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Abstract

When allocating indivisible items to agents, it is
known that the only strategyproof mechanisms that
satisfy a set of rather mild conditions are con-
strained serial dictatorships: given a fixed or-
der over agents, at each step the designated agent
chooses a given number of items (depending on her
position in the sequence). Agents who come ear-
lier in the sequence have a larger choice of items;
however, this advantage can be compensated by
a higher number of items received by those who
come later. How to balance priority in the sequence
and number of items received is a nontrivial ques-
tion. We use a previous model, parameterized by
a mapping from ranks to scores, a social welfare
functional, and a distribution over preference pro-
files. For several meaningful choices of parameters,
we show that the optimal sequence can be com-
puted exactly in polynomial time or approximated
using sampling. Our results hold for several proba-
bilistic models on preference profiles, with an em-
phasis on the Plackett-Luce model. We conclude
with experimental results showing how the optimal
sequence is impacted by various parameters.

1 Introduction
In an ideal world, a mechanism for dividing a set of indi-
visible goods (or items, we use both terms interchangeably)
should be at the same time efficient, fair, and insensitive to
strategic behaviour. Now, strategyproofness is a very strong
requirement that severely limits the choice of mechanisms.
The question we address in this paper is, how can we design
strategyproof mechanisms while retaining an acceptable level
of fairness and/or efficiency?

It is known that under mild conditions, the only strate-
gyproof mechanisms are within the family of serial dictator-
ships (although the landscape is less dramatic when there are
only two agents, see our related work section). A standard
serial dictatorship is defined by a permutation of the set of
agents; at each step, the designated agent chooses all the
items she likes from those that are still available. A con-
strained serial dictatorship (CSD), also called quota serial

dictatorship, is similar except that at each step, the designated
agent chooses a predefined number of items.

(Constrained or unconstrained) serial dictatorships are
strategyproof and elicitation-free: they do not require to know
the preferences of the agents, which are only revealed through
their picking choices. This is a major property, as in many
contexts, it is not realistic to hope eliciting all the agent’s
preferences, either because it would be to cumbersome, or
for privacy reasons. However, are they acceptable on effi-
ciency and fairness grounds? Unconstrained serial dictator-
ships are clearly not: if the first agent likes all items then she
will pick them all. Constrained serial dictatorships do better,
at the price of the loss of Pareto-efficiency; but still, agents
appearing early in the sequence have a much larger choice
than those appearing late. This is patent in the case where
there are as many items as agents, each agent being entitled
to only one item, CSDs cannot do better than this: the first
agent will get her preferred item, and the last agent will have
no choice and might receive her least preferred item.

However, when there are more items than agents, and
agents can receive several items, things become better, be-
cause the advantage towards agents who come early in the
sequence can be compensated by a higher number of items
received by those who come later. Suppose, as a simple ex-
ample, that three items have to be assigned to two agents,
A(nn) and B(ob). Assuming that Ann picks first, there are
three CSDs: AAA (Ann picks all items), AAB (Ann picks
two, Bob one), and ABB (Ann picks one, Bob two). It is in-
tuitively clear that ABB is optimal, but how can optimality be
defined? With four items, things are less clear: AAAA and
AAAB are clearly less desirable than AABB and ABBB, but
which of these two should we choose? And what if we have
five agents and seventeen items?

To sum up: strategyproofness leaves us almost no choice
but (constrained) serial dictatorship; some are intuitively bet-
ter than others. What remains to be done is to define formal
optimality criteria for choosing between CSDs, and to com-
pute optimal ones. Our paper addresses these questions.

The first question was addressed by Bouveret and
Lang [2011] and further examined by Kalinowski et
al. [2013a] in the broader context of picking sequences
(which generalize CSDs by allowing non-consecutive picks).

First, since the cardinal values of agents for the items are
not known, Bouveret and Lang [2011] propose to estimate



them using a scoring vector shared by all agents: for any
agent i, the value assigned to the item ranked at position j
is a fixed score sj , independent of i.

Next, the efficiency and fairness of a CSD can be assessed
by computing the resulting social welfare, according to a se-
lected social welfare functional such as egalitarian, Nash, or
utilitarian1 [d’Aspremont and Gevers, 2002].

Finally, estimating the expected social welfare requires as-
suming a probability distribution over the ordinal preferences
of agents. These can be generated in various models, such
as impartial culture, Mallows [Mallows, 1957], or Plackett-
Luce [Luce, 1959; Plackett, 1975].

Given these components, one can associate an expected so-
cial welfare with any CSD, and thereby define optimal CSDs
for various scoring vectors, social welfare functionals, and
preference distributions.

For egalitarian social welfare, we provide a simple algo-
rithm which returns an optimal CSD given that one can com-
pute the expected utility obtained by an agent when a CSD is
used. This algorithm makes it possible to compute an opti-
mal (respectively, close to optimal) CSD when this expected
utility is polynomial-time computable (respectively, can be
approximately evaluated, e.g., by sampling). We also provide
a dynamic programming algorithm that computes an optimal
CSD for utilitarian, Nash or egalitarian social welfare under
a specific condition, which is met when preferences are fully
correlated, or when they are fully independent and follow the
impartial culture or more generally the Plackett-Luce model.

Sections 2 and 3 discuss related work and present our
model. Section 4 presents our algorithms for computing an
optimal CSD. These algorithms assume the existence of an
oracle which can compute or estimate the expected utility of
a picker given a CSD. Section 5 designs such oracles under
various model assumptions. Section 6 gives results for small
values of n, and depicts and comments on the evolution of the
optimal sequences when all criteria except one are fixed.

2 Related Work
Strategyproof allocation of indivisible goods. Various
characterization theorems state that, under mild additional
conditions, strategyproof allocation mechanisms all have a
serial dictatorship flavour: with strict preferences over sub-
sets, only serial dictatorships are strategyproof, neutral, and
nonbossy [Svensson, 1999], whereas only sequential dictator-
ships (a generalization of serial dictatorship where the iden-
tity of the agent picking in position k depends on the items as-
signed to the agents in positions 1 to k− 1) are strategyproof,
Pareto-efficient, and nonbossy [Pápai, 2001]. If preferences
are quantity-monotonic (a bundle of larger cardinality is al-
ways preferred to one of lower cardinality) then a mecha-
nism is strategyproof, nonbossy, Pareto-efficient and neutral
if and only if it is a CSD (also called a quota serial dicta-
torship) [Pápai, 2000]. Similar characterizations hold replac-
ing quantity-monotonic by lexicographic preferences [Hos-
seini and Larson, 2019; Hosseini et al., 2021]. With stan-
dard monotonicity, only quasi-dictatorships remain, where

1If our main objective is fairness, utilitarian social welfare may
not fit well. We will see further that it is the case indeed.

only the first agent in the sequence is allowed to pick more
than one item [Pápai, 2000]. Variants of these characteri-
zations have been established by Ehlers and Klaus [2003],
Bogomolnaia et al. [2005] and Hatfield [2009]. Ignoring
Pareto-efficiency or neutrality opens the door to more com-
plex strategyproof mechanisms; a full characterization in the
two-agent case is given by Amanatidis et al. [2017]. Amana-
tidis et al. [2016] show that the CSD where all agents except
the last one pick only one item is a 1/bn−m+2

2 c-approximation
to maxmin fair share. Weakening strategyproofness into non
obvious manipulability opens the door for more possibilities
[Psomas and Verma, 2022].

Nguyen et al. [2018] show that when agents have prefer-
ences over sets of items defined from preferences over single
items by an extension principle, some scoring rules are strat-
egyproof for some extension principles. Allowing random-
ized mechanisms offers more possibilities, but not much [Bu
and Tao, 2024; Garg and Psomas, 2022; Hosseini and Lar-
son, 2019; Kojima, 2009]. CSDs are also considered in chore
allocation [Aziz et al., 2019].

Picking sequences. Sequential allocation of indivisible
goods, also known as picking sequences, originates from
Kohler and Chandrasekaran [1971], with a game-theoretic
study of the alternating sequence for two agents. Still for
two agents, Brams and Taylor [2000] consider other partic-
ular sequences. Bouveret and Lang [2011] define a more
general class of sequences, for any number of agents, and
argue that sequences can be compared with respect to their
expected social welfare, using a scoring vector and a prior
distribution over profiles. Kalinowski et al. [2013a] show
that computing the expected utility of a sequence is poly-
nomial under full independence, and that strict alternation is
optimal for two agents, utilitarian social welfare and Borda
scoring. The manipulation of picking sequences is studied
by Bouveret and Lang [2014], Tominaga et al. [2016] and
Aziz et al. [2017]. Flammini and Gilbert [2020] and Xiao and
Ling [2020] study the parameterized complexity of comput-
ing an optimal manipulation. Game-theoretic aspects of pick-
ing sequences are addressed by Kalinowski et al. [2013b].
Chakraborty et al. [2021] study picking sequences for agents
with different entitlements. While all these works are obliv-
ious to agent identities, Caragiannis and Rathi [2023] try to
find an approximately optimum order of agents in a serial dic-
tatorship with a limited number of queries.

Maximizing social welfare in allocation of indivisible
goods. A classic way of guaranteeing a level of fairness
and/or efficiency consists in finding an allocation maximiz-
ing social welfare, under the assumption that the input con-
tains, for each agent, her utility function over all bundles
of goods (usually assumed additive). Egalitarian social wel-
fare places fairness above all, utilitarian social welfare cares
about efficiency only, and Nash social welfare is considered
as a sweet spot in-between. See [Amanatidis et al., 2023;
Aziz et al., 2022; Bouveret et al., 2016; Lang and Rothe,
2024] for surveys. These mechanisms are not strategyproof.



3 Preliminaries : The Model
Given n ∈ N∗, we use [n] to denote {1, . . . , n} and [n]0 to
denote {0, 1, . . . , n}. Bold symbols represent vectors.

Let A = {a1, . . . , an} be a set of n agents with ai the
ith agent to intervene in the allocation process and G =
{g1, . . . , gm} a set of m goods. A preference profile P =
(�a1 , . . . ,�an) describes the preferences of the agents: �a
is a complete ranking that specifies the preferences of agent
a over the goods in G. We denote by rkaP (g), the rank of
item g in the ranking of a, given profile P . The preference
profile is hidden, and therefore not part of the input: we will
assume that rankings are drawn independently according to
some probabilistic model, that we denote by Ψ.

Two well-known probabilistic models are the Mallows and
Plackett-Luce models [Mallows, 1957; Luce, 1959; Plackett,
1975]:

• The Mallows model is parameterized by a dispersion pa-
rameter φ ∈ [0, 1] and a ranking µ. We denote this
model by Mllµ,φ. In this model, the probability of a
ranking r is proportional to φdKT(r,µ), with dKT(r, µ), the
Kendall-Tau distance between rankings r and µ, i.e., the
number of pairs of items that are in a different order in
the two rankings.

• The Plackett-Luce (PL) model is parameterized by a
value vector ν = (ν1, . . . , νm). Intuitively, νi > 0
represents the social value of good gi. In this model,
which we denote by PLν , the probability of a ranking
r = gi1 � gi2 � ... � gim is:

m∏
j=1

νij∑m
l=j νil

.

The Plackett-Luce model has proven particularly good
for learning a preference relation over a set of items
(a.k.a. label ranking) [Cheng et al., 2010] so it fits par-
ticularly well here.

These models generalize the two following sub-cases:

• Impartial Culture, denoted by IC, in which each prefer-
ence ranking is drawn u.a.r. from the set of all possible
rankings. Impartial culture is obtained when φ = 1 for
the Mallows model and when all values in ν are equal
for the Plackett-Luce model.

• The Full Correlation case, denoted by FC stipulates that
all agents have exactly the same preference ranking. Full
correlation is obtained when φ = 0 for the Mallows
model (and also as the limit of Plackett-Luce models
νM = (Mm−1, . . . ,M, 1) when M →∞).

In the sequel, we obtain different results for Ψ ∈
{FC, IC, Mllµ,φ, PLν}.

The items are allocated to the different agents according to
a CSD: given a vector k = (k1, . . . , kn) of n non-negative
integers, agent a1 will first pick k1 goods, then a2 will pick
k2 goods within the remaining ones, and so on until an picks
kn items. In most cases, we will consider complete CSDs,
in the sense that

∑n
i=1 ki = m. However, we may also con-

sider incomplete CSDs such that
∑n
i=1 ki < m. We assume

that agents behave greedily by choosing their preferred goods
within the remaining ones. This sequential process leads to
an allocation that we denote by πkP . More formally, πkP is a
function such that πkP (a) is the set of goods that agent a has
obtained at the end of the sequential allocation process, given
preference profile P and vector k.

The utility of an agent for obtaining an item i will be de-
rived using a scoring vector. Stated otherwise, there is a vec-
tor s = (s1, . . . , sm) ∈ Q+m such that si ≥ si+1 for all
i ∈ [m− 1]. The value received by an agent for obtaining her
jth preferred item is sj . Different scoring vectors can be con-
sidered. An important example is the Borda scoring vector,
where si = m− i+ 1. Using scores as a proxy for utilities is
classic in social choice: this is exactly how positional scoring
voting rules (e.g., the Borda rule) are defined, and they are
also used in fair division settings [Baumeister et al., 2017;
Brams et al., 2003; Darmann and Klamler, 2016].

We denote by UkP (a) =
∑
g∈πk

P (a) srkaP (g) the utility
obtained by a when receiving πkP (a) and by EUkΨ(a) =
EP∼Ψ[UkP (a)] her expected utility given model Ψ. This as-
sumes that agents have additive preferences, which is very
common in fair division. The utilitarian social welfare (USW)
WU

Ψ (k), egalitarian social welfare (ESW) SWE
Ψ (k), and

Nash social welfare (NSW) SWN
Ψ (k) are then defined by:

SWU
Ψ (k) =

∑
a∈A

EUkΨ(a), SWE
Ψ (k) = min

a∈A
EUkΨ(a),

SWN
Ψ (k) =

∏
a∈A

EUkΨ(a).

Note that our social welfare notions are meant ex ante, i.e.,
we define them on the expected utility values of the agents.
This is different from the notion of ex post social welfare
which considers the utility of the agents once the profile P
issued from Ψ is determined.

Our objective is to study the following class of optimiza-
tion problems OptSD-Ψ-x with x ∈ {U,E,N}.

OPTSD-Ψ-x

Input: A number n of agents, a number m of goods,
and a scoring vector s.
Find: A vector k = (k1, . . . , kn) of n non-negative
integers with

∑n
i=1 ki = m maximizing SW x

Ψ(k).

The following easy observation will be useful:
Observation 1. For given n and m, the number of vectors
k = (k1, . . . , kn) such that

∑n
i=1 ki = m equals

(
n+m−1
n−1

)
.

From this observation, we can deduce that the number of
potential vectors is lower-bounded by mn−1

(n−1)! . This num-
ber does not take into account a natural further assumption
that the optimal sequence is non-decreasing, that is, that
k1 ≤ k2 ≤ . . . ≤ kn. We will see further that this as-
sumption holds for ESW (under a mild condition), but not for
USW. When the assumption holds, we can restrict the search
to non-decreasing vectors; their number is the number of inte-
ger partitionsm into n numbers; it is still exponentially large,
but no closed form expression is known.



4 Computing an Optimal CSD
We now investigate the problem OptSD-Ψ-x with x ∈
{U,E,N}. All algorithms in this Section assume access
to an oracle algorithm TΨ(k, i) computing EUkΨ(ai) in time
K(n,m, s). The computation of expected utilities of agents
for various models will be addressed in Section 5.

We start by a positive result for Egalitarian Social Welfare:
the optimal CSD can be computed by the greedy-like Algo-
rithm 1. Completion(k) denotes, for any partial CSD k, the
complete CSD such that Completion(k)i=ki for i∈ [n− 1]
and Completion(k)n=m−

∑
i∈[n−1] ki. In informal terms,

k is completed by giving all remaining goods to the last agent.

Algorithm 1 GreedyESW

Require: the number of agents n, the number of goods m,
the scoring vector s, the oracle algorithm TΨ

1: k← (0, . . . , 0) # empty CSD
2: max k,max esw ← k, 0
3: for t = 1 to m do
4: i ∈ argmini∈[n]EU

k
Ψ(ai)

5: ki ← ki + 1
6: if SWE

Ψ (k) > max esw then
7: max k,max esw ← k, SWE

Ψ (k)
8: end if
9: end for

10: return Completion(max k);

At line 1, we start with an empty CSD, that we will modify
in a greedy fashion. In the for loop (lines 3-9), we identify
an agent with minimal expected utility (line 4) and increment
the number of goods that she gets (line 5). The CSD that is
returned is not necessarily this CSD k. During the algorithm,
we keep in variables max esw and max k, the maximum
ESW found so far and the corresponding (partial) CSD. The
algorithm returns max k completed by giving all remaining
goods to the last agent (line 10). The completion step is not
really necessary (the partial sequence obtained at line 9 al-
ready has maximum expected egalitarian social welfare); its
role is to ensure that no good is left unallocated. The reason
why one needs the test at line 6 is that letting the currently
least happy agent pick one more good may decrease the ESW,
as can be seen on the following example.
Example 1. Let n = 2, m = 5, s = (50, 10, 4, 2, 1), and
Ψ = IC. We show below the partial CSDs obtained in each
iteration t together with the expected utilities of both agents
(they can be computed easily, as we will see in Section 5) and
the values of it and max esw.

t k max k EUkΨ(a1) EUkΨ(a2) it max esw
1 (0, 0) (0, 0) 0 0 1 0
2 (1, 0) (0, 0) 50 0 2 0
3 (1, 1) (1, 1) 50 42 2 42
4 (1, 2) (1, 2) 50 49.6 2 49.6
5 (1, 3) (1, 3) 50 52.4 1 50
6 (2, 3) (1, 3) 60 40.2 1 50

At iteration 5, the least happy agent is a1; however, letting
a1 pick one more good, that is, k = (2, 3) gives EUkΨ(a1) =

60 and EUkΨ(a1) = 40.2 (iteration 6), decreasing the cur-
rently optimal expected ESW. Therefore, max k is not re-
placed by k = (2, 3) at line 6 of the algorithm. The algo-
rithm returns Completion(max k) = (1, 4) (with expected
utilities 50 and 53.6) with the remaining good given to a2.

Proposition 1. Algorithm 1 returns a CSD k maxi-
mizing SWE

Ψ (k), solving problem OptSD-Ψ-E, in time
O(nmK(n,m, s)).

The proof is based on the following lemma:

Lemma 1. Let k̂ be a CSD. Let max eswt, kt and it denote
max esw, k and i after line 4 of iteration t of the for loop in
Algorithm 1. For all t, a necessary condition for SWE

Ψ (k̂) >

max eswt is that k̂j ≥ ktj for all j ∈ [n], and k̂it > ktit .

Proof. By induction. At iteration 1, the claim is obvious.
Assume that the claim holds for iteration t, and let k̂ be a
CSD such that SWE

Ψ (k̂) > max eswt+1. Then obviously
SWE

Ψ (k̂) > max eswt as max eswt+1 ≥ max eswt. Be-
cause the condition holds for iteration t and by construction
of kt+1 we have that k̂j ≥ kt+1

j for all j ∈ [n]. Now
suppose that k̂it+1 = kt+1

it+1 . In that case, SWE
Ψ (k̂) ≤

EUk
t+1

(ait+1) ≤ max eswt+1, a contradiction with the in-
duction hypothesis. The first inequality is due to the fact that
ait+1 will get the same number of goods in k̂ and kt+1 while
the agents picking before her will get at least as many goods
in k̂ than in kt+1. The second inequality is due to the defini-
tion of it+1.

Proof of Proposition 1. Suppose that there exists a CSD k̂

such that SWE
Ψ (k̂) > max esw. Lemma 1 applied at iter-

ation t = m implies that each agent receives more objects
with k̂ than with the greedily constructed complete CSD k
obtained at the end of the for loop. As they both have m ob-
jects to allocate, they must be equal. This is a contradiction
of the hypothesis as max esw ≥ SWE

Ψ (k).

We now go beyond ESW. For USW and NSW, we do not
know of an efficient algorithm which would work for any dis-
tribution. A general approach could be to sample a large but
hopefully reasonable number of preference profiles from Ψ
and find a CSD with maximal social welfare considering the
average utility of each agent. Yet, we prove in [Bouveret et
al., 2025, Appendix B] that such an approach leads to an NP-
hard problem for USW.

However, provided the distribution satisfies a natural con-
dition, a CSD maximizing utilitarian and Nash social welfare
can be computed by dynamic programming. This condition
on Ψ states thatEUkΨ(a) only depends on the number of items
picked by a, and the number of items that have been picked
before a, but not on the number of agents who have picked
before and how many items they have picked each.

Definition 1. A distribution Ψ satisfies prefix independence
if for any sequence k and i ∈ [n], if a is the ith picker in
k, then EUkΨ(a) only depends on (1) κ = ki, the number of
goods that she picks, and (2) τ =

∑i−1
j=1 kj , the number of

goods that have been picked before she starts picking.



Under prefix independence, the utility that agent a gets
when picking κ goods while τ have already been picked,
eu(κ, τ), is well-defined, and is exactly equal to EUkΨ(a)

when a is the ith picker κ=ki and τ=
∑i−1
j=1 kj .

For pedagogical purposes, let us first focus on maximis-
ing USW. When prefix independence is met, one can use the
following dynamic programming equations:

F (i, τ) = max
κ∈[m−τ ]0

(eu(κ, τ)+F (i+ 1, τ + κ)),

∀i, τ ∈ [n− 1]× [m]0, (1)
F (n, τ) =eu(m− τ, τ),∀τ ∈ [m]0,

where F (i, τ) corresponds to the maximum USW that can
be obtained by agents {ai, ai+1, . . . , an} in the situation in
which τ goods have already been allocated and we allocate
the m − τ remaining goods to them. Of course the optimal
value is given by F (1, 0).

The other problems can be solved similarly. For problem
OptSD-Ψ-E (resp. OptSD-Ψ-N ), one should adapt Equa-
tion 1 by replacing the sum operation between eu(κ, τ) and
F (i+ 1, τ + κ) by a min (resp. multiplication) operation.

Proposition 2. If Ψ satisfies prefix independence, problems
OptSD-Ψ-U , OptSD-Ψ-E and OptSD-Ψ-N can be solved in
O(nm2K(n,m, s)) time.

We conclude by giving a structural property satisfied by an
optimal CSD for ESW when prefix independence holds. We
will see that such property does not necessarily hold for USW
(see [Bouveret et al., 2025, Appendix B] and Section 6).

Proposition 3. Under prefix independence, there exists an
optimal solution to OptSD-Ψ-E which is non-decreasing, i.e.,
in which the earlier an agent picks, the less goods she gets.

5 Computing the Expected Utility of an Agent
In this section, we address the computation of EUkΨ(a). Pre-
fix independence again plays a crucial role: when it is satis-
fied, EUkΨ(a) only depends on the number of items picked
by a, and the number of items that have been picked before a,
but not on the number of agents who have picked before and
how many items they have picked each. We first investigate
which of our different probabilistic models satisfy it.

Proposition 4. Ψ ∈ {FC, IC} satisfy prefix independence.

Proof. Consider a situation where an agent starts picking
while τ goods have previously been picked. When Ψ = FC or
Ψ = IC, the probability distribution on the set S of goods that
have previously been picked only depends on τ : for Ψ = FC,
this probability distribution assigns probability 1 to the set
composed of the τ (unanimously) most preferred goods; for
Ψ = IC, this probability distribution assigns equal probabil-
ity to all sets of size τ and 0 to others. Note that, given the
set S, the utility that the agents get is then determined by the
number of goods she picks.

More interestingly, the PLν model, which generalizes FC
and IC, also satisfies prefix independence.

Proposition 5. Ψ = PLν satisfies prefix independence.

To reason on the Plackett-Luce model, one can use the vase
model metaphor [Silverberg, 1980]. Consider a vase filled
with m types of balls, the proportion of balls of type j be-
ing f(j) =

νj∑m
l=1 νl

. The ranking is then generated by the
following sequential process. At each stage, a ball is taken
from the vase such that a ball of type j is chosen with prob-
ability f(j). If the ball is of a different type than the ones
previously picked, it yields the next good in the ranking. In
either case, the ball is put back in the vase and the process
continues. Using this metaphor, one can prove the follow-
ing lemma (the formal proof can be found in [Bouveret et al.,
2025, Appendix C]).

Lemma 2. Let I = (i1, . . . , iq) be a sequence of q different
indices in [m]. Consider the following two cases:

i) Agent a1 picks q goods;

ii) Agent a1 picks q1 goods and agent a2 picks q2 goods
with q1 + q2 = q.

For the PL model, the probability that for all t ∈ [q], git is
picked at timestep t is the same in cases i and ii.

Proof of Proposition 5. We recall that the preference rank-
ings of the agents are drawn independently from PLν . Using
Lemma 2 and a simple induction argument, we get that the
probability of a specific sequence of q consecutive picks is
the same regardless of whether they were picked by one, two
or more agents. This entails that the probability distribution
on the set S of goods that have been picked after τ timesteps
only depends on the value of τ . Hence, the expected utility
that an agent gets when choosing κ goods once τ have been
picked only depends on the values of κ and τ .

Unfortunately, things are different for the Mallows model.

Proposition 6. There exists φ ∈ (0, 1) and a ranking µ such
that Ψ = Mllφ,µ does not satisfy prefix independence.

This holds even for 3 agents and 3 goods. See [Bouveret et
al., 2025, Appendix C] for the proof.

Computation of EUkΨ(a). Under prefix independence, we
show how to compute eu(κ, τ) efficiently, starting by FC.

Proposition 7. If Ψ = FC, eu(κ, τ) =
∑τ+κ
i=τ+1 si. All values

eu(κ, τ) can be computed in time O(m2) with the recursive
formula eu(κ, τ) = eu(κ− 1, τ) + sκ+τ .

We then turn to Ψ = IC, and show that the values eu(κ, τ)
can be computed using a recursive formula. Let T (j, κ, τ)
denote the utility that an agent can get if she can pick κ goods
within the ones of rank in {j, . . . ,m}, given that τ of these
goods have been picked by preceding agents. Then, it is clear
that we have:

eu(κ, τ) = T (1, κ, τ),∀κ, τ ∈ [m]0 × [m− κ]0

The key point is that there is a probability τ
m−j+1 that this

good is one of the τ goods that have previously been picked,
otherwise with a probability of 1 − τ

m−j+1 the good of rank
j is free and the agent will pick this good. In both cases, we
move to goods of rank in {j + 1, . . . ,m}. In the first case,
we decrease τ by 1 as we have identified one of the goods



already picked within the ones of rank j to m. In the second
case, we decrease κ by one as the agent has picked a good.
Hence, eu(κ, τ) can be computed by the following formula:

T (j, κ, τ) =
τ

m−j+1
T (j+1, κ, τ−1),

+(1− τ

m− j + 1
)(sj + T (j + 1, κ− 1, τ))

∀j, κ, τ ∈ [m− 1]×[m− j + 1]×[m− j − κ+ 1], (2)

with the following base cases:

T (j, 0, τ) = 0,∀j, τ ∈ [m]× [m− j + 1]0

T (j, κ, 0) =
∑

j≤i<j+κ

si,∀j, κ ∈ [m]× [m− j + 1]0.

By computing all values T (j, κ, τ) in O(m3) operations, we
obtain the following result.
Proposition 8. If Ψ = IC, then all values eu(κ, τ) can be
computed in time O(m3) by using Equation 2.

Propositions 2, 7, and 8 imply that OptSD-Ψ-x for x ∈
{U,E,N} can be solved in polynomial time for Ψ = FC and
Ψ = IC, in O(nm2) for Ψ = FC and O(m2 max(n,m)) for
Ψ = IC, by precomputing all values eu(κ, τ) before running
the dynamic programming algorithm.

For Ψ 6∈ {IC, FC}, one can still use GreedyESW and the
dynamic programming algorithm with values EUkΨ(a) ap-
proximated by sampling, providing close-to optimal CSDs:
the returned CSD is optimal with expected utility values re-
placed by their approximate values.2

For the general PLν model beyond FC and IC, we do not
know whether values eu(κ, τ) can be computed exactly in
polynomial time; however, they can be efficiently approxi-
mated by sampling preference profiles from Ψ and averaging
the utility values obtained on the samples, with approxima-
tion guarantees from Hoeffding’s (1963) inequality.

To present this guarantee, let uκ,τ (P , s) denote the utility
value obtained by the second picker when she picks her κ
preferred (available) goods, while the first picker has picked
her τ preferred ones, given the preference profile P .
Proposition 9. Let ε>0 and δ∈ (0, 1) two fixed values, and
Υ an upper bound on values eu(κ, τ) (e.g.,

∑m
i=1 si).

Let ẽuκ,τ be the value computed by averaging the values
uκ,τ (P i, s) over N preference profiles P i sampled indepen-
dently from Ψ. If N ≥ (Υ2 ln (2m2/δ))/2ε2, then it holds
with probability 1− δ that:

|eu(κ, τ)− ẽuκ,τ | ≤ ε,∀κ, τ ∈ [m]× [m− κ].

Moreover, we show that these utility values can be com-
puted exactly in time FPT (Fixed-Parameter Tractable) with
respect to parameter m and XP (slicewise polynomial) with
respect to ρ, where ρ is the number of distinct values in ν.
This seems particularly appealing as goods may often be par-
titioned in categories. When ρ = 1, all goods are in the same
category and we obtain the IC model; when ρ equals 2 or 3
we obtain categories {high value, low value} or {high value,
medium value, low value}.

2Some mild monotonicity conditions are required on the approx-
imated EUkΨ(a) values for the validity of Algorithm 1.

Proposition 10. If Ψ = PLν , then all values eu(κ, τ) can be
computed in time O(4mPoly(m)).

Proposition 11. If Ψ = PLν , then all values eu(κ, τ) can be
computed in time O(m2ρPoly(m)).

6 Numerical Tests
We performed several experiments to explore the properties
of the CSDs obtained by maximizing either USW, NSW or
ESW. More precisely, we explored the impact of increasing
one of the parameters, all other parameters being fixed.

Code and an interactive demo are available at https://
github.com/GuillaumeMeroue/CSD-can-be-Fair and https://
guillaumemeroue.github.io/IJCAI25.
Impact of the number of goods. Figure 1 displays the pro-
portion of utility (left-hand side) and goods (right-hand side)
obtained for n = 5 and increasing the number of goods m
from 5 to 300 in steps of 5. To generate both figures, the IC
model and the Borda scoring vector were used and we opti-
mized either USW, ESW or NSW.3

Several comments can be made. First, as expected, in the
egalitarian case (middle of Figure 1), we observe that as m
increases, the distribution of utility received by each agent
converges towards equal share.4 In order to achieve this, the
agents who arrive later in the sequence receive more items.

Second, with Borda and utilitarianism, the first agent in the
sequence may pick more items than others (plots on top of
Figure 1). More generally, on this plot, the utility of an agent
seems to decrease with the position in the sequence.

Finally, for the Borda scoring vector, egalitarian and Nash
social welfare objectives tend to give similar results.
Impact of correlation. We explore the impact of correla-
tion, through the parameters φ and ν of models PLν and
Mllφ,µ. We use the Borda scoring vector and maximize
ESW. To run Algorithm 1, we approximate the expected util-
ity values of the agents by sampling 10000 preference pro-
files from PLν and from Mllφ,µ with the PrefSampling li-
brary [Boehmer et al., 2024]. Figure 2 displays the utility
value (plots at the bottom) and the number of items (top) re-
ceived by each of 5 agents with m = 70 goods, for models
PLν (right) and Mllφ,µ (left). In the former model, we use
νx = (xm, xm−1, . . . , x1) and decrease x from 1.5 (which
already yields very correlated preference profiles similar to
FC) to 1 (IC) in steps of 0.01. In the latter model, we increase
φ from 0 (FC) to 1 (IC) in steps of 0.02.

Several comments are in order. First, as can be seen in Fig-
ure 2, the utility values of all agents (and hence their sum)
increase when x decreases or φ increases. Indeed, as we
come closer to IC, the preferences of the agents become more
different, allowing some agents to receive some of their pre-
ferred items even if they pick late in the allocation process.
Second, the number of goods received by the first agents in

3In Figures 1, and 2, the 1st picker corresponds to the color blue
(at the bottom of each plot) while the 5th and last agent to pick cor-
responds to the color purple (at the top of each plot). Moreover, note
that the values plotted are in fact cumulative values.

4This observation is proven formally in [Bouveret et al., 2025,
Appendix D].

https://github.com/GuillaumeMeroue/CSD-can-be-Fair
https://github.com/GuillaumeMeroue/CSD-can-be-Fair
https://guillaumemeroue.github.io/IJCAI25
https://guillaumemeroue.github.io/IJCAI25
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Figure 1: Portion of total utility (plots on the left) and of goods
(right) received by each of 5 agents withm increasing from 5 to 300
in steps of 5. Maximizing USW (plots at the top), ESW (middle), or
NSW (bottom), using Borda scoring vector and IC.

the CSD increases while it decreases for the last ones. Indeed,
as these latter agents can receive more preferred goods, the
CSD needs less to compensate by giving them a high num-
ber of goods (recall that we optimize ESW). Third, we notice
that both models PLν and Mllφ,µ yield very similar plots as
we decrease the level of correlation.

7 Discussion
The practical use of our setting raises a few questions.

First, we need to choose a distribution. The choice has
to be tailored to the domain at hand, and distributions can be
learnt using some preference learning models and techniques.
If computation time is an important issue then it is wise to
learn a Plackett-Luce model [Cheng et al., 2010].

Second, we need to choose a scoring vector as a proxy for
agents’ valuations over items. Again, this depends on the spe-
cific domain at hand. For each context, the scores can be es-
timated by an experiment where subjects are presented with
a list of items to elicit their valuations; see [Bouveret et al.,
2025, Appendix E].

Third, we need to choose a social welfare functional. We
have seen that, unsurprisingly, utilitarianism may lead to
clearly unfair solutions and should be used only with care.
As usual, egalitarianism may lead to a loss of efficiency, but
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Figure 2: Number of goods received per agent (top); expected utility
value per agent (bottom) as a function of φ for Mllφ,µ and x for
PLνx . Maximizing ESW, Borda scoring vector, n = 5, m = 70.

is easier to compute or approximate; Nash is a good trade-off
(see [Caragiannis et al., 2019] for a manifesto towards using
Nash social welfare in fair division) but is hard to compute if
the distribution does not satisfy prefix independence.

Four, once a CSD is found, it is anonymous: for instance,
with two agents, if the output is (1, 2), it does not say who
should start picking. Assigning agents to positions in the se-
quence has no impact on ex ante social welfare, but it may
have an impact on ex post social welfare ([Bouveret et al.,
2025, Appendix F]).

8 Conclusion
Our main messages are: (1) imposing strategyproofness does
not leave much choice beyond constrained serial dictator-
ships; (2) some constrained serial dictatorships are fairer than
others; (3) their efficiency and fairness can be measured by
expected social welfare, defined by a scoring vector, a dis-
tribution over profiles, and a social welfare functional; (4)
depending on the social welfare functional and the distri-
bution, the optimal sequence can be polynomial-time com-
putable, efficiently approximated by sampling, or hard to ap-
proximate by sampling. The following table summarizes the
results obtained. PI means that prefix independence is satis-
fied, poly means “polynomial-time computable”, and approx
means “efficiently approximable by sampling”.

Ψ PI EUkΨ(ai) Egal Nash Uti
FC yes poly poly poly poly
IC yes poly poly poly poly
PLν yes approx approx approx approx

Mllφ,µ no approx approx ? ?
If items were bads (e.g., chores) instead of goods, a similar

methodology would work, with values in the scoring vector
representing costs. Of course, agents coming first in the se-
quence should now take more items than those coming later.
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Bouveret, Jérôme Lang, Nhan-Tam Nguyen, Trung Thanh
Nguyen, Jörg Rothe, and Abdallah Saffidine. Positional
scoring-based allocation of indivisible goods. Auton.
Agents Multi Agent Syst., 31(3):628–655, 2017.

[Boehmer et al., 2024] Niclas Boehmer, Piotr Faliszewski,
Łukasz Janeczko, Andrzej Kaczmarczyk, Grzegorz
Lisowski, Grzegorz Pierczyński, Simon Rey, Dariusz
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[Lang and Rothe, 2024] Jérôme Lang and Jörg Rothe. Fair
division of indivisible goods. In Economics and Computa-
tion, Springer texts in business and economics, pages 493–
550. Springer, 2nd edition, 2024.

[Luce, 1959] R Duncan Luce. Individual choice behavior,
volume 4. Wiley New York, 1959.

[Mallows, 1957] Colin L Mallows. Non-null ranking mod-
els. i. Biometrika, 44(1/2):114–130, 1957.

[Nguyen et al., 2018] Nhan-Tam Nguyen, Dorothea
Baumeister, and Jörg Rothe. Strategy-proofness of
scoring allocation correspondences for indivisible goods.
Soc. Choice Welf., 50(1):101–122, 2018.
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