fik(xk). (2.2.1)

end

The key motivation for this process is that using a single data point at a time results in updates
that are n times cheaper than a full gradient step. Note, however, that using a single component
does not necessarily lead to convergence, as illustrated by the following example.

Example 2.2.1 Consider the problem minimizex∈R
1
2(f1(x) + f2(x)) with f1(x) = 2x2 and f2 =

−x2. Starting from xk > 0, drawing ik = 2 will necessarily lead to an increase in the function value.

In finite-sum problems arising from machine learning, the data samples are correlated enough
that an update according to one sample might lead to improvement with respect to other samples
as well: this is a key reason for the success of stochastic gradient methods in this setting.

Remark 2.2.1 Algorithm 1 is often referred to as Stochastic Gradient Descent, or SGD, by analogy
with Gradient Descent. However, this algorithm is not a descent method in general (as we will see
in the next section, it can however produce descent in expectation). For this reason, we will refer to
these methods as stochastic gradient algorithms.
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2.2.2 Batch stochastic gradient methods

The main part of Algorithm 1 consists in the update

xk+1 = xk − αk∇fik(xk),

where the index ik is drawn at random.. One canalso consider stochastic gradient estimates that are
built using several samples at once : this is the idea behind batch stochastic gradient.

Formally, the update of a batch stochastic gradient method is given by

xk+1 = xk − αk
1

|Sk|
∑
i∈Sk

∇fi(xk) (2.2.2)

where Sk ⊂ {1, . . . , n} is drawn at random. When Sk consists in a single index, we recover the usual
stochastic gradient algorithm; if |Sk| = n and the n indices are drawn without replacement, then
Sk = {1, . . . , n}, and we recover the usual gradient descent algorithm2.

Overall, two batch regimes can be distinguished:

• |Sk| ≈ n, which has a cost essentially equivalent to that of a full gradient update;

• |Sk| = nb ≪ n, also called mini-batching, which may be advantageous in theory and variance
reduction while still being affordable in practice. The resulting method is called mini-batch SG.

We note that it is possible to provide a unified view of batch and stochastic gradient methods; of
more interest to us is the comparison of the performance of these various schemes, which is usually
done in terms of epochs.

Definition 2.2.1 (Epoch) For problem (2.1.1), an epoch represents n calculations of a sample
gradient ∇fi.

As a result, one iteration of gradient descent is an epoch, but an epoch corresponds to n iterations
of Algorithm 1 and n/nb iterations of a batch stochastic gradient method with a fixed batch size of
nb.

2.3 Theoretical analysis of stochastic gradient

In this section, we establish convergence guarantees for the stochastic gradient method, in the
strongly convex and nonconvex settings. We specify the assumptions under which our analysis is
performed, then discuss the dependency of the convergence results to the choice of the stepsize.

2.3.1 Assumptions and first properties

We now describe the main arguments in deriving convergence rates for stochastic gradient. For
simplicity, and ease of exposure, we will focus on a specific class of functions.

2The gradient descent method is sometimes called the batch gradient algorithm in machine learning.
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Assumption 2.3.1 The objective function f = 1
n

∑n
i=1 fi belongs to C

1,1
L (Rd) for L > 0, i.e. f is

continuously differentiable, and its gradient is L-Lipschitz continuous:

∀(x,w) ∈ (Rd)2, ∥∇f(x)−∇f(w)∥ ≤ L∥x−w∥.

In addition, there exists flow ∈ R such that for every x ∈ Rd, f(x) ≥ flow. Moreover, every function
fi belongs to C1(Rd).

The smoothness assumption above is instrumental to analyzing optimization schemes, as it provides
the following upper bound on the objective:

f(xk+1) ≤ f(xk) +∇f(xk)
T(xk+1 − xk) +

L

2
∥xk+1 − xk∥2. (2.3.1)

For the gradient descent method, one can leverage this inequality to guarantee descent at iteration
k (that is, f(xk+1) < f(xk)) for an appropriate choice of stepsize

In the case of Algorithm 1, it is not meaningful to study f(xk+1), as this value is random. We
can however look at its expected value over ik, which leads to the following result.

Proposition 2.3.1 Under Assumption 2.3.1, consider the k-th iteration of Algorithm 1. Then,

Eik [f(xk+1)] ≤ f(xk)− αk∇f(xk)
T Eik [∇fik(xk)] +

Lα2
k

2
Eik

[
∥∇fik(xk)∥2

]
.

In light of Example 2.2.1, we know that the stochastic gradient method may not lead to decrease in
the function value. However, we will provide guarantees in expectation under additional assumptions
on how the stochastic gradient estimate ∇fik(xk).

Assumption 2.3.2 (Assumptions on stochastic gradient) At any iteration of Algorithm 1 of in-
dex k, ik is drawn such that:

1. The index ik does not depend from the previous indices i0, . . . , ik−1;

2. Eik [∇fik(xk)] = ∇f(xk);

3. Eik

[
∥∇fik(xk)∥2

]
≤ σ2 + ∥∇f(xk)∥2 with σ2 ≥ 0.

The second property of Assumption 2.3.2 forces the stochastic gradient ∇fik(xk) to be an unbiased
estimate of the true gradient ∇f(xk). The third property controls the variance of the norm of this
stochastic gradient, so as to control the variations in its magnitude due to noise. Note that the
term in ∥∇f(xk)∥2 could have been omitted, and is kept to highlight similarities with the gradient
descent analysis later on.

Several strategies can be designed to draw an index ik that satisfies these properties, the most
classical of which is given below.

Example 2.3.1 (Uniform sampling) Suppose that the indices {ik}k are i.i.d. random variables
that are uniformly drawn at random in {1, . . . , n}. Then Algorithm 1 satisfies the first two properties
of Assumption 2.3.2.
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The third property in Assumption 2.3.2 may require additional knowledge on the problem3. For
instance, if there exists M > 0 such that ∥∇fik(xk)∥ ≤M for all k (which is the case if the iterates
remain in a compact set), the property will hold.

Under these assumptions together with Proposition 2.3.1, we obtain the following result.

Proposition 2.3.2 Under Assumptions 2.3.1 and 2.3.2, at the k-th iteration of Algorithm 1, one
has

Eik [f(xk+1)] ≤ f(xk)−
(
αk −

Lα2
k

2

)
∥∇f(xk)∥2 +

Lα2
k

2
σ2. (2.3.2)

A stochastic gradient update will thus lead to decrease in expectation. Such a property suffices
to derive convergence rates (or complexity results) for stochastic gradient applied to strongly convex,
convex or nonconvex problems. Those results heavily depend upon the formula for the step sizes
{αk}k.

2.3.2 Analysis in the strongly convex case

Most of our analysis will focus on the strongly convex setting. This will allow us to highlight the
main properties of stochastic gradient techniques. For this section, we will thus operate under the
following assumption.

Assumption 2.3.3 There exists µ > 0 such that the objective function is µ-strongly convex, i.e. for
every (x,w) ∈ (Rd)2, we have

f(w) ≥ f(x) +∇f(x)T(w − x) +
µ

2
∥w − x∥2. (2.3.3)

and possesses a unique global minimizer x∗. We let f∗ = f(x∗).

When the function also satisfies the Taylor bound (2.3.1), we have L ≥ µ. Assumption 2.3.3 has
the following useful consequence.

Lemma 2.3.1 Let Assumptions 2.3.1 and 2.3.3 hold. Then, for every x ∈ Rd, we have

∥∇f(x)∥2 ≥ 2µ (f(x)− f∗) . (2.3.4)

Proof. Consider the characterization of strong convexity (2.3.3); for any points (x,w) ∈ (Rn)2,
we have

f(w) ≥ f(x) +∇f(x)T(w − x) +
µ

2
∥w − x∥2.

Minimizing both sides with respect to w lead to w = x∗ on the left-hand side, and w = x− 1
µ∇f(x)

on the right-hand side4. As a result, we obtain

f∗ ≥ f(x) +∇f(x)T
[
− 1

µ
∇f(x)

]
+

µ

2
∥ − 1

µ
∇f(x)∥2

f∗ ≥ f(x)− 1

2µ
∥∇f(x)∥2.

3Or a more general assumption that is out of the scope of these lectures.
4The right-hand side is a simple convex quadratic function of w, and its first-order optimality condition reads

∇f(x) + µ(w − x) = 0.
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By re-arranging the terms, we arrive at the desired result. □
Our results will be provided in expectation. For any k, we will exploit the independence assump-

tion on the indices ik and write

E [f(xk)] = Ei0

[
Ei1

[
...Eik−1

[f(xk)]
]]
.

Note that this quantity will be deterministic (fixed) with respect to every random index ij with j ≥ k.
For this reason, we may also write E [f(xk)] to denote the expected value over all indices i0, . . . , ij .

We first provide a global rate result in the case of a constant step size.

Theorem 2.3.1 (SG with constant stepsize) Let Assumptions 2.3.1, 2.3.2 and 2.3.3 hold. Con-
sider Algorithm 1 applied with a constant stepsize

αk = α ∈
(
0, 1

L

]
∀k.

Then, for any K ≥ 1, we have

E [f(xK)− f∗] ≤ αLσ2

2µ
+ (1− αµ)K

[
f(x0)− f∗ − αLσ2

2µ

]
. (2.3.5)

Proof. Consider the k-th iteration for k ∈ {0, . . . ,K − 1}. Applying the result of Proposi-
tion (2.3.2), we have

Eik [f(xk+1)− f(xk)] ≤ −
(
αk −

Lα2
k

2

)
∥∇f(xk)∥2 +

Lα2
k

2
σ2

≤ −2µ
(
αk −

Lα2
k

2

)
(f(xk)− f∗) +

Lα2
k

2
σ2

= −2µα
(
1− Lα

2

)
(f(xk)− f∗) +

Lα

2
σ2.

Using that α ≤ 1
L then gives

Eik [f(xk+1)− f(xk)] ≤ −µα(f(xk)− f∗) +
Lα2

2
σ2.

Noticing that Eik [f
∗ − f(xk)] = f∗ − f(xk), the left-hand side can be modified by adding and

subtracting f∗, leading to

Eik [f(xk+1)− f∗] + f∗ − f(xk) ≤ −µα(f(xk)− f∗) +
Lα2

2
σ2

Eik [f(xk+1)− f∗] ≤ (1− µα)(f(xk)− f∗) +
Lα2

2
σ2.

Note that 1
L ≤

1
µ , thus 1− µα ∈ (0, 1). One final subtraction on both sides gives

Eik [f(xk+1)− f∗]− Lα

2µ
σ2 ≤ (1− µα)(f(xk)− f∗) +

Lα2

2
σ2 − Lα

2µ
σ2

= (1− µα)

[
(f(xk)− f∗)− Lα

2µ
σ2

]
.
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Finally, taking the expected value with respect to every index i0, . . . , ik, we arrive at

E [f(xk+1)− f∗]− Lα

2µ
σ2 ≤ (1− µα)

[
E [f(xk)− f∗]− Lα

2µ
σ2

]
.

By applying this inequality recursively for k = K − 1, . . . , 0, we arrive at the desired result. □
At first glance, the result of Theorem 2.3.1 suggests that the convergence rate of stochastic

gradient (in expectation) is similar to that of gradient descent. Indeed, for gradient descent, one can
show under the same assumption on αk that

f(xK)− f∗ ≤ (1− αµ)K [f(x0)− f∗] .

In the case of Algorithm 1, however, we observe that residual terms appear in the convergence rate,
that are related to the variance of the gradient estimator. As a result, SG with constant stepsize
can only be guaranteed to converge towards a neighborhood of the optimal function value f∗. The
result of Theorem 2.3.1 illustrates this interplay between the choice of the (constant) stepsize and
the residual noise in the problem: if we set α to a small value, the variance-related terms are reduced,
but the convergence rate of the method is slower.

Remark 2.3.1 It is possible to use Markov’s inequality (see Appendix A.5) to obtain results in
probability rather than in expected value.

A practical constant stepsize approach A common practical strategy in machine learning consists
in running the algorithm with a value α until the method stalls (which can indicate that the smallest
neighborhood attainable with this stepsize choice has been reached). When that occurs, the stepsize
can be reduced, and the algorithmic run can continue until it stalls again, then the stepsize will be
further reduced, etc (say α, α/2, α/4, etc). This process can lead to convergence guarantees, in that
it is possible to reach any neighborhood of the optimal value f∗. However, the convergence rate is
sublinear, in the sense that

E [f(xK)− f∗] ≤ O
(

1

K

)
This choice of stepsize is adaptive, in that it is designed to reach closer and closer neighborhoods as
the algorithm proceeds. However, it requires the method to be able to detect stalling, and act upon
it.

In the original stochastic gradient method (proposed by Robbins and Monro in 1951), the stepsize
sequence was required to satisfy

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞,

which implies that αk → 0. In our next result, we thus consider the case of diminishing stepsizes.

Theorem 2.3.2 (SG with diminishing stepsize) Let Assumptions 2.3.1, 2.3.2 and 2.3.3, and con-
sider Algorithm 1 applied with a decreasing stepsize sequence {αk}k satisfying

αk =
β

k + γ
,
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where β > 1
µ and γ > 0 is chosen such that α0 =

β
γ ≤

1
L . Then, for any K ≥ 1,

E [f(xK)− f∗] ≤ ν

γ +K
, (2.3.6)

where

ν = max

{
γ(f(x0)− f∗),

β2Lσ2

2(βµ− 1)

}
.

Proof. We proceed as in the proof of Theorem 2.3.1, but invoking the result of Proposition 2.3.1.
Namely, for any k ∈ {0, . . . ,K − 1}, we have

Eik [f(xk+1)− f(xk)] ≤ −
(
αk −

Lα2
k

2

)
∥∇f(xk)∥2 +

Lα2
k

2
σ2.

For every k, we have 1− Lαk
2 ≥ 1− Lα0

2 ≥
1
2 . Therefore,

Eik [f(xk+1)− f(xk)] ≤ −1

2
αk∥∇f(xk)∥2 +

Lα2
k

2
σ2

≤ −αkµ(f(xk)− f∗) +
Lα2

k

2
σ2.

By introducing f∗ on the left-hand side and taking the expectation over all indices i0, . . . , ik, we
obtain :

E [f(xk+1)− f∗] ≤ (1− αkµ)E [f(xk)− f∗] +
Lα2

k

2
σ2. (2.3.7)

We now prove the desired result (2.3.6) by induction. The result is clearly true for k = 0, since

E [f(x0)− f∗] =
γ

γ + 0
(f(x0)− f∗) ≤ ν

γ + 0
.

Suppose now that (2.3.6) holds at iteration k. Then, by (2.3.7), we obtain

E [f(xk+1)− f∗] ≤ (1− αkµ)E [f(xk)− f∗] +
Lα2

k

2
σ2

≤ (1− αkµ)
ν

γ + k
+

Lα2
k

2
σ2

=

(
1− µβ

γ + k

)
ν

γ + k
+

1

2

β2Lσ2

(γ + k)2

=
γ + k − µβ

(γ + k)2
ν +

1

2

β2Lσ2

(γ + k)2

=
γ + k − 1

(γ + k)2
ν − µβ − 1

(γ + k)2
ν +

1

2

β2Lσ2

(γ + k)2
.

Using the relation

(1− µβ)ν +
β2Lσ2

2
≤ (1− µβ)β2Lσ2

2(βµ− 1)
+

β2Lσ2

2
≤ 0,
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we obtain

E [f(xk+1)− f∗] ≤ γ + k − 1

(γ + k)2
ν

≤ ν

γ + k + 1
,

using (γ + k)2 ≥ (γ + k + 1)(γ + k − 1) = (γ + k)2 − 1. Choosing k = K − 1 finally proves our
result. □

From the result of Theorem 2.3.2, we see that choosing a decreasing stepsize results in a sub-
linear convergence rate, which is worse than the rate for stochastic gradient with constant stepsize.
However, note that such a choice enables to reach any neighborhood of the optimal value.

Remark 2.3.2 Choosing the stepsize (or, in machine learning language, tuning the learning rate)
is one of the most critical issues in implementing stochastic gradient methods. As the rates above
suggest, defining the stepsize according to the Lipschitz and strong convexity constants is critical to
the performance of the method. In pratice, those constants are usual not known, and an estimation
process must be performed: either a constant value is determined after a grid search, or the problem-
dependent constants are estimated by a sampling procedure, and the step size is chosen according
to these estimates.

2.3.3 Analysis of stochastic gradient in the nonconvex case

Stochastic gradient (or some variant thereof) is the method of choice for training neural networks,
which is usually a nonconvex problem, as illustrated in section 1.3.2. It is thus natural to ask whether
global rates can be obtained for stochastic gradient in the nonconvex setting. For gradient descent,
we know that one can guarantee (e.g. using a constant stepsize) that for any K ≥ 1,

min
0≤k≤K−1

∥∇f(xk)∥ ≤ O
(

1√
K

)
.

which is sometimes equivalently established as

min
0≤k≤K−1

∥∇f(xk)∥2 ≤ O
(

1

K

)
.

As we will see, the guarantees that one can establish in the stochastic setting are affected by noise.
We begin by deriving a result in the context of constant stepsizes.

Theorem 2.3.3 Let Assumptions 2.3.1 and 2.3.2 hold. Suppose that Algorithm 1 is run with a
constant stepsize αk = α > 0 where α ∈

(
0, 1

L

]
. Then, for any K ≥ 1,

E

[
1

K

K−1∑
k=0

∥∇f(xk)∥2
]
≤ αLσ2 +

2(f(x0)− f∗)

αK
. (2.3.8)

Proof. We again rely on the result of Proposition 2.3.1. For every index k, given that αk = α ≤
1
L , we have:

Eik [f(xk+1)− f(xk)] ≤ −
(
α− α2L

2

)
∥∇f(xk)∥2 +

α2L

2
σ2

≤ −α

2
∥∇f(xk)∥2 +

α2L

2
σ2.
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If we take the expectation over all indices, this relation becomes

E [f(xk+1)− f(xk)] ≤ −α

2
E
[
∥∇f(xk)∥2

]
+

α2L

2
σ2.

Using f(xk) ≥ flow for all k and summing the above relation for k = 0, . . . ,K − 1, we obtain

flow − f(x0) ≤ E [f(xK)− f(x0)] ≤ −
α

2

K−1∑
k=0

E
[
∥∇f(xk)∥2

]
+K

α2L

2
σ2.

The final result follows by re-arranging the terms. □
As in the strongly convex case, we see that the noise prevents from guaranteeing that the sum

of squared gradients remains finite (which is the typical guarantee obtained for gradient descent).
Note that the second term on the right-hand side of (2.3.8) corresponds to the usual (sublinear)
convergence rate of gradient descent. The result of Theorem 2.3.3 thus guarantees that the average
minimum gradient norm tends to concentrate in an interval defined by the noise level, as (2.3.8)
implies

lim
K→∞

E
[

min
0≤k≤K−1

∥∇f(xk)∥2
]
∈
[
0, αLσ2

]
.

In the case of decreasing stepsizes, we can provide the following guarantee.

Theorem 2.3.4 Let Assumptions 2.3.1 and 2.3.2 hold. Suppose that Algorithm 1 is run with a
decreasing stepsize sequence {αk} such that αk ∈ (0, 1

L ] for every k, and the sequence satisfies

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞.

Then, we have

E

[
1∑K−1

k=0 αk

K−1∑
k=0

αk∥∇f(xk)∥2
]
→ 0 as K →∞. (2.3.9)

Proof. The beginning of this proof is similar to that of Theorem 2.3.3. By Proposition 2.3.1, we
have

Eik [f(xk+1)− f(xk)] ≤ −
(
αk −

α2
kL

2

)
∥∇f(xk)∥2 +

α2
kL

2
σ2

≤ −αk

2
∥∇f(xk)∥2 +

α2
kL

2
σ2,

and by taking the expectation over all indices i0, . . . , ik, we get

E [f(xk+1)− f(xk)] ≤ −αk

2
E
[
∥∇f(xk)∥2

]
+

α2
kL

2
σ2.

Summing this relation for every k ∈ {0, . . . ,K − 1} gives

E [f(wK)− f(w0)] ≤ −1

2

K−1∑
k=0

αk E
[
∥∇f(xk)∥2

]
+

Lσ2

2

K−1∑
k=0

α2
k.
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Using f(xK) ≥ flow, we obtain

K−1∑
k=0

αk E
[
∥∇f(xk)∥2

]
≤ 2(f(x0)− flow) + Lσ2

K−1∑
k=0

α2
k.

By assumption, we know that
∑K−1

k=0 α2
k ≤

∑∞
k=0 α

2
k <∞, thus the right-hand side is finite for every

K. This implies that

lim
K→∞

K−1∑
k=0

αk E
[
∥∇f(xk)∥2

]
<∞.

Thanks to our assumptions on {αk}, we also have
∑K−1

k=0 αk → ∞ as K → ∞. We can thus
conclude that

lim
K→∞

1∑K−1
k=0 αk

K−1∑
k=0

αk E
[
∥∇f(xk)∥2

]
.

□
Theorem 2.3.4 shows that a weighted sum of squared gradients converges to zero regardless of

the noise level (which could not be guaranteed with a constant stepsize). We can then derive the
following corollaries.

Corollary 2.3.1 Let the assumptions of Theorem 2.3.4 hold. For any K ∈ N, let k(K) be a random
index chosen such that

P (k(K) = k) =
αk∑K−1

k=0 αk

∀k = 0, . . . ,K − 1.

Then, ∥∇f(xk(K))∥ → 0 in probability as K →∞, i.e.

∀ϵ > 0, P
(
∥∇f(xk(K))∥ ≥ ϵ

)
→ 0 as K →∞.

Proof. Let ϵ > 0. Since P
(
∥∇f(xk(K))∥ ≥ ϵ

)
= P

(
∥∇f(xk(K))∥2 ≥ ϵ2

)
, using Markov’s

inequality gives

P
(
∥∇f(xk(K))∥2 ≥ ϵ2

)
≤ 1

ϵ2
E
[
∥∇f(xk(K))∥2

]
,

where the expectation is taken over both the randomness from the algorithm (selection of the
stochastic gradient) and the randomness of the analysis (choice of k(K)). These two sources of
randomness are independent, thus we write

E
[
∥∇f(xk(K))∥2

]
= E{ik}

[
Ek(K)

[
∥∇f(xk(K))∥2

]]
,

where E{ik} [·] is the randomness over the algorithm and Ek(K) [·] is the randomness over k(K).

P
(
∥∇f(xk(K))∥2 ≥ ϵ2

)
≤ 1

ϵ2
E{ik}

[
Ek(K)

[
∥∇f(xk(K))∥2

]]
=

1

ϵ2
E{ik}

[
K−1∑
k=0

P (k(K) = k) ∥∇f(xk)∥2
]

=
1

ϵ2
E{ik}

[
K−1∑
k=0

αk∑K−1
k=0 αk

∥∇f(xk)∥2
]
→ 0 as K →∞,

where the last observation comes from Theorem 2.3.4. □
Note that results similar to those above can be derived using a batch approach, with appropriate

changes in the noise level. Those lead to the same observations as in the strongly convex case.
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2.4 Concluding remarks

From a pure optimization perspective, stochastic gradient methods may not seem so attractive, as
they only rely on partial information from the gradient and possess worse convergence guarantees than
gradient descent. However, they have encountered tremendous success in data-related applications,
where computing gradients involves looking at the entire data and is thus too prohibitive. On the
contrary, using stochastic gradient estimates represents a significantly cheaper cost per iteration;
in a data science setting, where there can be redundancies (or even underlying randomness) in the
data, such updates do not necessarily hinder the progress of the algorithm, but rather lead to faster
convergence in practice.

To end this section, we discuss several follow-ups on our analysis, both theoretical and practical.

Conditioning All our results heavily depend on the Lipschitz constant for the gradient (and, in
the strongly convex case, on the strong convexity constant). Ill-conditioned problems, for which the
ratio L

µ is much larger than 1, pose a significant challenge for stochastic gradient, as the speed of
the method depends on this ratio. Similarly, a large Lipschitz constant enforces restrictions on the
stepsize that may lead to small, and thus inefficient steps. The analysis can be refined by considering
Lipschitz constants associated with every fi, potentially defining larger values for the step size.
Rescaling techniques, that transform the objective (either locally or globally), can also improve these
constants and lead to dramatic speed-ups in practice.

Sharpness The rates achieved by stochastic gradient are sharp, in that under the same set of
assumptions (and access to a stochastic gradient oracle), there does not exist a method that has
a better rate than stochastic gradient (for instance, O(1/k) with a decreasing step size). Under
additional assumptions on the problem, however, methods with improved complexity bounds can be
developed.

Extension to the online setting We have presented the analysis in the case of the finite-sum
problem (2.1.1), but it is also possible to generalize the analysis to stochastic optimization problem
involving an expected value. Under relatively little assumptions about the problem and the method,
one typically obtain convergence rates in expectation for convex and nonconvex problems.

Without gradients The above theory can be generalized to the nonsmooth setting, in which only
subgradients of the component functions can be computed. In practice, subgradients can be obtained
numerically, and in case of mild nonsmoothness (such as induced by the use of the ReLU activation
function t 7→ max{0, t}), closed-form expressions for the subgradients can be available.



Chapter 3

Advanced concepts in stochastic
gradient methods

In this chapter, we study more elaborate variants on the stochastic gradient paradigm. These
methods have been studied extensively since they showed promise in deep learning. One of the
main challenges in improving efficiency of these algorithms in practice lies in reducing the variance
with respect to the stochastic gradients: we describe several techniques that provably reduce the
variance in Section 3.1, while discussing their practical appeal. Other schemes aim at accelerating
the performance of stochastic gradient through more sophisticated updates: we present examples of
such techniques in Section 3.2.

3.1 Variance reduction techniques

As we saw in the previous section, the theory for stochastic gradient is based on Assumption 2.3.2,
and in particular on the fact that the variance of stochastic gradient estimates is bounded (by σ2). It
can clearly be seen from bounds such as (2.3.5) that the bigger σ is, the looser the bound becomes.
More practically, this means that gradient estimates with high variance are unlikely to yield fast
convergence.

Variance reduction techniques have precisely been developed in the aim of diminishing the variance
of traditional stochastic gradient estimates. They can be categorized in two families, that either
exploit more sampled gradients at every iteration, or use past history of the method. In these notes,
we will focus on the former category.

3.1.1 Using a batch size

Consider the finite-sum problem

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x). (3.1.1)

The use of a single sample is partially responsible for the importance of the variance term σ2 in
Assumption 2.3.2. Recall for instance the result of Theorem 2.3.1:

E [f(xk)− f∗] ≤ αLσ2

2µ
+ (1− αµ)k

[
f(x0)− f∗ − αLσ2

2µ

]
. (3.1.2)

22
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Suppose now that we use a (mini-)batch of such gradient estimates to construct our step. Because
we are averaging more component gradients, we can expect the variance of such an estimate to be
lower. This is formalized in the following proposition.

Proposition 3.1.1 Under Assumptions 2.3.1 and 2.3.2, the variance of a mini-batch stochastic
gradient estimate using nb samples drawn with replacement satisfies

ESk

∥∥∥∥∥∥ 1
|Sk|

∑
i∈Sk

∇fi(xk)

∥∥∥∥∥∥
2 ≤ σ2

nb
+ ∥∇f(xk)∥2.

Proof. The last part of Assumption 2.3.2 can be rewritten as

Eik

[
∥∇fik(xk)∥2

]
− ∥∇f(xk)∥2 ≤ σ2.

From the second part of Assumption 2.3.2, we can rewrite the left-hand side as

Eik

[
∥∇fik(xk)∥2

]
− ∥Eik [∇f(xk)] ∥2,

that represents a variance term for the stochastic gradient1. Similarly, when considering a batch
stochastic gradient estimate, we consider

ESk

∥∥∥∥∥∥ 1
|Sk|

∑
i∈Sk

∇fi(xk)

∥∥∥∥∥∥
2−

∥∥∥∥∥∥ESk

 1
|Sk|

∑
i∈Sk

∇fi(xk)

∥∥∥∥∥∥
2

,

which again a variance term for a weighted sum of the random vectors {∇fi(xk)}i∈Sk
. By assump-

tion, those vectors are independent and identically distributed. Therefore, using the properties of the
variance of a linear combination of i.i.d. variables, we obtain that:

ESk

∥∥∥∥∥∥ 1
|Sk|

∑
i∈Sk

∇fi(xk)

∥∥∥∥∥∥
2−

∥∥∥∥∥∥ESk

 1
|Sk|

∑
i∈Sk

∇fi(xk)

∥∥∥∥∥∥
2

=
1

n2
b

nb

(
Ei

[
∥∇fi(xk)∥2

]
− ∥Ei [∇f(xk)] ∥2

)
≤ 1

nb
σ2, (3.1.3)

where i is an arbitrary index following the distribution of the indices in Sk. Using again the second
part of Assumption 2.3.2 gives

ESk

 1
|Sk|

∑
i∈Sk

∇fi(xk)

 =
1

nb
× nb Ei [∇fi(xk)] = ∇f(xk).

Plugging this into (3.1.3) gives the desired result. □
As a result, if we use a mini-batch of size nb instead of a single stochastic gradient, we can derive

a result analogous to Theorem 2.3.1:

E [f(xk)− f∗] ≤ αLσ2

2µnb
+ (1− αµ)k

[
f(x0)− f∗ − αLσ2

2µnb

]
. (3.1.4)

1Usual practice in multidimensional statistics considers a covariance matrix that expresses the variance with respect
to all pairs of coordinates, but the operator above can also be shown to act like a variance.
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This result shows that for a given number of iterations and step size, a batch method will be able to
reach a closer neighborhood of the optimal objective function than standard stochastic gradient. To
achieve a similar result with Algorithm 1, one would need to choose α

nb
as a stepsize, so that (2.3.1)

becomes

E [f(xk)− f∗] ≤ αLσ2

2µnb
+

(
1− αµ

nb

)k [
f(x0)− f∗ − αLσ2

2µnb

]
,

This rate indicates that stochastic gradient would need nb times more iterations than mini-batch
SG to reach an equivalent function value, while employing a smaller stepsize. On the other hand,
stochastic gradient iterations are nb times cheaper than those of the mini-batch method. Besides,
for any value α that satisfies the requirements of Theorem 2.3.1 for the batch method, the value
α
nb

will satisfy the requirements of the theorem for the stochastic gradient method. The converse is
not true, thus one cannot guarantee that a batch method can compensate its per-iteration cost by
employing a bigger step than that of stochastic gradient.

Remark 3.1.1 Note that the above result is valid for batch sizes with replacement. The results
can be significantly different when the batches are drawn without replacement: for instance, if n

batch components are drawn with replacement, one obtains a variance of at most σ2+∥∇f(xk)∥2
n , per

Proposition 3.1.1, while if these n components are drawn without replacement, the resulting gradient
estimate is the exact gradient, thus its variance is 0.

Dynamic sampling Rather than using a constant batch size, one can consider a dynamical sample
size that grows geometrically. This is possible for any finite dataset by allowing sampling with
replacement, but this can be particularly useful on very large datasets or in an online setting where
one can query as many examples as necessary at every iteration. Provided the resulting average is
unbiased, and the number of examples grows at a geometric rate, it is possible to derive a sublinear
rate of convergence for such a dynamic stochastic gradient approach. However, the use of such an
approach remains elusive in pratice. More common techniques focus on choosing the batch size in
an adaptive way, that can depend upon the behavior of the method (typically, increase the batch size
if the algorithm appears to be stalling) or algorithmic quantities like second-order information (when
available). These have proven useful in some learning applications, but remain out of computational
reach for certain tasks like training very deep neural architectures.

3.1.2 Gradient aggregation methods

We now turn to gradient aggregation methods, that have attracted a lot of attention in the
learning and optimization community because of the linear convergence rates that can be shown for
such methods. Their main paradigm consists in computing a full gradient step at regular intervals,
in order to correct high-variance components that could arise from the stochastic gradient update.
Many variants on this idea have been proposed over the last decade; we review below the most
significant ones, and provide an algorithmic sketch of these methods.

For the rest of this section, we assume that we are in the assumptions of Theorem 2.3.2 (in
particular, the function f is C1,1L and µ-strongly convex). Recall that under these assumptions, we
are able to show a sublinear rate of decrease for the function value, in O( 1k ).

SVRG The first gradient aggregation method we study is called SVRG, for Stochastic Variance-
Reduced Gradient. It proceeds in cycles ofm sub-iterations: at the beginning of every major iteration,
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a full gradient ∇f(xk) is computed, then m iterations involving a single additional sampled gradient
are performed. That is, we set x̃0 = wk and x̃j+1 = w̃j − αg̃j , where

g̃k = ∇fij (x̃j)−∇fij (xk) +∇f(xk). (3.1.5)

The use of this estimate leads to a better bound for the variance of the stochastic gradient especially
when x̃j is close to xk. Moreover, one can show that it indeed achieves a linear rate in terms of
iterations.

Theorem 3.1.1 Under Assumption 2.3.1 and 2.3.3, suppose that the stepsize α and the length of
the inner loop m used in Algorithm 2 satisfy

ρ :=
1

1− 2αL

(
1

mµα
+ 2Lα

)
∈ (0, 1).

Then,

E [f(xk)]− f∗ ≤ ρk (f(x0)− f∗) . (3.1.6)

Algorithm 2: Basic SVRG method.

Initialization: x0 ∈ Rd, α > 0, m ∈ N.
for k = 0, 1 . . . do

Compute the full gradient ∇f(xk) =
1
n

∑n
i=1∇fi(xk)

Set x̃0 := xk.
for j = 0, . . . ,m− 1 do

Draw a random index ij uniformly in {1, . . . , n}.
Set g̃j := ∇fij (x̃j)−∇fij (xk) +∇f(xk).

Set w̃j+1 := x̃j − αg̃j .

end
Draw j uniformly at random in {0, . . . ,m− 1} and set xk+1 = x̃j+1.

end

One iteration of SVRG is comparable in cost to a full gradient iteration, because 2m + n
gradients are required per iteration. However, it can still be faster than gradient descent, because of
the intrinsic randomness.

Remark 3.1.2 The SVRG method can be quite efficient in applications that require a high accuracy
(i.e. E [f(xk)− f∗] ≤ ϵ with a small ϵ > 0); however, for the first epochs, one generally notices
that the stochastic gradient method is more efficient.

SAGA Unlike SVRG, the SAGA method (derived from the Stochastic Average Gradient algo-
rithm, or SAG) does not operate in cycles, and only requires one component gradient per iteration
past the first one. It does, however, maintain a gradient estimate formed by n stochastic gradients
evaluated at different points throughout the optimization process. Indeed, at every iteration, the
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method has access to a value of every component gradient ∇fi at some previous iterate x[i]. It then
selects an index j at random and defines

gk := ∇fj(xk)−∇fj(x[j]) +
1
n

n∑
i=1

∇fi(x[i]).

With standard techniques for choosing j, such as uniform sampling, one can show that Ej [gk] =
∇f(xk), and the variance of this estimator is lower than that of a classical stochastic gradient. This
is the key idea behind showing that this method also converges linearly.

Algorithm 3: SAGA method.

Initialization: x0 ∈ Rd, α > 0.
for i = 1, . . . , n do

Compute ∇fi(x0).
Set ∇fi(x[i]) := ∇fi(x0).

end
for k = 0, 1 . . . do

Draw a random index j ∈ {1, . . . , n}.
Compute ∇fj(xk).
Set gk := ∇fj(xk)−∇fj(x[j]) +

1
n

∑n
i=1∇fi(x[i]).

Update ∇fj(x[j]) = ∇fj(xk).

Set xk+1 = xk − αkgk.

end

The typical rate of SAGA is given below, in terms of convergence to the iterates.

Theorem 3.1.2 Under Assumptions 2.3.1 and 2.3.3, suppose that the stepsize of Algorithm 3 is
chosen as α = 1

2(µn+L) . Then,

E
[
∥xk − x∗∥2

]
≤
(
1− µ

2(µn+ L)

)k (
∥x0 − x∗∥2 + n(f(x0)− f∗)

µn+ L

)
. (3.1.7)

Note that the strong convexity constant is not needed here, as a step of α = 1
3L would also yield

linear convergence.
The rate of Theorem 3.1.2 can be shown to be of the same order than that of SVRG, but the

per-iteration cost of SAGA is comparable to that of the classical stochastic gradient method. The
main drawback of SAGA is that it requires to store n gradient vectors to be able to perform its
update, which can be prohibitive in many settings (this is however affordable in certain problems
such as logistic and least-squares regression problems).

Remark 3.1.3 Despite their strong guarantees, gradient aggregation methods have not been widely
exploited in practice, due to the cost of full gradient evaluations, that can remain too prohibitive for
certain applications. In particular, variance reduction methods can be inefficient for training of neural
network architectures; on the other hand, promising results have been obtained in other settings such
as reinforcement learning.
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3.1.3 Iterate averaging

The iterates of a stochastic gradient sequence can be observed to oscillate around minimizers: this
motivated the use of averaging techniques to limit this oscillating behavior. The basic idea consists
in maintaining a sequence of average iterates during a run of stochastic gradient. Considering our
basic stochastic gradient setup with uniformly sampled indexes, this would result in the following
iteration {

xk+1 = xk − αk∇fik(xk)

x̂k+1 = 1
k+1

∑k
j=0 xj .

(3.1.8)

This averaging process has been widely used in stochastic approximation methods and in stochastic
programming, leading to so-called ergodic convergence rates. Under appropriate assumptions on
the stepsize and the objective function, similar rates can be established for the recursion (3.1.8).
Moreover, the average is provably a more robust solution than the last iterate returned by the
method. Overall, with careful parameter selection, averaging can prove to be a powerful paradigm;
note that, in practice, maintaining such an average iterate can be prone to cancellation or numerical
errors.

3.2 Stochastic gradient methods for deep learning

Although it is common to observe good performance of stochastic gradient compared to gradient
descent, deploying a stochastic gradient method so as to be efficient on very large-scale applications
poses a number of challenges. In this section, we review the main stochastic gradient techniques that
are used to train deep learning models. Our focus remains on finite-sum problems of the form (2.1.1)
under Assumption 2.3.1. Our goal is to study several variants on the iterative scheme

xk+1 = xk − αgk, (3.2.1)

where α > 0 is a fixed stepsize (or learning rate), and gk is a stochastic gradient estimator, that
may correspond to taking a single term from the finite sum (as in stochastic gradient) or to a batch
of indices.

To encompass all the variants of interest, we consider a more general iteration of the form

xk+1 = xk − αmk ⊘ vk, (3.2.2)

where α > 0, mk,vk ∈ Rd and ⊘ denotes the componentwise division operator:

mk ⊘ vk :=

[
[mk]i
[vk]i

]
i=1,...,d

.

To see that (3.2.2) generalizes (3.2.1), set mk = gk and vk = 1Rd . The iteration (3.2.2) is
particularly convenient to express the popular methods in deep learning using a single format.

3.2.1 Stochastic gradient with momentum

Most practical implementations of stochastic gradient combine the basic step (3.2.1) together with
a momentum term, similarly to accelerate methods in deterministic optimization2. An iteration of

2See Irène Waldspurger’s lectures for more details.
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gradient descent with momentum reads

xk+1 = xk − α(1− β)gk + αβ (xk − xk−1) , (3.2.3)

where β ∈ (0, 1) is a momentum parameter (when β = 0 we again obtain the standard stochastic
gradient iteration). Iteration (3.2.3) can be seen as a version of Polyak’s method where the gradient-
type step is combined with the previous direction. As for the heavy-ball method, the idea is to
incorporate information from the previous step through momentum. In practice, the iteration (3.2.3)
often leads to accumulation of good steps (in terms of optimization), whereas bad directions and
bad steps tend to cancel out.

The basic method (3.2.3) can be recovered from (3.2.2), by setting vk = 1Rd and defining mk

in a recursive manner through m−1 = 0Rd and

mk = (1− β)gk − βmk−1 ∀k ∈ N.

where β ∈ (0, 1).
Stochastic gradient with momentum is implemented in most deep learning librairies such as

PyTorch. It has shown great success in training deep neural networks on computer vision problems,
and is partly responsible for the rise of deep learning in the early 2010s.

Remark 3.2.1 Theoretical guarantees for the iteration (3.2.3) are much more difficult to obtain
than for accelerated gradient (in particular, it is not well understood whether such a method can be
provably faster than SGD). Nevertheless, stochastic gradient techniques with momentum are widely
used in practice, even on nonconvex problems such as neural network training.

3.2.2 AdaGrad

The adaptive gradient method, or AdaGrad, was proposed in 2011 to address the issue of setting
the learning rate α in stochastic gradient. Rather than using costly procedures such as line search,
AdaGrad scales every coordinate of the stochastic gradient using information from the values of
that coordinate in the previous iterations. Mathematically, the method maintains a sequence {rk}k
defined by

∀i = 1, . . . , d,

{
[r−1]i = 0
[rk]i = [rk−1]i + [gk]

2
i ∀k ≥ 0,

(3.2.4)

The AdaGrad iteration can then be written as

xk+1 = xk − αgk ⊘
√
rk, (3.2.5)

where the square root is applied componentwise to rk. This iteration is a special cas of (3.2.2),
where mk = gk and vk =

√
rk. The novelty in AdaGrad does not lie in the use of momentum,

but in the use of one stepsize per coordinate. The stepsize sequence thus has the form{[
α√
[rk]i

]d
i=1

}
k

.

The resulting diagonal scaling on the coordinates of gk leads to stepsizes that adapt to coordinates
that can vary by orders of magnitude (which would require a careful choice of α in basic stochastic
gradient). On the other hand, the accumulation process at work in the definition of rk results in
stepsizes that are monotonically decreasing, and that often converge quickly towards 0.
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Remark 3.2.2 In practice, rk is replaced by rk + η1Rd where η > 0 is a small value that helps with
numerical stability.

The AdaGrad method is particularly interesting for problems with sparse gradients, in which
stochastic gradients tend to have many zero coordinates. In this situation, using rk will only modify
the stepsizes corresponding to nonzero gradient coordinates. Many problems in recommendation
systems have a sparse structure, and AdaGrad is considered to be an efficient method for this
class of problems.

3.2.3 RMSProp

The RMSProp (Root Mean Square Propagation) algorithm is similar in spirit to AdaGrad, in
that it scales the gradient components at every step. This method relies on a sequence {rk}k defined
by

∀i = 1, . . . , d,

{
[r−1]i = 0
[rk]i = (1− λ)[rk−1]i + λ[gk]

2
i ∀k ≥ 0,

(3.2.6)

where λ ∈ (0, 1). The value of λ is used to put more weight on the current gradient coordinates
than on the coordinates from past iterations (this information being contained in rk−1). This simple
idea slows down the decrease of the stepsizes to 0, compared to the stepsizes of AdaGrad.

With the definition (3.2.6), the RMSProp iteration corresponds has the same form as that of
AdaGrad, that is, a special case of (3.2.2) with mk = gk and vk =

√
rk.

Remark 3.2.3 As for AdaGrad, standard practice replaces rk by rk + η1Rd , where η > 0 is a
small quantity.

The RMSProp method has been found quite successful for training very deep neural networks.

3.2.4 Adam

The Adam optimization method was proposed in 2013. This method can be thought as combining
the idea of momentum (used in the stochastic gradient method of Section 3.2.1) with the diagonal
scaling procedure on which both AdaGrad and RMSProp are based. An iteration of Adam falls
into the generic scheme (3.2.2) by setting

mk =
(1− β1)

∑k
j=0 β

k−j
1 gj

1− βk+1
1

(3.2.7)

and

vk =

√√√√(1− β2)
∑k

j=0 β
k−j
2 gj ⊙ gj

1− βk+1
2

. (3.2.8)

Here β1, β2 ∈ (0, 1), and ⊙ denotes the Hadamard or componentwise product

gk ⊙ gk =
[
[gk]

2
i

]d
i=1

.

Remark 3.2.4 In practice, vk + η1Rd (with small η > 0) is used in lieu of vk.
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The above formulas describe the two components of Adam. On one hand, a weighted combina-
tion of the previous steps that puts the emphasis on the oldest steps (that have been least affected
by momentum) defines the direction of the next step. On the other hand, a diagonal scaling is
applied to the coordinates of this direction, again according to a weighted average of the coordi-
nates from the previous iterations. This important feature, that has a statistical motivation, appears
to be responsible for the success of Adam in practice. The impressive performance of Adam on
training neural networks has contributed to its popularity, and it remains the preferred method today
in numerous applications. In particular, Adam and its variant AdamW (based on regularization
principle) are quite efficient on natural language processing models.
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3.3 Using stochastic gradient in practice

The practical implementation of stochastic gradient methods varies significantly depending on the
application/the problem at hand. As we mention several times in these notes, each machine learning
task has its own characteristics, and a given variant of stochastic gradient may work well on one
problem and stall on another. Below are a few (non-exhaustive) pieces of advice that one could try
to guide their testing.

• A basic stochastic gradient method with carefully tuned constant step size can often provide
very satisfactory results; ideally one chooses the largest stepsize that does not lead to diver-
gence, through a grid search, or a more sophisticated procedure that involves information about
the problem (e.g. Lipschitz constant).

• In a large-scale learning context (i.e. with a lot of training examples, but not necessarily a
model as complex as a neural network), it is generally beneficial to consider a mini-batch
version of stochastic gradient. A trade-off must be found between the cost of computing a
batch gradient estimate and the possible gain in convergence speed.

• Adam is one the preferred variants of stochastic gradient used in deep learning, which repre-
sents the state of the art: it is likely the method one would try first on a deep learning problem,
as it has been efficiently implemented in popular packages like PyTorch.

• Diagonal scaling helps with ill-conditioned problems, and is a powerful paradigm in deep neural
architectures (RMSProp is generally efficient in this setting).

• Any sparsity pattern (in the gradients/in the data) can help perform more efficient calculations.
In terms of algorithms, this allows variants like Adagrad to perform well.

• Momentum can be quite useful in practice, but it requires to tune additional parameters, which
can be cumbersome: similar observations can be made for accelerated techniques.

• Reducing the intrinsic noise of stochastic gradient is an important concern, that can be effi-
ciently addressed in practice via iterate averaging.

• Variance reduction techniques can lead to very efficient methods, but their implementation
cost makes them less suitable for very large problems and/or problems that require only low
accuracy estimates for the solution.



Chapter 4

Exercises

Exercise 1: Recap on stochastic gradient

We consider a finite-sum optimization problem:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (4.0.1)

where each function fi depends on a single item of a dataset consisting in n elements.
We suppose that every function fi is continuously differentiable, and we define a family
of algorithms methods based on a starting point x0 ∈ Rd as well as the recursion

∀k ≥ 0, xk+1 = xk − αgk, (4.0.2)

where α > 0 is a given stepsize and gk is an estimate of the gradient ∇f(xk).

a) How should gk be chosen in order for the recursion (4.0.2) to correspond to an
instance of:

i) gradient descent?

ii) stochastic gradient?

b) Recall the definition of an epoch: what is the equivalent of this unit in terms of:

i) iterations of gradient descent?

ii) iterations of stochastic gradient?

c) We now focus on using of batch variants of stochastic gradient. Given a batch size
nb ∈ {1, . . . , n}, we draw a batch index set Sk ⊆ {1, . . . , n} based on the following
distribution :

∀S ⊆ {1, . . . , n}, P (Sk = S) :=

{
1

( n
nb
)
= nb!(n−nb)!

n! if |S| = nb

0 otherwise.
(4.0.3)

We then set gk = 1
|Sk|

∑
i∈Sk
∇fi(xk) in the recursion (4.0.2).

i) Show that ESk
[gk] = ∇f(xk).

32
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ii) Suppose that the function f is strongly convex; in that case, and under the
appropriate assumptions on the problem, one can show that

lim
k→∞

E [f(xk)− f∗] ∈
[
0, cα

M2

nb

]
, (4.0.4)

where c > 0 is a problem-dependent constant and M2 > 0 is a bound on
∥∇fi(x)∥ for any i ∈ {1, . . . , n} and x ∈ Rd. What property of (batch)
stochastic gradient methods does this result illustrate?

d) Describe two modifications of the algorithm (among those covered in the lectures)
that can lead to a guarantee of the form limk→∞ E [f(xk)− f∗] = 0.

e) Practical situation : Suppose that we want to compare stochastic gradient for
several values of the batch size. While running on a given problem, we observe
that nb = 1 gives better convergence than nb = n, while increasing the batch size
from nb = 1 to nb = n/10 consistently improves the results, in that the method
converges faster and to a smaller value of f . We then observe that the convergence
slows down as we increase the batch size from n/10 to n. How can you explain
these observations?

Exercise 2 : Importance sampling

We consider the finite-sum problem

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (4.0.5)

where for every i = 1, . . . , n, the function fi is C1 and its gradient is Li-Lipschitz
continuous. We also assume that the function f is µ-strongly convex. In what follows,
let ci =

nLi∑n
j=1 Lj

.

We consider a variant on the framework of Algorithm 1, where we suppose that the
random indices ik are drawn according to an importance sampling distribution defined
by

∀i ∈ {1, . . . , n}, P (ik = i) =
ci∑n
j=1 cj

. (4.0.6)

In addition, we suppose that the update 2.2.1 is replaced by

xk+1 ← xk −
αk

cik
∇fik(xk).

a) What can be the interest of such a strategy?

b) Show that Eik

[
1
cik
∇fik(xk)

]
= ∇f(xk).

c) It can be shown that ∇f is L-Lipschitz continuous with L = 1
n

∑n
i=1 Li. Suppose

that we select a constant stepsize αk = 1
L∀k. Given a sampled index ik, we wish

to compare the classical stochastic gradient iteration to iteration (4.0.6).

i) Show that αk
cik

= 1
Lik

.
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ii) When can we get αk
cik
≥ αk ? What does this imply on the iteration (4.0.6) ?

d) Suppose that we know a Lipschitz constant L on ∇f with L ≥ max1≤i≤n Li: with
constant stepsize α ≤ 1

L , we know that convergence guarantees can be obtained.
How can the knowledge of the {Li}s allow for a larger stepsize?

Exercise 3 : Batch methods

Under the assumptions used to obtain (3.1.4), show that one can actually derive the
more precise result:

E [f(xk)− f∗] ≤ αLσ2

2µ(2nb − 1)
+
(
1− αµ(2− 1

nb
)
)k [

f(x0)− f∗ − αLσ2

2µ(2nb − 1)

]
.

(4.0.7)
How does this illustrate the strongest requirements on α that can be necessary for the
batch methods?
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Appendix A

Basics in probability and statistics

A.1 Probability theory

The concept of probability originates from measure theory. All results in probability and statistics
implicitly rely on probability spaces, i.e. triplets (Ω,A,P), where

• Ω is a set of possible values, or outcomes;

• A is a family of subsets of Ω called set of events, that satisfy certain properties that make it
a σ-algebra;

• P : A → [0, 1] is a probability measure, that satisfies in particular P (∅) = 0 and P (Ω) = 1.

Given this definition, a random variable is a mapping from a probability space to another space that
induces a new probability measure on the latter. The term random variable is often used for scalar
quantities, thus we will make a distinction between random variables and random vectors defined as
follows:

• random variables z defined on a probability space (R,B(R),P) by

∀B ∈ B(R), P (z ∈ B) = P (B) ;

• random vectors z =

 z1
· · ·
zd

 of size d, defined on the probability space (Rd,B(Rd),P).

In both case, the set of events will be the Borel σ-algebra B(Rd).

A.2 Random variables

Although a generic study of random variables can be performed by considering them as taking
a continuum of values, we begin by providing the more elementary definition of discrete random
variables.

Definition A.2.1 (Discrete random variable) A discrete random variable z is defined by

36
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• A discrete set of possible values Z = {zi} ⊂ R;

• An associated set of probabilities p = {pi} such that pi ≥ 0,
∑

i pi = 1 and

∀S ⊂ Z, P (z ∈ S) =
∑
zi∈S

pi.

Definition A.2.2 (Continuous random variable) A continuous random variable z is defined by

• A continuous set of possible values Z ⊂ R;

• An associated probability density p : Z → R+ such that
∫
R p(z) dz = 1 and

∀S ⊂ Z, P (z ∈ S) =

∫
z∈S

p(z) dz.

For both continuous and discrete random variables, we will say that z follows a distribution char-
acterized by (p,Z), or simply p when the set of possible values is implicit from the definition of
p.

To understand the behavior of random variables, one can look at the moments of their distribution
(provided they are well defined). The canonical example of such a quantity is the mean (also called
the expected value) of a random variable.

Definition A.2.3 (Expected value/Mean) Let z be a random variable with a distribution (p,Z),
which we indicate as z ∼ p. The expected value of z is defined by

E [z] = Ez [z] =


∑

zi∈Z zi p(z = zi) (discrete case)∫
Z z p(z) dz (continuous case).

The expected value has several desirable properties that facilitate its use, especially the following.

Proposition A.2.1 The expected value is a linear operator: that is, for every random variable z and
every α, β ∈ R, one has:

E [α z + β] = αE [z] + β;

The expected

Definition A.2.4 (Variance and standard deviation) Let z be a random variable.

• The variance of z is defined by

Var [z] = E
[
z2
]
− E [z]2 .

• The standard deviation of z is the square root of the variance.

Lemma A.2.1

• If z is a discrete random variable, then Var [z] =
∑

i piz
2
i − [

∑
i pizi]

2;

• If z has zero mean, i.e. E [z] = 0, then Var [z] = E
[
z2
]
.
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A.3 Pair of random variables

When two random variables possess the same distribution on the same probability space, we say that
those variables are identically distributed. In a general setting, one can study the distribution of
the pair formed by two random variables.

Definition A.3.1 (Joint distribution (discrete case)) Let z and w be two discrete random vari-
ables taking values in Z = {zi} and W = {wj}, respectively. The distribution of the pair of random
variables (z, w) is defined by

• The set of possible values Z ×W = {(zi, wj)};

• The discrete probability density p = {pi,j}, where

pi,j = P (z = zi, w = wj) .

Definition A.3.2 (Joint distribution (continuous case)) Let z and w be two continuous random
variables taking values in Z andW. The distribution of the pair of random variables (z, w) is defined
by

• The set of possible values Z ×W;

• The continuous probability density p : Z ×W → R+ such that∫
z

∫
w
p(z, w) dz dw = 1.

In the above definitions, we started from two random variables to obtain the joint distribution
of the pair formed by these variables. It is also possible to go the other way around, by defining
marginal laws.

Definition A.3.3 (Marginal laws (discrete case)) Let z and w be two discrete random variables
taking values in Z = {zi} andW = {wj}, respectively. Let {pi,j} be the joint distribution of (z, w).

• The marginal law of z is given by {pi•}i, where

pi• := P (z = zi) =
∑

j|wj∈W

P (z = zi, w = wj) =
∑
j

pi,j .

• Similarly, the marginal law of w is given by {p•j}j , where

p•j := P (w = wj) =
∑

i|zi∈Z

P (z = zi, w = wj) =
∑
i

pi,j .

Definition A.3.4 (Marginal laws (continuous case)) Let z and w be two continuous random
variables taking values in Z and W, respectively. Let p : (z, w) 7→ p(z, w) be the joint density
of (z, w).
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• The marginal law of z, denoted by pz or p(z, •), is the function pz : Z → R+ given by

∀z ∈ Z, pz(z) =

∫
W

p(z, w) dw.

• The marginal law of w, denoted by pw or p(•, w), is the function pw :W → R+ given by

∀w ∈ W, pw(w) =

∫
Z
p(z, w) dz.

Definition A.3.5 (Covariance and correlation) Let z and w be two random variables. The co-
variance of z and w is defined by

Cov [z, w] = Ez,w [(z − E [z]) (w − E [w])] .

The correlation of z and w is

Corr [z, w] =
Cov [z, w]√

Varz [z]
√
Varw [w]

.

Independent random variables Independence is widely used in statistics, where it is often com-
bined with the notion of identically distributed variables: we then say that the random variables are
i.i.d., which stands for “independent, identically distributed”.

Definition A.3.6 (Independent variables) Let z and w be two random variables with distributions
(pz,Z) and (pw,W), respectively. The variables z and w are called independent if the pair (z, w)
satisfies

∀S × T ⊂ Z ×W, P (z ∈ S, w ∈ T ) = P (z ∈ S)P (w ∈ T ) .

Independence allows for an easy characterization of the joint distribution, as illustrated by the fol-
lowing result.

Proposition A.3.1 Let z and w be two independent random variables. Then, their joint distribution
is obtained as the product of the marginal distributions. We thus have{

pij = pi• × p•j (discrete case)
p(z, w) = pz(z)× pw(w) (continuous case).

Proposition A.3.2 Let z and w be two independent random variables. Then, these values are
decorrelated, i. e. Cov [z, w] = Corr [z, w] = 0.

A.4 Multidimensional statistics

Most of the previous results on random variables can be extended to the case of random vectors,
i.e. multidimensional random quantities. We provide below the basic concepts.

Definition A.4.1 (Law of a random vector) Let z = [zi]i be a random vector in Rn : the law (or
the distribution) of z is given by the joint distribution of its components. In particular, we define
the following moments of this distribution:
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• the expected value of z is the vector of the expected values of each component:

E [z] = {E [zi]}i ∈ Rn;

where the expected value is taken with respect to z;

• the covariance matrix of z, denoted by Var [z] or Σz is the matrix of the covariances between
each component

∀1 ≤ i, j ≤ n, [Σz]i,j := E [(zi − E [zi])(zj − E [zj ])] .

Note that the covariance matrix can be written as

Σz = E
[
(z − E [z])(z − E [z])T

]
∈ Rn×n.

Lemma A.4.1 If the components of a random vector are independent, then its covariance matrix is
diagonal.

A.5 Markov’s inequality

Many statistical results rely on providing bounds on probability levels, or moments of a given random
variable. One of the most prominent results in this respect, due to Markov, is given below.

Theorem A.5.1 (Markov’s inequality) Let x be a nonnegative random variable and ϵ > 0. Then,

P (x ≥ a) ≤ E [x]

a
.



Appendix B

Solutions of the exercises

Solutions of Exercise 1: Recap on stochastic gradient

a) In xk+1 = xk − αgk, the vector gk should be set as

i) ∇f(xk) for the method to be an instance of gradient descent;

ii) ∇fik(xk), with ik drawn at random in {1, . . . , n}, to be an instance of stochastic gradient.

b) An epoch is a unit of cost equivalent to n accesses to data points. As a result, this unit corresponds
to

i) 1 iteration of gradient descent, in which all n data points need to be accessed in order to
compute the gradient;

ii) n iterations of stochastic gradient, since every iteration of that form only requires access to
1 data point. Equivalently, an iteration of stochastic gradient corresponds to 1

n epoch.

c) (Batch variant.)

i) By definition of the expected value, one has

ESk
[gk] =

∑
S⊆{1,...,n}

P(Sk = S) 1

|S|
∑
i∈S
∇if(xk)

=
∑

S⊆{1,...,n}
|S|=nb

1(
n
nb

) 1

nb

∑
i∈S
∇if(wk)

=
1(
n
nb

) 1

nb

∑
S⊆{1,...,n}

|S|=nb

∑
i∈S
∇if(xk)

The random set Sk takes
(
n
nb

)
possible values. If we consider any index i ∈ {1, . . . , n},

this index appears in exactly
(
n−1
nb−1

)
index sets of cardinality nb out of the possible

(
n
nb

)
.

Therefore, ∑
S⊆{1,...,n}

|S|=nb

∑
i∈S
∇if(xk) =

(
n− 1

nb − 1

) n∑
i=1

∇fi(xk).

41
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Using
(
n
nb

)
= n

nb

(
n−1
nb−1

)
, we thus obtain

ESk
[gk] =

1(
n
nb

) 1

nb

(
n− 1

nb − 1

) n∑
i=1

∇fi(xk)

=
1(
n
nb

) 1

nb

nb

n

(
n

nb

) n∑
i=1

∇fi(xk)

=
1

n

n∑
i=1

∇fi(xk) = ∇f(xk),

which is the desired result.

ii) This result shows that stochastic gradient methods with a constant step size can only be
guaranteed to converge to a neighborhood of the optimal value. It also shows that this
neighborhood becomes tighter as nb grows. Note that the bound is overly pessimistic when
nb = n, since the method is equivalent to gradient descent in that case.

d) There are several possibilities to guarantee better convergence properties. We cite below the key
ones covered in class:

• Use a decreasing step size sequence instead of a constant one;

• Use a gradient aggregation technique (SAGA, SAG, SVRG) instead of a basic stochastic
gradient update.

e) If stochastic gradient (nb = 1) improves over gradient descent (nb = n), this indicates there is
enough correlation in the data to converge using random subsets of it at every iteration. Using
more than one data point yet significantly less than n (mini-batching) can reduce the variance
of the gradient estimates while remaining significantly cheaper than a full gradient estimation:
this can explain why nb = n/10 yields better performance than nb = 1. When the batch size
gets closer to n, its cost also gets closer to that of a full gradient iteration, and the method
becomes at risk of suffering from redundancies in the data. This can explain why the behavior
of the method worsens when nb > n/10. Note: This is an open question. Students should be
able to a) provide intuition as to why stochastic gradient works better than gradient descent and
b) distinguish the mini-batch regime (nb relatively small) from the regime nb ≈ n, where the
method tends to behave like gradient descent.

Solutions of Exercise 2: Importance sampling

a) This sampling strategy will favor components that have larger Lipschitz constants and thus are
more likely to vary between successive iterates.
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b) Using the distribution of ik, we have that

Eik

[
1

cik
∇fik(xk)

]
=

n∑
i=1

P (ik = i)
1

ci
∇fi(xk)

=
n∑

i=1

ci∑n
j=1 cj

1

ci
∇fi(xk)

=
n∑

i=1

1∑n
j=1 cj

∇fi(xk)

=
n∑

i=1

1

n
∇fi(xk) = ∇f(xk),

where we used
∑n

j=1 cj =
∑n

j=1
ncj∑n
ℓ=1 cℓ

= n.

c) (Comparison with classical SG).

i) Since αk = 1
L , we have

αk

cik
=

1

L

∑n
j=1 Lj

nLik

=
n∑n

j=1 Lj

∑n
j=1 Lj

nLik

=
1

Lik

.

ii) If ik is the random index drawn at iteration k, the kth iteration of stochastic gradient reads

xk+1 = xk − αk∇fik(xk) = xk −
1

L
∇fik(xk),

while the iteration (4.0.6) becomes

xk+1 = xk −
αk

cik
∇fik(xk) = xk −

1

Li
∇fik(xk).

As a result, the second iteration will take a smaller stepsize in the direction −∇fik(xk) if
Li ≥ 1

n

∑n
j=1 Lj , i.e. when the ith Lipschitz constant is larger than the average. This is

precisely what importance sampling aims at achieving: the stepsize is adjusted according to
the Lipschitz constant, in order to reduce the impact of the components with an excessively
large Lipschitz constant.

Solutions of Exercise 3: Practical stochastic gradient variants

Consider the k-th iteration of the batch method, and let gk = 1
|Sk|

∑
i∈Sk
∇fi(xk). Because the

gradient estimates are unbiased by assumptions, we can apply the result of Proposition 2.3.1, which
gives:

Eik [f(xk+1)] ≤ f(xk)− αk∇f(xk)
T Eik [gk] +

Lα2
k

2
Eik

[
∥gk∥2

]
.
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Since gk is an unbiased estimate of ∇f(xk) by assumption, and given the result of Proposition 3.1.1,
we obtain

Eik [f(xk+1)− f(xk)] ≤ −
(
αk −

Lα2
k

2nb

)
∥∇f(xk)∥2 +

Lα2
k

2nb
σ2

≤ −2µ
(
αk −

Lα2
k

2nb

)
(f(xk)− f∗) +

Lα2
k

2nb
σ2

= −2µα
(
1− Lα

2nb

)
(f(xk)− f∗) +

Lα

2nb
σ2.

Using that α ≤ 1
L then gives

Eik [f(xk+1)− f(xk)] ≤ −µα
(
2− 1

nb

)
(f(xk)− f∗) +

Lα2

2nb
σ2.

Noticing that Eik [f
∗ − f(xk)] = f∗ − f(xk), the left-hand side can be modified by adding and

subtracting f∗, leading to

Eik [f(xk+1)− f∗] + f∗ − f(xk) ≤ −µα
(
2− 1

nb

)
(f(xk)− f∗) +

Lα2

2nb
σ2

Eik [f(xk+1)− f∗] ≤
(
1− µα(2− 1

nb
)
)
(f(xk)− f∗) +

Lα2

2nb
σ2.

Subtracting Lασ2

2µ(2nb−1) on both sides gives

Eik [f(xk+1)− f∗]− Lα

2µ(2nb − 1)
σ2 ≤

(
1− µα(2− 1

nb
)
)
(f(xk)− f∗) +

Lα2

2
σ2 − Lα

2µ(2nb − 1)
σ2

=
(
1− µα(2− 1

nb
)
)[

(f(xk)− f∗)− Lα

2µ(2nb − 1)
σ2

]
.

Finally, taking the expected value with respect to every index i0, . . . , ik, we arrive at

E [f(xk+1)− f∗]− Lα

2µ(2nb − 1)
σ2 ≤

(
1− µα(2− 1

nb
)
)[

E [f(xk)− f∗]− Lα

2µ(2nb − 1)
σ2

]
.

By iterating over all iterations, we arrive at the desired result.
In order for this result to be meaningful, one must guarantee 1 − µα(2 − 1

nb
) > 0 which holds

provided α ≤ nb
µ(2nb−1) . The step size may thus need to be smaller than 1

L , and a factor of nb
2nb−1

may have a significant impact in practice.
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