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A three-year PhD fellowship is available at Université Paris Dauphine-PSL (Paris, France), under
the supervision of Antonin Chambolle (senior researcher, main supervisor) and Clément Royer (as-
sociate professor, co-supervisor). The position will be funded through the PEPR (Programmes et
quuipements Prioritaires de Recherche) on Partial Differential Equations and Artificial Intelligence.
The position is expected to start by October 1st, 2024.

Applicants should hold a Masters degree with a strong component in applied mathematics,
including optimization and partial differential equations. Programming experience using Python,
Matlab or Julia is strongly recommended. A good level in English is mandatory, but knowledge of
French is not required.

Interested candidates should send a CV to: clement.royer@lamsade.dauphine.fr. Any in-
quiries regarding this position can be sent to the same email address. By recruiting on behalf of
Université Paris-Dauphine, the co-advisors A. Chambolle and C. Royer commit to providing equal
employment opportunities to all qualified applicants.

Context Neural differential equations are a recently proposed learning model in which a neural
network is implicitly defined through the solution of a differential equation. Such a model highlights
connections between residual architectures and ordinary differential equations (ODEs) on one hand,
and between convolutional layers and partial differential equations (PDEs) on the other hand [5, 9].
In practice, those networks are instantiated using discretization techniques, which poses a number
of challenges pertaining to optimization.

First, training such neural differential architectures amounts to solving a constrained optimization
problem where the constraints are expressed as differential equations. Such problems bear a strong
connection with those arising in scientific computing, where one typically minimizes an objective func-
tion (such as the error between a model and observations) under physical constraints represented by
ODEs or PDEs [1]. Secondly, implementing neural differential architectures requires to set multiple
hyperparameters (different from the parameters of the network that are learned through training).
For general neural networks, those arise from the training procedures, that often involve algorithmic
hyperparameters with significant impact on the performance. In the case of neural differential equa-
tions, additional hyperparameters arise from the discretization operator used to implement the PDE
or ODE calculations. Tuning both sets of hyperparameters represents a modern challenge towards
automated use of neural differential architectures, that can be posed as an optimization problem
where testing a particular hyperparameter configuration is an expensive procedure. Such a paradigm



corresponds to that of blackbox optimization, which has been used extensively in scientific computing
to calibrate complex numerical models, including numerical discretization tools [2].

Thesis description This thesis aims at proposing efficient optimization techniques for the training
and calibration of neural differential architectures. The first axis of the thesis will focus on the
training problem. In order to exploit the special structure of discretized differential equations, we
will rely on algorithmic techniques similar to those extensively used in PDE-constrained optimization
and scientific computing [1]. By leveraging existing work on such algorithms in nonconvex optimiza-
tion [6], we expect to develop methods that adapt to the various discretized architectures used in the
literature [7], with both theoretical guarantees and practical appeal. Our approach will be validated
on data science and imaging problems where standard training procedures can be improved by using
a neural differential equation model [8].

The second axis of the thesis will investigate hyperparameter tuning of discretized neural ar-
chitectures. In a departure from existing techniques, we will consider the calibration of both the
numerical tools used to discretize the differential equation at hand, and that of the training algo-
rithms. Building on recent advances in the field of derivative-free optimization [3], we will design
efficient blackbox optimization techniques supported by theoretical guarantees and demonstrated
practical performance. Although calibrating neural architectures will be at the heart of our project,
the thesis could also consider solving similar hyperparameter tasks in the context of imaging problems,
where discretization of regularizers also arises [4].
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