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Abstract

A new framework for propositional merging is presented. DA merging operatorsparameterized
by a distance between interpretations and two aggregation functions, are introduced. Many distances
and aggregation functions can be used and many merging operators aready defined in the literature
(including both model-based ones and syntax-based ones) can be encoded as specific DAZ operators.
Both logical and complexity properties of those operators are studied. An important result is that
(under very weak assumptions) query entailment from merged basesis“only” at thefirst level of the
polynomial hierarchy when any of the DAZ operators is used. As a by-product, complexity results
for several existing merging operators are derived as well.
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1. Introduction

Belief merging is an important issue of many Al fields (see [1] for a panorama of
applications of data and belief fusion). Although particular requirements can be asked
for each application, severa pieces of information are usually brought into play when
propositional base merging is concerned. In the following:
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o A belief profileE = {K3, ..., K,,} isafinite multi-set of belief bases, where each belief
basek; representsthe set of beliefsfrom sourcei. Each K; isafinite set of consistent
propositional formulas ¢;, ; encoding the explicit beliefs from source .

e IC isapropositional formulaencoding some integrity constraintsIC represents some
information the result of the merging has to obey (e.g., some physical constraints,
norms, etc.)

The purpose of merging E is to characterize a formula (or a set of formulas) Ac(E),
considered as the overall belief from the n sources given the integrity constraints IC.
Recently, several families of such merging operators have been defined and characterized
inalogical way [2—6]. Among them are the so-called model-basedherging operators[2-5]
wherethe modelsof Ac(E) are defined asthe models of IC which are preferred according
to some criterion depending on E. Often, such preference information takes the form of
atotal pre-order over interpretations, induced by a notion of distance d(w, E) between
an interpretation w and the belief profile E. The distance d(w, E) is typically defined by
aggregating the distances d(w, K;) for every K;. Usually, model-based merging operators
take only into account consistent belief bases K;. Other merging operators are so-called
syntax-baseanes [7-9]. They are based on the selection of some consistent subsets of
the set-theoretic union | J;_; K; of the belief bases. This allows for taking inconsistent
belief bases K; into account and to incorporate some additional preference information
into the merging process. Indeed, as in belief revision, relying on the syntax of K; isa
way to specify (implicitly but in a cheap way with respect to representation) that explicit
beliefs are preferred to implicit beliefs[10,11]. But the price to be paid is the introduction
of an additional connective “,”, which is not truth functional. Moreover, since they are
based on the set-theoretic union [ J;_; K; of the bases, such operators usually do not take
into account the frequency of each explicit piece of belief into the merging process (the
fact that ¢; ; is believed in one source only or in the n sources under consideration is not
considered relevant, which is often counter-intuitive).

In this paper, anew framework for defining propositional merging operatorsis provided.
A family of merging operators parameterized by a distance d between interpretations and
two aggregation functions @ and © is presented. Accordingly, DA? merging operator is
a short for Distance-based merging operator, obtained through 2 Aggregation steps. The
parametersd, @, © are used to define anotion of distance between an interpretation and a
belief profile E in atwo-step fashion. Likein existing model-based approachesto merging,
the models of the merging Aflé@’@ (E) of E given someintegrity constraints IC are exactly
the models of IC that are as close as possible to E with respect to the distance. Moreover,
the first aggregation step allows to take into account the syntax of belief bases within the
merging process (and to handle inconsistent onesin a satisfying way).

The contribution of this work is many fold. First, our framework is general enough to
encompass many model-based merging operators as specific cases, especially those given
in [2-6,12,13]. In addition, despite the model-theoretic ground of our approach, several
syntax-based merging operators provided so far in the literature can be captured aswell [7—
9]. We show that, by imposing few conditions on the parameters, several logical properties
that are expected when merging operators are considered, are satisfied by DA? operators.
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Another very strong feature offered by our framework is that query entailment from
AR®O(E) is guaranteed to lay at thefirst level of the polynomial hierarchy provided that
d, ® and © can be computed in polynomial time. Accordingly, improving the generality
of the model-based merging operators framework through an additional aggregation step
does not result in a complexity shift.

We specifically focus on some simple families of distances and aggregation functions.
By letting the parameters d, & and © vary in these respective sets, several merging
operators are obtained; some of them were already known and are thus encoded as specific
cases in our framework, and others are new operators. In any case, we investigate the
logical properties and identify the complexity of each operator under consideration. As a
by-product, the complexity of several model-based merging operators already pointed out
so far isalso identified.

The remaining of the paper is as follows. In Section 2 we give some formal
preliminaries, and we recall some notions of computational complexity and some
axiomatic properties for belief merging. In Section 3 we give a glimpse at the two main
families of merging methods. model-based merging operators and syntax-based ones. In
Section 4 we introduce DA2 merging operators and give some examples. In Section 5
we study the computational complexity of this class of operators. This section also gives
complexity results for some specific operators from the class. In Section 6 we address the
logical propertiesof the operators. Finally Section 7 concludesthe paper and presents some
directionsfor future work.

2. Formal preliminaries

We consider a propositional language PRORbs built up from a finite set PS of
propositional symbolsin the usual way. T (respectively L) denotes the Boolean constant
interpreted to 1 (true) (respectively O (false)). Aninterpretationis atota function from PS
to BOOL= {0, 1}. It is denoted by atuple of literals over PS(or atuple of truth values 0,
1 when atotal ordering over PSis given). The set of al interpretations is denoted by W.
An interpretation w is amodel of aformulaif it makesit true in the usua classical truth
functional way.

Provided that ¢ is a formula from PRORs, Mod(¢) denotes the set of models of ¢,
i.e, Mod(p) = {w e W | w = ¢}. Conversely, let M be a set of interpretations, form(M)
denotes the logical formula (unique up to logical equivaence) whose modelsare M.

Two belief bases K1 and K> are said to be logically equivaent (K1 = K») if A K1 =
/\ K2, and two belief profiles E1 and E» are said to be equivalent (E1 = E») if and only
if there is a hijection between E; and E> such that each belief base of E1 is logically
equivalent to itsimage in E>. A belief base K; is said to be consistent if and only if the
conjunction A\ K; of its formulas is consistent. Similarly, a belief profile E is said to be
consistent if the conjunction of its belief bases /\ E = Ak, cp /\y, ek, #i.j 1S consistent.
LI denotes the multi-set union. For every belief profile E and for every integer n, E” denotes
the multi-set containing E n times.

For any set A, let < beany binary relationover A x A. < issaidto betotalif Va,b € A,
a < borb<a; reflexiveif Va € A, a < a; transitiveif Ya,b,ce A (a <bandb < ¢)
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impliesa < c. Let < be any binary relation, < isits strict counterpart, i.e., a < b if and
only if a < b and b £ a, and =~ isitsindifference relation, i.e, a >~ b if and only if a < b
and b < a. We denotemin(4, <) theset {ac A|Ab e A, b <a)l.

2.1. Computational complexity

The complexity results we give in this paper refer to some complexity classes which
we now briefly recall (see [14] for more details), especially the classes AS and ©5 [15,16]
from the polynomia hierarchy PH, as well as the class BH, from the Boolean hierarchy.
We assume the reader familiar with the classes P, NP et coNP and we now introduce the
following three classes |ocated at thefirst level of the polynomial hierarchy:

e BH> (also known as DP) isthe class of all languages L such that L = L1 N L, where
Ly isin NP and L» in coNP. The canonical BHz-complete problem is SAT-UNSAT:
given two propositional formulas ¢ and v/, {(p, ¥) isin SAT-UNSAT if and only if ¢ is
consistent and v isinconsistent.

° Ag = PP jsthe class of all languagesthat can be recognized in polynomial time by a
deterministic Turing machine equipped with an NP oracle, where an NP oracle solves
whatever instance of a problem from NP in unit time.

e ©) = AJ[O(logn)] isthe class of all languagesthat can be recognized in polynomial
time by a deterministic Turing machine using a number of cals to an NP oracle
bounded by alogarithmic function of the size of theinput data.

Note that the following inclusions hold:
NP U coNP C BH2 € ©5 € AS C PH.

Finally, FAJ is the class of function problems associated with A, i.e., those that can be
solved in deterministic polynomial time on a Turing machine equipped with an NP oracle.

2.2. Logical properties for belief merging

Somework in belief merging aims at finding sets of axiomatic properties operators may
exhibit the expected behaviour [2,4,5,12,17,18]. We focus here on the characterization of
Integrity Constraints (IC) merging operators[5,13].

Definition 1 (IC merging operators Let E, E1, E2 bebelief profiles, K1, K2 be consistent
belief bases, and IC, IC1, IC2 be formulas from PRORbs, A isan IC merging operatoif
and only if it satisfies the following postulates:

(IC0) Alc(E) =IC.

(IC1) If IC isconsistent, then A|c(E) is consistent.

(IC2) If \ E isconsistent with IC, then Aic(E) = A\ E AIC.

(IC3) If E1 = E> and IC1 =ICp, then Aic, (E1) = Aic,(E2).

(IC4) If K1 =IC and K2 = IC, then Aic({K1, K2}) A K1 is consistent if and only if
Aic({K1, K2}) A K> isconsistent.
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(IC5) Aic(E1) A Aic(E2) = Aic(E1U E2).

(1C6) If Alc(E1) A Aic(E2) isconsistent , then Aic(E1U E2) = Aic(E1) A Aic(E2).
(IC7) Aic,(E) ANIC2 = Aicynic,(E).

(1C8) If Aic,(E) AIC3 isconsistent, then Ajc,aic,(E) = Aic, (E).

The intuitive meaning of the propertiesis the following: (1C0) ensuresthat the result of
merging satisfies the integrity constraints. (1C1) states that, if the integrity constraints are
consistent, then the result of merging will be consistent. (IC2) states that if possible, the
result of mergingis simply the conjunction of the belief baseswith theintegrity constraints.
(IC3) is the principle of irrelevance of syntax: the result of merging has to depend only
on the expressed opinions and not on their syntactical presentation. (IC4) is a fairness
postulate meaning that the result of merging of two belief bases should not give preference
to one of them (if it is consistent with one of both, it has to be consistent with the other
one.) It is a symmetry condition, that aims to rule out operators that can give priority to
one of the bases. Note that (IC4) is a strong impartiality requirement and may appear
very strong in some cases, but nevertheless it is satisfied by many interesting merging
operators. Note that stating this property makes sense only because the belief bases K; are
required to be consistent. (IC5) expresses the following idea: if belief profiles are viewed
as expressing the beliefs of the members of a group, then if E1 (corresponding to a first
group) compromises on a set of alternatives which A belongsto, and E» (corresponding
to a second group) compromises on another set of alternatives which contains A too, then
A hasto be in the chosen alternatives if we join the two groups. (IC5) and (IC6) together
state that if one could find two subgroups which agree on at least one alternative, then the
result of the global merging will be exactly those alternatives the two groups agree on.
(IC7) and (1C8) state that the notion of closeness is well-behaved, i.e., that an alternative
that is preferred among the possible aternatives (IC1), will remain preferred if one restricts
the possible choices (IC1 A IC2).

Two sub-classes of IC merging operators have been defined. IC majority operatorsaim
at resolving conflicts by adhering to the majority wishes, while IC arbitration operators
have a more consensual behaviour:

Definition 2 (Majority and arbitratior). An IC majority operatorisan IC merging operator
that satisfies the following majority postulate:

(Maj) 3n Aic (E1U ES) = Aic(E2).

An IC arbitration operatoris an IC merging operator that satisfies the following
arbitration postul ate:

Aic, (K1) = Aic,(K2)
Alc;e-1c,({K1, K2}) = (IC1 & —ICy)
IC1 £ ICo

IC2 £ 1C1

(Arb) = Aic,vic,({K1, K2}) = Arc, (K1).
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See [5,12] for explanations about those two postulates and the behaviour of the two
corresponding classes of merging operators. For the sake of simplicity, we simply refer to
such operatorsin the following as majority (respectively arbitration) ones, omitting IC.

3. Model-based merging vs syntax-based merging

In this section, we recall the two main families of belief merging operators: the model-
based ones and the syntax-based ones.

3.1. Model-based merging

The idea here is that the result of the merging process is a belief base (up to logical
equivalence) whose models are the bestones for the given belief profile E. Formally,
provided that <g denotes an arbitrary binary relation (usualy <g isrequired to be total,
reflexive and transitive) on W:

Mod(Aic(E)) = min(Mod(IC), <g).

Accordingly, in order to define a model-based merging operator, one just has to point
out afunction that maps each belief profile E to abinary relation <g (see[5] for conditions
on thisfunction).

A compact way to characterize <g consists in deriving it from a notion of distance
between an interpretation w and abelief profile E (in this case <g isatotal pre-order):

w<go ifandonlyif d(w, E)<d, E).

d(w, E) is usually defined by choosing a distance between interpretations aiming at
building “individual” evaluations of each interpretation for each belief base, and then
by aggregating those evaluations in a “socia” evaluation of each interpretation. Indeed,
assume that we have a distance d between interpretations (cf. Definition 5) that fits our
particular application. Then one can define an (individual) belief base evaluation of each
interpretation as the minimal distance between this interpretation and the models of the
belief base:

d(w, K) = min d(w, o).
o'EK

Then it remains to compute a (social) belief profile evaluation of the interpretations using
some aggregation function x:

d(w, E) =*keg d(w, K).

In the first works on model-based merging, the distance used was Dala’s distance [19],
namely, the Hamming distance between interpretations, and the aggregation function was
the sumor the max[2,3]. In [5,12] it has been shown that one can take any distance
between interpretations without changing the logical properties of the operators and a
leximaxaggregation function was proposed as an example of arbitration operator.
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3.2. Syntax-based merging

Syntax-based merging (also called formula-based merging) operators work from
preferred consistent subsets of formulas. The differences between the operators of this
family lie in the definition of the preference relation (maximality with respect to set
inclusion for instance).

Let us briefly present the operatorsgivenin [7,8].

Definition 3. Let MAXCONS(K, IC) bethe set of the maxcon®f K U {IC} that contain IC,
i.e., the maximal (with respect to set inclusion) consistent subsets of K U {IC} that contain
IC. Formally, MAXCONS(K, IC) isthe set of all M such that:

e M C KUJ{IC}, and
e ICC M,and
e ifMCM CKU{IC},thenM' = L.

Let MAXCONS(E, IC) = MAXCONS(UK[,GE K;,IC). When the maximality of the setsis
defined in terms of cardinality, we will use the subscript “card”, i.e., we will note the set
MAXCONScard(E, IC).

L et us define the following operators:

Definition 4. Let E be abelief profileand IC be abelief base:

AZ(E) = \/ MAXCONS(E, IC).
AG(E)=\/{M: M € MAXCONS(E, T) and M U {IC} consistent}.
AZ(E) = \/ MAXCONScard(E, IC).

AR(E)=\/{M U{IC}: M € MAXCONS(E, T) and M U {IC} consistent}
if this set is nonempty and IC otherwise.

The A€ operator takes as result of the combination the set of the maximal consistent
subsets of E U {IC} that contain the constraints IC. The A€3 operator computesfirst the set
of the maximal consistent subsets of E, and then selects those that are consistent with the
constraints. The A¢4 operator selects the set of consistent subsets of E U {IC} that contain
the constraints IC and that are maximal with respect to cardinality.

ACHE), AC(E) and AZHE) correspond respectively to Comt.(E, IC), ComiB(E,
IC) and ComBI(E, IC) as defined in [8] (there is no actual need to consider the Comi®
operator sinceit is equivalent to ComtL [8]). The AC® operator is a light modification of
AC3 in order to get more logical properties[9].

Oncethe union of the belief bases is performed, the problem isto extract some coherent
piece of information from it. Thus, such an approachis very close to Rescher and Manor’s
inference [20], Brewka's preferred subtheories [21], to the work by Benferhat et al. on
entailment from inconsistent databases [22—24], as well as to several approachesto belief
revision [10,25,26] and to reasoning with counterfactuals[27].
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A drawback of this approach is that the distribution of information is not taken into
account in the consistency restoration process. To deal with this drawback, it has been
proposed in [9] to select only the maxconsthat best fit amerging criterion. Those selection
functions are related to those used in the AGM belief revision framework for partial meet
revision function$28]. In both cases the selection functionsaim at selecting only some of
the maxcons (the “best” ones). The idea for belief merging is to use the selection function
to incorporate a“socia” evaluation of maxcons.

In [9] three particular criteria have been proposed and studied. The first one selects the
maxconsthat are consistent with as many belief bases as possible. The second onetakesthe
maxcons that have the smallest symmetrical difference (with respect to cardinality) with
the belief bases and the last one takes the maxcons that have the largest intersection (with
respect to cardinality) with the belief bases.

4. DA? merging
4.1. The general framework

Defining a merging operator in our framework simply consists in setting three
parameters. a distance d and two aggregation functions @ and ©. Let us first make it
precise what such notions mean in this paper:

Definition 5 (Distancey. A distance between interpretations® is a total function d from
W x W to N such that for every w1, wp € W

o d(w1, w2) =d(w2, w1), and
o d(w1,w2) =0if andonly if w1 = wy.

Any distance between interpretations d induces a distance between an interpretation » and
aformulag given by

d(w, ) = ar)p'i:r;d(w, ).

Definition 6 (Aggregation functions An aggregation function is a total function &
associating anonnegativeinteger to every finite tuple of nonnegativeintegersand verifying
(non-decreasingness), (minimality) and (identity).

o Ifx <y, then®(xa,...,x, ..., %) SOOI, ..., Yy.ntyXn). (non-decreasingness)
o ®d(x1,...,xp)=0ifandonlyif x1=---=x, =0. (minimality)
e For every nonnegativeinteger x, ®(x) = x. (identity)

We are now in position to define DA2 merging operators. Basically the distance
gives the closeness between an interpretation and each formula of a belief base. Then

1 We slightly abuse words here, since d is only a pseudo-distance (triangular inequality is not required).
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a first aggregation function & evaluates the plausibility (respectively desirability) of the
interpretation for an agent (belief base) K; from those closeness degrees when formulas
are interpreted as information items (respectively preference items). And finally the
second aggregation function © evaluates the plausibility (respectively desirability) of the
interpretation for the whole group (belief profile).

Definition 7 (DA? merging operators Let d be a distance between interpretations and @
and © be two aggregation functions. For every belief profile E = {K31, ..., K,} and every
integrity constraint IC, A% (E) is defined in a model-theoretical way by:

Mod(AR®©(E)) =min(IC, <4%©).

<4®9 isdefined as w <4 %© o' if and only if d(w, E) < d(«, E), where
d(w, E)=0(d(w, K1), ...,d(w, Ky)),

and for every K; = {@i 1, ..., ®in;},
d(wa Kl) = @(d(w7 (0[,1)7 ey d((l), @i,n,'))-

Defining two separate aggregation steps is not a theoretical fantasy that is only
motivated by astrugglefor generalization; rather, it formalizesthe different nature of belief
bases and belief profiles:

e A belief base is the set of elementary data reported by a given entity. The precise
meaning of this rather vague formulation (“entity”) depends on the context of the
merging problem:

— when merging severa pieces of belief stemming from different “sources’ (in
practice, a source may be a sensor, an expert, a database. . .), the formulas inside
abelief base K; are the pieces of information provided by sourge

— when evaluating alternatives with respect to different criteria, the formulasinside a
belief base K; arethe pieces of information péaining to criterioni;

— when aggregating individual preferences in a group decision making context, the
formulasinside a “belief base” K; are the elementary goals expressed by agent
In this case, the formulas ¢; ; are no longer beliefsbut preferencegwhich does
not prevent one from using the same merging operators). In this case, till calling
these formulas “beliefs’ is no longer appropriate, but, for the sake of simplicity,
we nevertheless use the terminology “belief”, rather than systematically writing
“beliefs or preferences’, which would be rather awkward.

o A belief profile E consists of the collection of all belief bases K; corresponding to the
different sources, criteria or agentsinvolved in the problem.

Now, since the relationship between a belief base and its elementary pieces of
information and the rel ationship between abelief profileand its belief bases are of different
nature, there is no reason for not using two (generaly distinct) aggregation functions &
and ©. In other words, both aggregation steps corresponds to different processes. The first
step is an intra-source(more generally, intra-entity) aggregation: & aggregates scoreswith
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respect to the elementary (explicit) pieces of information contained in each K; (it allows,
in particular, to take inconsistent belief bases into account). The second step is an inter-
source(more generally, inter-entity) aggregation: © aggregatesthe “ @-aggregated scores”
pertaining to the different sources. Such a two-step approach is used in a group decision
context by [29].

Interestingly, few conditions are imposed on d, &, and ©. As we will see in the next
section, many distances and aggregation functions can be used. Often, the aggregation
functions & and © are required to be symmetric (i.e., no priority is given to some explicit
beliefs in a belief base, and no priority is given to some belief base in a belief profile).
However, this condition is not mandatory here and thisisimportant when some preference
information are available, especially when al sources i are not equally reliable. For
instance, the weighted surneggregation function gives rise to (nonsymmetric) merging
operators.

Let us stress that, contrarily to usual model-based operators, our definition allows for
inconsistent belief bases to take (a nontrivial) part in the merging process.

Example 1. Assume that we want to merge E = {K1, K2, K3, K4} under the integrity
congtraints IC = T, where

e Ki1={a,b,c,a= —b},
o Kz=/{a,b},

o K3={—a,—b},

[}

Kq4={a,a = b}.

Inthisexample, K1 believesthat ¢ holds. Since this piece of informationis not involved
in any contradiction, it seems sensible to be confident in K1 about the truth of ¢. Model-
based merging operators cannot handle this situation: inconsistent belief bases cannot be
taken into account. Thus, provided that the Hamming distance dy between interpretations
is considered, the operator A% [2,3,5,13] gives a merged base whose models (over
{a,b,c}) are (a,b,—c) and (a, b, c); the operator A%H-CMaX[5 13] gives a merged base
whose modelsare: (—a, b, —¢), (—a, b, ¢), (a, =b, —c), and (a, —b, ¢). In any of these two
cases, nothing can be said about the truth of ¢ in the merged base, which is often counter-
intuitive since no argument against it can be found in the input data.

Syntax-based operators render possible the exploitation of inconsistent belief bases.
Thus, on the previous example, ¢ holds in the merged base, whatever the syntax-based
operator at work (among those considered in the paper). Obvioudly, this would not be
the case, would the inconsistent base K1 be replaced by an equivaent one, as {a, —a}.
However, syntax-based operators are not affected by how the formulas are distributed
among the belief bases. Consider the two standard syntax-based operators A€1 and A4,
selecting the maximal subsets of E with respect to set inclusion and to cardinality,
respectively. On the previous example, A€ returns a merged base equivalent to ¢ and
AY4 10 ¢ A —a. So, a isin the result for none of these two operators, whereas a holdsin
three of four input bases.

Our DAZ operators achieve a compromise between model-based operators and syntax-
based operators, by taking into account the way information is distributed and by taking
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advantage of the information stemming from inconsistent belief bases. For instance, our
operator A4p-SUMSUM (of Section 4.2) gives a merged base whose single model is (a, b, ¢),
and Adp-sumlex retyrns a merged base whose models are (—a, b, ¢) and (a, —b, ¢). So,
using any of these two operators, we can concludethat ¢ holds from the merged base.

DA?2 merging operators can be viewed as a generalization of model-based merging
operators, with an additional aggregation step. One can then ask why we restrict the
approach to two aggregation steps instead of characterizing DA merging operators and so
on... Actudly, it can be sensible to use those additional aggregation steps to characterize
the common belief of an organization structured in a hierarchical way. For example, if an
organization is composed of several departments, which are divided in services, that group
several teams, etc., we can figure out an aggregation step for the team level, a second one
for the service level, etc. At each step it is possible to use a different aggregation scheme.
A detailed study of such operators is left to further research. In the light of our results,
we can neverthel ess make some important remarks concerning DA” operators. On the one
hand, the first aggregation step has a specific role sinceit allowsto take inconsistent belief
bases into account in the merging process. This underlies a main difference between DA”
operators (with n > 2) and DA operators, the usual model-based merging operators. The
latter are not suited to use inconsistent belief bases in a valuable way. The differences
induced by the second and the third aggregation steps are in some sense less significant.
On the other hand, it is easy to show that all our complexity results pertaining to DA?
operators can be extended to DA" operators (the complexity does not change provided
that the number of aggregation steps is bounded a priori). Finally, as atool for modelizing
corporation merging, we think that DA" operators are not fully adequate. Indeed, they
would suppose that the number of hierarchical divisionsis the same in al the branches,
and that all the groups at a given level use the same aggregation method; this is a strong,
unrealistic assumption.

4.2. Instantiating our framework

Let us now instantiate our framework and focus on some simple families of distances
and aggregation functions.

Definition 8 (Some distancgsLet w1, w2 € VW be two interpretations.

e Thedrastic distancelp is defined by

0 if w1 =uwy,
1 otherwise.
e TheHamming distancéy isdefined by
dp (w1, wp) = |{x € PS| 01(x) # w2(x)}.
e Letq beatota function from PSto N*. The weighted Hamming distaneg;, induced
by ¢ isdefined by

dy, (01, 02) = > q(x).

{xePS| w1(x)#wa(x)}

dp(w1, w2) = {
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These distances satisfy the requirements imposed in Definition 7. The Hamming
distance is the distance most commonly considered in model-based merging. It is very
simple to express, but it is very sensitive to the representation language of the problem
(i.e., the choice of propositional symbols). Interestingly, many other distances can be used.
For instance, weighted Hamming distances are rel evant when some propositional symbols
are known as more important than others.?

As to aggregation functions, many choices are possible. We just give here two well-
known classes of such functions.

Definition 9 (Weighted sumsLet ¢ be atotal function from {1, ..., n} to N* such that
g (1) = 1 whenever n = 1. Theweighted sum WS nduced by ¢ is defined by

WS (e, ....en) =Y qli)ei.
i=1

g isa weight functionthat givesto each formula(respectively belief base) ¢; (respectively
K;) of index i its weight ¢ (i) denoting the formula (respectively belief base) reliability.
The requirement ¢ (1) = 1 whenever n = 1 ensures that when we merge a singleton, the
aggregation function has no impact.

Definition 10 (Ordered weighed sumd_et ¢ be atotal functionfrom {1, ..., n} to N such
that ¢ (1) = 1 whenever n = 1, and ¢ (1) # O in any case. The ordered weighted sum OWS
induced by ¢ is defined by

n
OWS (1. ....en) = Y q(Dea)
i=1
where o isapermutation of {1,...,n} suchthat e5(1) > ec2) = -+ = es(n)-

The requirement ¢ (1) # 0 is needed to meet the minimality condition (Definition 6).
When using ¢ with OWS, ¢ (i) reflects the importance given to the ith largest value.
With the dlight difference that ¢ is normalized (but without requiring that ¢(1) = 1
whenever n = 1), the latter family is well known in multi-criteria decision making under
the terminology “ Ordered Weighted Averages’ (OWASs) [30].

Wheng (i) = 1foreveryi e 1,...,n, WS, and OWS aretheusua sumWheng (1) =1
and g(2) =--- =¢q(n) =0, we have OWS (ey, ..., e,) = MaX(ey, ..., e,). Lastly, let M
be a upper bound of the scores, i.e., for any possible (es, ..., e,) we have ¢; < M, and
let ¢(i) = M"~ for al i. Then the rank order on vectors of scores induced by OWS§ is
exactly the leximax(abbreviated by lex) ordering <iex. Namely, we have (eq, .. ., €;) <lex
(e}, ..., e,) ifandonlyif thereexistsk in1, ..., n suchthatforall i <k, e;)=e,;, and
o) < eé,(k) if and only if OWS (e1, ..., e,) < OWS(e],...,¢€)).

(i)

2 Consider this example where information items about a murder coming from different witnesses; let a stand
for “the murderer isamale” and b stand for “the murderer had an umbrella’. Attaching alarger weight to a than
to b means that the interpretation (a, b) is closer to (a, —b) than to (—a, b), reflecting that a mistake about b is
more plausible than a mistake about a.
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All these functions satisfy the requirements imposed in Definition 7; al of them are
symmetric but weighted survhen ¢ is not uniform.3

Many other possible choicesfor & and ® can be found in the literature of multi-criteria
decision making [31]. Noticeable examples of such aggregation functions are the Choquet
integral, which generalizes both the weighted sum and the ordered weighted sum, and
its ordinal counterpart, the Sugeno integra[32]. These aggregation functions are still
polynomially computable, which makes the following complexity results applicable when
instantiating @ and ® with such functions.

Note that functions such as the purely utilitarian sum or weighted sumallow for
compensation between scores (and lead to mgjority-like operators), while the egalitarian
functions maxand lex do not.

By letting the parametersd, & and © vary, several merging operatorsare obtained; some
of them were already known and are thus encoded as specific cases in our framework,
while others are new operators. For example, A9>-MaXMax i the basic merging operator
[5], giving A\ E A IC if consistent and IC otherwise. A9P-MaXSUM g the drastic merging
operator which amountsto select the models of IC satisfying the greatest number of belief
bases from E. It is equivalent to the drastic magjority operator as defined in [9] when
working with deductively closed belief bases. A9P-SUMSUM corresponds to the intersection
operator of [9]. A4p-WS-MaX corresponds to an operator used in [29] in a group decision
context. When singleton belief bases are considered” (in this case & is irrelevant) every
A& M operator is a AM3 operator [2,13], every A4-®-SUM gperator is a A* operator
[2,3,5], and every A4-®:1eX gperator is a ACMaX gperator [5,13]. Still with singleton belief
bases, A90-©-WS s a penalty-based merging operator (where one minimizesthe sum of the
penalties ¢ (i) attached to the K;'s) [33], and taking d = dp and & = WMAX, (defined by
WMAX, (x1, ..., X;) = MaX;—1,..., Min(g (i), x;)) we get a possibilistic merging operator
[6] (the scales used for scores are different but it is easy to show that this difference
has no impact, i.e., the induced orderings over interpretations coincide). Finally, the
operators A:SUMO - with © € {sum WS, max lex} have been proposed in [34] as a
compromise between model-based and syntax-based approaches and a way to take into
account inconsistent belief bases in the merging process.

We will now illustrate the behaviour of these different operators on an example.

Example 2. Consider the following belief profile E = {K1, K2, K3, K4} that we want to
merge under the integrity constraintsIC = T.

o Ki={aAbAc,a= —b},
e Ky ={a A b},

o K3={—a A —b,—b},

o Ka={a,a= b}.

3 gisuniformwhenVi, j € 1,....n,qG) =q(j).
4 Or when each K; isreplaced by {/\ K;} before merging.
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Aiié).max max(E) - T
Aflg,maxsum(E)’ Aldé),maxlex(E)’ Aflgﬁmaxsum(E) _ anb.
Aldg.summax(E) - .
Aflé)’sumsum(m = (man—-b)V(@AbAc).
A E) = —an-b.
Aldé.],summax(E)’ Aldé.l,sumlex(E) — AA—bAC
Aldg.maxmax(ELAfg.maxlex(E) . (maAbAOV(@A—bAC).
ATICI:.IA,s,umsum = anc

Fig. 1. Result of merging for the operators of Example 2.

Table 1
AdH .sumlex Operator
aNbAnc a=-b aAb —-an-b —-b a a=b Ky Ko K3 K4 E

(0,0,00 3 0 2 0 0 1 0 3 2 0 1 3210
0,0,1) 2 0 2 0 0 1 0 2 2 0 1 2210
0,,00 2 0 1 1 1 1 0 2 1 2 1 2211
0,11 1 0 1 1 1 1 0 1 1 2 1 2111
(,0,00 2 0 1 1 0 0 1 2 1 1 1 2111
(,0,1) 1 0 1 1 0 0 1 1 1 1 1 1111
1,100 1 1 0 2 1 0 O 2 0 3 0 3200
1,11 O 1 0 2 1 0 O 1 0 3 0 3100

The result of merging E according to the different operators with d € {dp, dn},
@ € {max sun} and © € {max sum lex} under no constraints (i.e., IC = T) is given on
Fig. 1.

Table 1 gives an example of computation with the A?#>SUMIEX gperator. In the leftmost
column of thistable, every interpretation (x, y, z) withx, y, z € {0, 1} istheone mapping a
tox, b toy and c to z. Each cell except those of the extreme columns gives the (Hamming)
distance between the interpretation indexing its row and the formula or the belief base
indexing its column. Each cell of the rightmost column contains the vector (ordered in a
decreasing way) of distancesfrom the interpretation w indexing the corresponding row and
each belief base K; (i =1,...,4). As explained before, each such vector can be encoded
as an integer using an OWS function, and such a score can be interpreted as the distance
between w and E. Themain point isthat the natural ordering over such scoresrepresenting
vectors coincides with the leximax one over the corresponding vectors.

For the example, the result of merging process with d = dy, ® = sum © = lex is
A‘-’lr”’s“m'ex =a A—-bAcsince I =(1,0,1) is the unique interpretation leading to the
minimal vector 1111 (corresponding to a minimal distanceto E).

The wide variety of the results we obtained shows the degree of flexibility achieved by
our framework. The example illustrates several aspects of merging operators: the belief
base K1 is not consistent, but it is the only base that gives an information about ¢, so
it can be sensible to take ¢ as true in the result of merging. DA? operators can encode
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merging operators that are syntax-dependent: for example, K3 is logically equivalent to
—a A —b, but replacing K3 by this formulawould lead to different results of the merging
operation. Syntax is relevant for DA? merging operators since one has to consider that
different formulas of a same base are distinct reasons to believe in the same information.
Taking syntax into account is important from the point of view of representation of beliefs
(or goals). In our framework, unlike with the classical model-based merging operators, the
symbol “,” can be taken to be a connectivethat is interpreted differently from “ A”.

We do not consider the case @ = lex, since this choiceinduces some specific difficulties
as to the second aggregation step. The first one is definitional: what does it mean to
aggregate vectors (instead of atomic values) using an OWS function, especially when
the vectors have different sizes? Several conflicting intuitions may exist. But would the
induced operators exhibit the expected behavioural properties of merging? One may argue
that, as shown above, it is possible to find out an OWS function the total pre-order
induced by it coincides with leximax; however, this leads to another problem, namely,
a representational problem: how to encode in a faithful way an aggregation function over
vectors using some aggregation function over (atomic) values, so that the induced pre-
orders coincide? A solution to both problems may come from a systematic study of more
general aggregation functions than those used in this paper. Thisideais of interest, but has
not been considered here. It can be considered as an open question of this paper (however
see[35] for arelated issue).

5. Computational complexity

L et us now turn to the complexity issue. First of all, we can get ageneral hardnessresult
that holds for anymerging operator satisfying (1C1) and (1C2); this result, extremely close
to asimilar BH,-hardness result for belief revision in [36], gives us a general lower bound
of the complexity of inference from merging.

Proposition 1. For any merging operatorA satisfying propertiegIC1) and (1C2), the
complexity of inference from a merged basBlig-hard.

Proof. Let (¢, ) be apair of propositional formulas; without loss of generality, assume
that ¢ and ¥ do not share any propositional symbols. Then with (¢, ¥} we associate the
following instance of INFERENCE-FROM-MERGING: IC =T, E = {{p V x}, {¢p V —x}},
where x is a new symbol (appearing neither in ¢ nor in ¥), and « = ¢ A =. Then we
have A(E) =« if and only if ¢ is satisfiable and v is unsatisfiable, that is, if and only if
(o, V) isapositiveinstance of SAT-UNSAT. Indeed: consider first the case ¢ is satisfiable;
in this case, (IC2) impliesthat A(E) = (p Vx) A (p V —x) =¢; Now, A(E) E o A =Y
if and only if ¢ = ¢ A =, which, since ¢ and v do not share any symbol, holdsif and
only if ¢ is unsatisfiable. Consider now the case ¢ is unsatisfiable. Then o = ¢ A = IS
unsatisfiable, and property (1C1) tellsthat it cannot be the casethat A(E) = «. Therefore,
wehave A(E) =« if and only if (¢, ) isapositive instance of SAT-UNSAT. O



64 S. Konieczny et al. / Artificial Intelligence 157 (2004) 49-79

Now, asto finding an upper bound, we obtain afairly general membership result which
states that provided that d, @ and ® can be computed in polynomial time, determining
whether a given formulais entailed by the merging of abelief profileisin AL; in addition
to this, if d, ® and © are bounded by polynomial functions, then the above problem falls
in ®5. Let us now state this more formally:

Proposition 2. Let A%-®-© be a DA merging operator. Given a belief profile and two
formulas IC andx:

(1) If d, & and © are computable in polynomial time, then determining whether
AREO(E) =« holds is inAj.

(2) If d, ® and ©® are computable in polynomial time and are polynomially bourtied,
then determining whethex® ©(E) = « holds is in®5.

Proof. These results are consequences of the two following lemmata:

Lemma 1. Letk be an integerif d, & and® are computable in polynomial time, then the
problem of determining whethetin,ic d(w, E) < k given IC,E andk is in NP.

Proof. Itis sufficient to consider the following nondeterministic algorithm:

(i) guessaninterpretation w and N interpretationsw; ; (i=1,...,n, j=1,...,n;) over
Var(E U{IC}),where N =}, _, ,n; isthetotal number of formulas¢; ; in E;
(i) checkthat w =IC andthat w; j l=¢; j foralli=1,...,nanddl j=1,...,n;;
(iif) computed(w,w; ;) forali=1,...,nandadl j=1,...,n;;
(iv) computed(w, K;) fordli=1,...,n;
(v) computed(w, E) and check that d(w, E) < k.

This agorithm runs in polynomial time in the size of the input (E, IC, and k represented
in binary notation) sinced, &, ® are computablein polynomial time. O

Lemma 2. If for any w € W the value ofd(w, E) is bounded by the value(|E| + [IC|)
(whereh is a function with values ilN), thenmin,ic d(w, E) can be computed using
[log, h(|E| + |IC|)] calls to anNP oracle.

Proof. min= min,gic d(w, E) can be computed using binary search on {0, ..., h(|E| +
[IC])} with at each step acall to an NP oracle to check whether min,—ic d(w, E) < k (that
isin NP from Lemma 1.) Since a binary search on {0, ..., 2(|E| + |IC|)} needs at most
[log, A(|E| + |IC|)] steps, theresult follows. O

5 A function f:N" — Nispolynomially bounded if and only if it is bounded by a polynomial function; more
formaly, when f is a function with a variable number of arguments, such as our aggregation functions, f is
polynomially bounded if and only if there exists a collection of polynomia functions {pol; | i > 1} such that
f(x1,..., xn) < polp(xq, ..., xp) for every n and for all xq, ..., Xn.
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Point (1) of Proposition2. If d, & and ® are computable in polynomial time, then for
every belief profile E and every o € W, the binary representation of d(w, E) is bounded
by p(lE| + |IC]), where p is a polynomial. Hence, the value of d(w, E) is bounded
by 2PUEHICD  From Lemma 2, we can conclude that min = min,c d(w, E) can be
computed using a polynomia number of calls to an NP oracle. Now, let E be a belief
profile, IC be aformula, k be an integer and o be a formula, the problem of determining
whether there exists amodel w of IC such that d(w, E) = k and such that o = o isin NP
(note the similarity between this proof and the one of Lemma 1):

(i) guessaninterpretationw and N interpretationsw; ; (i =1,...,n, j=1,...,n;) over
Var(E U{IC, a}), where N =}, n; isthetotal number of formulasg; ; in E;
(ii) checkthat w =ICA—a andthat w; j =@ jfordli=1,...,nandal j=1,...,n;;
(iif) computed(w, w; ;) forali=1,...,nandadl j=1,...,n;;
(iv) computed(w, K;) fordli=1,...,n;
(v) computed(w, E) and check that d(w, E) = k.

So we can show that Af2®©(E) = o using first a polynomial number of calls to an
NP oracle in order to compute min, and then using an additional call to an NP oracle in
order to determine whether there exists a model o of IC such that d(w, E) = min and
B o. Hence the membership to A5 for this problem. The fact that AJ is closed for the
complement concludes the proof.

Point (2) of Proposition2. When d, & and © are polynomially bounded, the proof
is similar to the one of point 1, but the computation of minyic d(w, E) needs only a
logarithmic number of steps since 4 is polynomially bounded, hence the membership to
®. O

As shown by the previous proposition, improving the generality of the model-based
merging operators framework through an additional aggregation step does not result in a
complexity shift: the decision problem for query entailment is still at thefirst level of PH.

Importantly, our results rely on the assumption that distances and aggregation functions
can be computed in polynomial time. First, it should be remarked that all Ag membership
results would still hold provided that distances and aggregation functions are in FAL.
Second, let us discuss the reasonableness of this assumption. On the one hand, all *usual”
distance and aggregation functions used in the Knowledge Representation and in the
Multicriteria Decision Making communities are consistent with it. On the other hand, there
do exist interesting nonpolynomially-computable distances (and maybe also aggregation
functions, although thisis less clear).®

6 Hereisan example. Consider a set of deterministic events (or actions) E, where the dynamics of each event
isdescribed by asTRIPslist, and let us define the distance dg by dg (w, ©’) = min(L g (v, '), Lg (o', w)) where
Lg(w, o) isthe length of the shortest event sequence (or the shortest plan, if E isaset of actions) leading from
o to o', Then, using well-known results about the complexity of propositiona STRIPS planning [37] imply that
unless P = PSPACE, dg isnot polynomially computable.
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We have aso identified the complexity of query entailment from a merged base for
the following DA? merging operators. Due to some similarity in the proofs of the three
following propositions, their proofs are written in one block. For these three propositions,
when X isacomplexity class, X-c means X-complete.

Proposition 3 (Complexity resultsfor d = dp). Given a belief profileE and two formulas

IC anda from PRORs, the complexity oh#2®©(E) =7 « is reported in the following
table.

®/0 | max |sum |lex | WS | OWS§
14 14 14 14
max ®5-C | ©5-C | Ay-Cc | O5-C
14 p 14 p
sum | ©5-c | ©5c | AS-c | Af-c | Ab-c
ws, | Alc | Alc| Alc| Alc| AJc
ows | ©5-c | Alc| Afc| Af-c | Ab-c

Proposition 4 (Complexity resultsfor d = d). Given a belief profileE' and two formulas

IC and« from PRORs, the complexity oh\&"® © (E) |=? « is reported in the following
table.

®/O | max | sum | lex WS | OWS§
max | ©®5-c| ©5-c| AS-c | Ab-c | Ab-c
sum | ©%-c| ©5-c| Alc| Alc| Al
ws, | Al-c| Af-c| ASc| Al-c| A<
OWS | AS-c | Ab-c | ASc | Ab-c| A<

Proposition 5 (Complexity resultsfor d = dp, ). Given a belief profiléz and two formulas

IC anda from PRORsg, the complexity oﬁflg"’ea’@(E) =7« is reported in the following
table.

®/0 | max | sum | lex | WS | OWS§
max | Ab-c | Al-c| Af-c| Af-c | Al-c
sum | Ab-c| Al-c| Alc| Al-c| A<
ws, | Ab-c| Af-c| ASc | Ab-c | Al
ows | Af-c | Alc| Alc| Af-c| Al

Pr oof.

o Membership All the membership results (for Propositions 3, 4 and 5) are direct
consequences of Proposition 2, except to what concerns the basic merging operator
(d =dp, ® = © = max and the membershi p-to-®§ results reported in Proposition 3
in the situation one of the two aggregation functions is an OWS function while the
other oneis max Indeed, in all the remaining cases, all the distances and aggregation
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functions considered in the three tables can be computed in polynomia time. In
addition, the distances dp and dy and the aggregation functions sumand maxare
polynomially bounded. As a consequence, we obtain immediately the membership
to ®5 of the inference problem with A%®© with d € {dp,du}, ® € {summax,
O € {summax.

Now, focusing on the situation d = dp, let us consider the case & is max and
© is an OWS function. For every interpretation o € W, let us note kg(w) the
number of belief bases K; (i € 1,...,n) from E such that w = K; holds. Then
we have d(w, E) = f‘;{‘“‘*’) gi. Forany j €0,...,n, it is easy to determine in
nondeterministic polynomial time whether there exists a model w of IC such that
d(w, E) <Y '_] gi. Now, since d(w, E) can only take at most n + 1 different values,
its minimal value min over Mod(IC) can be computed through binary search using at
most [log, n] callsto an NP oracle which implements the nondeterministic algorithm
above (starting with j = 0). Once min has been computed, afinal call to an NP oracle
can be used to determine whether there existsamodel w of IC suchthat d(w, E) = min
and w [~ «. The fact that ®§ is closed for the complement concludes the proof. The
case @ is an OWS function and © is maxcan be handled in a similar way. The main
differenceisthat d(w, E) canonly take at most max=1, . ,card(K;) different values.
Finally, asto the basic merging operator, determining whether aformula« is alogical
consequence of the merged base E given IC can be achieved using the following
algorithm:

i f sat(EU{IC})
t hen return(unsatE U {IC, —a}))
el se return(unsat{IC, —a})).

Since only one satisfiability test (saf) and one unsatisfiability test (unsa) are required,

the decision problemisin BHa.

Hardness

— Proposition3: The G)g7 -hardness results are direct consequences of hardness results
for cardinaity-maximizing base revision o¢ (Theorem 5.14 from [36]) since we
have

ARSI on)}) = AR (g, L on)])
= AU (o) gnl))

= AR XL}, fend))
={p1,....¢n} ocIC.

Indeed, whenever a single aggregation step is done and the drastic distance dp
is considered, lex gives the same ordering as sum Since lex is a specific OWS,
function, the corresponding ®§ -hardnessresults still hold in the case @ isan OWS,
function and © = max aswell asin the case @ = maxand © isan OWS function.
As o the case where & isan OWS function and ® = sum the A% -hardness resuilt
can be established by considering the following polynomial reduction from the
Ag -complete problem MAX-SAT-ASGodd [16]. MAX-SAT-ASGoqq IS the following
decision problem:
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Input: X', apropositional formulasuch that Var(X) = {x1, ..., x,}.

Question: Is the greatest model w of X (over Var(X)) with respect to the
lexicographic ordering < induced by x1 < x2 < - -+ < x,, such that w(x,) = 1?
To every formula X' such that Var(X') = {x1, ..., x,}, we associate in polynomial
timethetuple M(X) = (E,IC,a),where E ={K; |i€l,...,n},IC=X, a =x,
andforeachiel,...,n, K; = {/\Z:f_jx,» |jel,...,n+2—1i}. Accordingly,
each K; containsn + 2 — i formulasthat are syntactically distinct but all equivalent
to x;. We consider now the OWS function @ induced by ¢ such that ¢ (1) = 1 and
for every j > 1, ¢(j) = 2:—2. By construction, forany w e W andany i €1, ..., n,
wehavedp(w, Ki) =0if w = x; and dp(w, K;) = 2"~+1if o [~ x;. Accordingly,
dp(@, E) =Y1_1dp(@, Ki) =Y i1 pjoper; 2T We immediately get that
isamodel of IC that minimizes dp (w, E) if and only if w isthe (unique) greatest

model of X w.r.t. 5, which leads easily to the result.

The Ag-hardne& result in the case & = sumand © = lex can be easily derived
by taking advantage of the Ag—hardn&ss result in the case each K; is a singleton
reduced to a conjunction of atoms (hence @ isirrelevant), ® islex and the Hamming
distance dy is considered (the proof is given in the following.) Indeed, to each
K; = /\;'.i:lx,»,j,wecan associatethesetof formulas K; = {x; ;| j€1,...,n;} and
for every interpretation w € W, we have dy (o, K;) = Z’;ledg(w, xi,j). Roughly,
the Hamming distance is encoded here through a first aggregation step (using
@ = sun) based on the drastic distance. Since sumis a specific WS, function and
lex is a specific OWS, function, this hardness result can be extended to the rest of
the table, except for the case (@ isa WS, function and ©® = maxor © = sum) and
for the case © isa WS, function.

As to these cases, the AJ-hardness of linear base revision o, (Theorem 5.9 from
[36]) can be used to obtain the desired result. Indeed, it is sufficient to consider
belief bases K; reduced to singletons (hence the first aggregation step using @ is
irrelevant) or similarly a belief profile E consisting of a singleton (so that © is
irelevant) since we have AI2"®C({Ky, ..., K,}) = (K1, ..., K4} or, IC, where ©
is the weighted sum induced by ¢ such that ¢ (i) = 2", and each K; is viewed as
the unique formula it contains. Here, the preference ordering over (K1, ..., K,} is
suchthat K1 < Kp <--- < K,,.

Finaly, as to the basic merging operator, the BH»-hardness result is a direct
consequence of Propositions 1 and 6.

Proposition4: The ®-hardness results still hold in the situation E contains only
one belief base K, and K itself contains only one formula that is a conjunction
of atoms. This merely shows that our hardness result is independent from the
aggregation functions @ and @ under consideration (since they are irrelevant
whenever E and K are singletons) but is a consequence of the distance that is used
(Hamming). Indeed, in this restricted case, AjZ®©({K}) is equivalent to K op IC
where op isDalal’srevision operator [19]. The fact that the inference problem from
KoplCis G)g7 -hard (even in the restricted case where K is a conjunction of atoms)
concludes the proof (see Theorem 6.9 from [15]).
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We now show that the Ag—hardness results hold in the restricted case each K; isa
singleton, reduced to a conjunction of literals (which meansthat the -aggregation
step is irrelevant), whenever © = lex. Since lex can be viewed as a specific OWS,,
the hardness result holds for OWS functions as well. We consider the following
polynomial reduction M from MAX-SAT-ASGgqq t0 the inference problem from a
merged base. Let X' be a propositional formula such that Var(X) = {x1, ..., x,}.

Let
2n—i+1
M(Z‘):<E={Ki={xi/\ /\ nevw}‘iel,...,n},

j=i+l

2n
IC=XA /\—-neV\g, a:xn>
j=2

where each new; (j € 2, ..., 2n) isanew variable (not occurring in X7). Now, for
every model w of IC andforeveryi e l,...,n— 1, we have

2n—i+1
dy (w, K; = {xi AN /\ nevw})

j=i+1

2n—i+2
>dy (a) Kiy1= {xi+1 A /\ new; })

j=i+2

Thisshowsthat thevectorng obtained by sortingtheset {dy (w, K;) |i € 1,...,n}
in decreasing lexicographic order are aways sorted in the same way (independently
of w): thefirst elementisdy (w, K1), thesecond oneisdy (w, K2), etc. Furthermore,
whenever amodel w1 of IC is strictly smaller than a model w, of IC with respect
to the lexicographic ordering < induced by x; < x2 < --- < x,,, then Lf)1 is
strictly greater than ng (with respect to the lexicographic ordering over vectors
of integers). Since the models of IC are totally ordered with respect to <, exactly
one model of IC is minimal with respect to the preference ordering induced by E:
thisisthe model of IC that is maximal with respect to <. Accordingly, x, istruein
thismode! if and only if Aflg @1 E) = & holds, This concludes the proof.
Finally, we show that the remaining Ag -hardness results hold in the case one of the
aggregation function isa WS, function, i.e., whenever each K; is a singleton (even
reduced to an atom) or E isasingleton. In the first case, this merely shows that our
hardness result is independent from the aggregation function & under consideration
but holdsin the case © isa WS, function and d = dp isthe Hamming distance. L et
us consider the following polynomial reduction M from MAX-SAT-ASGeqq to the
inference problem from a merged base. Let X' be a propositional formula such that
Var(X) ={x1,...,x,}. Let

M) =(E={Ki={xj}liel,....n}, IC=X, a=x,)

and the aggregation function © is the weighted sum operator induced by ¢ (i) =
2"~ Accordingly, for any interpretation w € W, we have d(w, E) = Y 1 q(i) x
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dg(w, K;). By congtruction, for any interpretations w1, w2 € W, we have dg (w1,
E) <dg(wz, E) if and only if w2 < w1 where < is the lexicographic ordering
induced by x1 < x2 < - - - < x,,. Accordingly, the greatest model w of X' with respect

to < isthe unique model of A%"®©(E). As a consequence, the greatest model w

of ¥ with respect to < issuch that w(x,) = 1if and only if AlZ"®©(E) = . This
concludes the proof.

— Proposition5: We show that A%-hardness holds in the very restricted case E
contains only one belief base K, and K itself contains only one formulathat is a
conjunction of atoms. This merely shows that our hardness result is independent
from the aggregation functions & and © under consideration (since they are
irrelevant whenever £ and K are singletons) but is a consequence of the family
of distances that is used (weighted Hamming). Let us consider the following
polynomial reduction M from MAX-SAT-ASGgqq t0 the inference problem from a
merged base. Let X' be a propositional formula such that Var(X) = {x1, ..., x,}.

M<E>Z<E=Hi_/"\lx,,]}, c==. =>

and the weighted Hamming distance dp, induced by ¢ such that Vi € 1,...,n,
g(x;) = 2"7". By construction, for any interpretations w1, w, € W, we have
du, (w1, Ni—1 %) < dp, (w2, \j—gxi) if and only if w2 < w1 where < is the
lexicographic ordering induced by x1 < x2 < --- < x,. Accordingly, the greatest

. . . dpy . ®.
model « of X with respect to < is the unique model of A,gq EBG(E). As a

consequence, the greatest model w of X with respect to < issuchthat w(x,) = 1 if

and only if Aflgq’@’@(E) E «. Thisconcludesthe proof. O

Looking at the tables above, we can observe that the choice of the distance d hasa great
influence on the complexity results. Thus, whenever d = dy or d = dp,, the complexity
results for inference from a merged base coincide whenever @ (or ©) isaW$; function or
an OWS function. Thisis no longer the case when d = dp is considered.

Together with Proposition 2, the complexity of many model-based merging operators
aready pointed out in the literature are derived as a by-product of the previous complexity
results. To the best of our knowledge, the complexity of such operators has not been
identified up to now,” hencethisis an additional contribution of thiswork. We can also note
that, while the complexity of our DAZ operatorsisnot very high (first level of PH, at most),
finding out significant tractable restrictions seems a hard task since intractability is still
the case in many restricted situations (see the proofs). Finally, our results show that some
syntax-based merging operators (the ones based on set inclusion instead of cardinality
and “located” at the second level of PH) cannot be encoded in polynomial time as DA?
operators (unless PH collapses).

?
7 However, (Afc”’sumsum(E) =) € A} can berecovered from acomplexity results given in [38, p. 151].
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6. Logical properties

Let first see what are the logical properties of DA2 merging operators in the general
case.

Proposition 6. Let d be any distance, and lef and g be two aggregation functions.
A%®.0 gatisfies(ICO), (IC1), (IC2), (IC7), (IC8). The other postulates are not satisfied
in the general case.

Pr oof.

(1C0) By definition Mod(Ac(E)) € Mod(IC).

(IC1) @ and © are functions with values in N, so if Mod(IC) # @, there is always
a minimal model w of IC such that for every model o’ of ICd(w, E) < d(«', E). SO
wE Aic(E) and Ac(E) = L.

(1C2) By assumption, /\ E isconsistent, i.e., there exists w suchthat w = (p11 A -+ A
©1) Ao A(@nL A -+ A @pp,). By definition of the distance, d(w, ¢) =0 if o = ¢,
so by (minimality) of & we get ®&(d(w, ¢i1), ..., d(®, ¢in;)) = d(w, K;) = 0 if and only
if o= @iz A A @iy, By (minimality) of © we havethat ©(d(w, K1), ..., d(w, K,)) =
d(w, E) =0ifandonlyifw = K1A---AK,. S0Ow = Ac(E) ifandonly if w = A\ E AIC.

(IC7) Suppose w = Aic, (E) A IC2. For any o’ =1C1, we have d(w, E) < d(o', E).
Hencew' =1C1 A IC2, d(w, E) < d(o, E). Subsequently w = Ajcyalc, (E).

(1C8) Suppose that Aic,(E) A ICz is consistent. Then there exists a model o of
Aic,(E) A 1C,. Consider a model o of Ajc,aic,(E) and suppose that o (= Aic, (E).
We have d(«', E) < d(w, E), and since o’ |=1C1 A IC, we have w ¢ min(Mod(IC1 A
IC2), <4®©), hence w i Aicyaic, (E). Contradiction. O

Clearly enough, it is not the case that every DA? merging operator is an IC merging
operator (not satisfying some postulates is motivated by the need to give some importance
to the syntax in order to take inconsistent belief bases into account).

Concerning the operators examined in the previous section, we have identified the
following properties:

Proposition 7. A%®.© satisfies the logical properties stated in TabRsnd 3. Since

all these operators are already known to satiffg0), (IC1), (IC2), (IC7) and (IC8) (cf.
Proposition6), we refrain from repeating such postulates here. For the sake of readability,
postulate(ICi) is noted: andM (respectivelyA) stands for(Maj) (respectivelyArb)).

Table 2

Logical properties (d =dp)
/0 max sum lex WS, owsg
max 34,5A 34,56M,A 56,M 34
sum 5A 5,6,M 5,6,A 5,6,M
W§, — OWS, 5A 5,6,M 5,6,A 5,6,M
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Table 3
Logical properties (d =dy ord = qu)
/0 max sum lex W§ owsg
max 5A 5,6,M 5,6,A 5,6,M
sum 5A 5,6,M 5,6,A 56,M
W§, — OWS, 5A 5,6,M 5,6,A 5,6,M

Proof.

(1C3) Most operators of the table do not satisfy (1C3). For the operatorswith @ = WS,
thisis because (IC3) refers to the equivalence of belief profiles, and the definition of this
equivalence does not take weights into account. A counter-example for operators with
d=dp is K1 ={a,b}, Kz ={a AD}, K3 ={=b} giving AT({K1, K2}) # A7T({K1, K3}).
A counter-example for operatorswith d = dy is K1 = {a, b}, K2 = {a, b, b}, K3 = {—b}.
Nevertheless (IC3) holds for d = dp, & = max and © € {max sumlex, OWS}. It is
because each d(w, E) isavector of 0 and 1 (0 is set whenever w = K; and 1 otherwise).
Itisnot the casefor d = dp, @ = max © = WS, sincein this case theresult is sensible to
permutations (because of the weights).

(IC4) For most operators of the table, (IC4) is not satisfied, since those operators
are sensible to the syntax of the base (in particular to the number of formulas). Let us
take as counter-example K1 = {a,b,a A b} and K = {—a}. Nevertheless (IC4) holds
for d =dp, ® = max © € {max sumlex, OWS}. Since if K1 A Ko = L, (IC4) holds
trividly by (IC2), and if K1 A K2 = L, then if w = K1, then d(w, {K1, K2}) = ©(0, 1)
and if w = Kp, then d(w, {K1, K2}) = ©(1, 0). It is then sufficient to remark that every
© € {max sum lex, OWS } isasymmetrical operator, so ©(0, 1) = ©(1, 0).

(IC5) To show that the operators satisfy (IC5), it is enough to show that the following
property holds: if d(w, E1) < d(o', E1) and d(w, E2) < d(o/, E2), then d(w, E1 U
E2) < d(o', E1 U E2). This property depends only on © and it is satisfied for © €
{max sum lex, WS, }.

(1C6) To show that the operators satisfy (1C6), it is enough to show that the following
property holds: if d(w, E1) < d(«', E1) and d(w, E2) < d(o', E2), thend(w, E1 U E2) <
d(w', E1UE>). Thisproperty dependsonly on © anditissatisfied for © € {sum lex, WS, }.

(Maj) Showing that all operators with © € {sum WS} satisfy (Ma)) is easy from the
properties of sum. It is aso easy to show that operators with © € {max lex} do not satisfy
(Madj) since one can find a counter-example where the repetition of one base does not
change the result.8 Consider the following counter-examples: (E1 = {K1} = {{a, b}} and
Ez={K2} ={{—a,—b}}), or (E1 = {K1} = {{a A b}} and E2 = {K2} = {{—a A =b}).

(Arb) It is easy to show that (Arb) holds for all operators with ® = maxsince the
stronger following property holds: if Aic, (K1) = Aic,(K2), then Aic,vic,({K1, K2}) =
Aic, (K1).

To show that (Arb) holds for ©® = lex operators, assume that Aic, (K1) = Aic,(K2),
that is there exists a model @ of IC; A IC2 such that for every model o’ of ICq,

8 Except for d = dp, & = max © = lex, since in this case the lex operator induces the same ordering as the
oneinduced by sum
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d(w, K1) <d(e', K1) and for every model ” of IC2, d(w, K2) < d(o”, K2). W.l.0.g. let
us suppose that d(w, K1) < d(w, K2). To show that Aic,vic,({K1, K2}) = Aic, (K1), we
show that if o’ =1C1 v ICo and o’ (£ Aic, (K1), then o' Aicyvic, ({K1, K2}). Consider
the following three cases:

(1) o EI1C1 AIC,. Thenwe have d(o', K1) > d(w, K1) and d(«', K2) > d(w, K2). As
aconsequenced («’, {K1, K2}) > d(w, {K1, K2}), hence o’ = Aicyvic, (K1, K2}).

(2) ' EIC2A—=IC1. Sincew’ = 1C2 weknow that d(o', K2) > d(w, K2), by transitivity
d(w', K2) > d(w, K1). Thenwe have d(«’, {K1, K2}) > d(w, {K1, K2}), hence o’ [~
Aicyvic, ((K1, K2)).

(3) o' EIC1A=IC2. Supposethat o’ = Aicyvic,({K1, K2}). Thisimpliesthat d(o', {K1,
K>} <d(w, {K1, K2}). Thisrequiresone of the following casesto hold (recall that we
assumed(w, K1) < d(w, K?2)):

() d(o', K1) <d(w, K1) andd(o', K2) < d(w, K1).

(i) d(o', K1) =d(w, K1) andd(/, K2) < d(w, K2).
(i) d(/, K2) =d(w, K1) andd(e/, K1) < d(w, K>2).
The first two cases are not possible since, as ' = I1C1 and o' = Aic, (K1), we
have d(v', K1) > d(w, K1). So let us consider the last case and note that we have
d(@', K1) < d(w, K2) and d(/, K2) = d(w, K1) < d(w, K2). (Arb) requires that
for every model o” of IC2 A =ICq, d(0”, {K1, K2}) = d(', {K1, K2}). So for any
@ EIC2A—IC1 d(0", K2) < d(w, K2), hence o’ = Aic,(K2). But, by hypothesis,
Aic, (K1) = Aic,(K?2), hence ” = 1C,. Contradiction.

To show that operatorswith © € {sum WS, } do not satisfy (Arb), consider thefollowing
counter-example: K1 = {a A b}, Ko ={—a A—b},IC1==(aAb)andICo=a Ab. O

The tables above show that our DA? operators exhibit different properties. We remark
that only A¢p-Maxsum eticfies all listed properties. Failing to satisfy (IC3) (irrelevance to
the syntaxin many cases is not surprising, since we want to allow our operators to take
syntax into account. (1C4) imposes that, when merging two belief bases, if the result is
consistent with one belief base, it has to be consistent with the other one—such fairness
postulateis not expected when working with nonsymmetric operators (so, unsurprisingly, it
is not satisfied for © = WS,). This postulate is not satisfied by any operator for which d is
Hamming distance since cardinalities of the belief bases have an influence on ¢, and more
generally, it is hardly satisfiable when working with syntax-dependent operators. (IC5) and
(1C6) correspond to Pareto dominancein social choicetheory and arereally important; so it
isworth noting that almost all operators satisfy them (only operatorsfor which © = maxor
OWS do not satisfy (1C6).) As shown before, OWS gathers many aggregation functions,
not surprisingly, the price to be paid is the lack of many logical propertiesin the general
case.
We saw through the previous results that DA merging operators do not (and aim not
at) satisfy all IC merging operators properties. Hence thisis natural to look for additional
requirements under which all those properties would be satisfied.

Let usfirst define some natural additional properties on aggregation functions:
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(D) If o1 A -+ A @, isconsistent,
then ®(d (@, ¢1), .., d(@,9n)) =B (@, 91 A - Agp)).? (and)
(2) For any permutation o, ®(x1,...,x,) = &0 (X1, ..., Xn)). (symmetry)
Q) fd(x1, ..., x0) KOO, -5 yn), then ©(xa, ..., %, 2) <OV, - -+, Y, 2)-
(composition)
(@) f @01, ..., %0, 2) KOO, -, yn, 2), then ®(x1, ..., x0) KB, -0 Yn).
(decomposition)

We have obtained the following representation theorem for DA2 merging operators:

Proposition 8. A DA?2 merging operatorA?-®-© satisfies(IC0)—(IC8) if and only if the
function @ satisfies(and), and the function® satisfies(symmetry), (composition) and
(decomposition).

Proof. (If ) We know that (ICO0), (IC1), (IC2), (IC7) and (IC8) are directly satisfied
(cf. Proposition 6). Let us consider the other properties. Let £1 = {K3,..., K,} and
Ey=1{K,,...K]}.

(IC3) Assume that E; = E». Hence we can find a permutation o such that for
every i € 1,....n, K, = K/. Now, since @ satisfies (and) and is nondecreasing in
each argument, we have d(w, K, ()) = d(w, K]), 0, as © satisfies (symmetry) one gets
d(w, E1) = O(d(w, K}, ... d(w, K})) = d(w, E2). Consequently Aic(E1) = Aic(E2).
Theresult for IC1 = IC5 is obviousfrom the definition of the operators.

(IC4) Suppose that Alc({K1, K2}) A K1 & L and that Aic({K1, K2}) A Ko = L. As
a consequence, we have min,x, O(d(w, K1), d(w, K2)) < Minyek, O(d(w, K1), d(w,
K2)). Since @ sdtisfies (and), this is equivalent to min,=x, ©(0,d(w, K2)) <
Minye=x, O(d(w, K1), 0). Then by (symmetry), thisisequivalent to min,x, ©(d(w, K2),
0) < minyex, ©(d(w, K1), 0). Hence, since © is nondecreasing in each argument, we
get mingyex, d(w, K2) < Mingek, d(w, K1). Now, let ustake K}:l,z = /\(meK/ @;. Since
@ satisfies (and), we have d(w, K;) = d(w, K}) for every interpretation w. So we get
minw,:,qd(w, Kj) < minw,:Kéd(w, K7). Now, by definition of the distance d(w, ') =
d(o', w) for every pair of interpretations w, ’; from the definition of d(w, ¢), we have
MiNy—y d(w, ¢') = Min,y d(w, ¢) for every pair of formulas ¢, ¢'. Since @ is non-
decreasing in each argument, we obtain min,—, ®(d(, ¢)) = Min =y S(d(w, ¢)). But,
taking ¢ = K; and ¢’ = K, this contradicts min,,_g; d(w, K3) < min,_g; d(, K7).

(IC5) Consider E1 = {K1,...,K,} and E2 ={K], ..., K, }. Supposethat w isamodel
of Aic(E1) A Ac(E2). Then, for every model o’ of IC we have both:

@(d(w, K1), ...,d(w, Kn)) < @(d(a)’, Kl), ...,d(w’, Kn)), and
O(d(w, K1), ....d(w,K,)) <O(d(', Ky),....d (o, K},)).

Since we have ©(d(w, K1), ...,d(w, K;)) < 0@, K1),...,d(, K,)), using
(composition) several times we obtain that:

9 Since @ is an aggregation function, we have &(d(w, g1 A -+ A gp)) =d(@, p1 A -+ A y)-
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O(d(@,K1),....d(w, Ky),d(w,K}),....d(o, K)))
<o(d(o', K1), ....d(o, Ky),d(w, K1), ...,d(o, K,,)). D

Similarly, since ©(d(w, K1), ....d(®, K})) < O (o', KY), ...,d(@, K],)), using (com-
position) severa times gives.

O(d(w, KY),....d(w, K})).d(o', K1), ....d(o, Ky))
< @(d(a/, Ki), e, d(w/, K,/l,), d(a)/, Kl), e, d(w/, Kn)) 2
By (symmetry), we have that:
O(d(w, K1), ..., d(w, K, ),d(o', K1), ..., d(o', Ky))
= @(d(a)’, Kl), s d(w’, Kn), d(a), Ki), e d(w, K,’l,)). ©))

By transitivity, using (1), (2) and (3), we have for every model «’ of IC:
O(d(@, K1), ...,d(, Ky),d(w,K}),...,d(o,K))
<O, KYy),....d(o, KL),d(, K1), ....d(o, Kn)).

This exactly meansthat w = Aic(E1U E?).

(1C6) Suppose that Aic(E1) A Aic(E2) = L and that Aic(E1 U E2) = Aic(E1) A
Aic(E2). Thereexists w such that w = Aic(E1 U E2) and w & Aic(E1) A Aic(E2). Let
us assumew.l.0.g. that w = Aic(E1). Since Aic(E1) A Aic(E2) B L, let us consider any
o' E Aic(E1) A Alc(E2). Sincew’ = Ac(E1) and w & Aic(E1), we obtain:

O(d(e', K1), ....d(@, Kp)) < O(d(w, K1), ...,d(®, Ky)).
Since o’ = Aic(E2), we have:
o(d(. K}, ....d(. K,)) <O(d(. K}).....d(w. K)).
Using (decomposition) several times, we get:
o(d(v', K1), ..., d(@, Ky,),d(o', K7), ..., d(o, K,,)
< @(d(w, K1),...,d(w, K,), d(a)’, Ki), e d(a)’, K,’l,)).
Using (composition) several times, we get:
@(d(w’, Ki), s d(a)’, K,’l,), d(w, K1), ...,dw, K,,))
<O(d(w. Ky),....d(w, K,,),dw,K1),...,dw, Ky)).
By (symmetry), we have:

O(d(, K1), ...,d(w, Ky),d(o', K}),...,d(o, K})))

=0(d(w, KY),....d(o', K}, d(w, K1), ...,d(w, Kp)).
Now by transitivity:

O(d(e', K1), ....d(o, Ky). d(o', K1), ....d(o', K]))

<O(d,K1),....dw, Ky),d(w,K}),...,d(o, K)).
Thatisd (', E1U E2) <d(w, E1U E2). Thismeansw = Aic(E1 U E2). Contradiction.
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(Only if)

(symmetry) O(x1, ..., xn) = O(c(x1, ..., x,)). Direct from (1C3).

(composition) If ©(x1,...,x,) < O(V1,---,yn), then let us consider two interpreta-
tions w, ' such that for every i € 1,...,n, d(w, K;) = x; and d(«', K;) = y;. From
the definition of the DA? operators, we have w = Atorm{w,w'h) {K1, ..., Kn}). Now
let us take a belief base K’, such that d(w, K') = d(e’, K') = z, we have both w =
Aform(jw.o'h) (K') @and o = Aformyjw.e') (K'). Now, from (IC5), we conclude that » =
Aform({w,0'h) {K1, ..., Ky, K}), or equivalently (from the definition of the operators)
O,y X0, 2) KOO -+ 45 s 2)-

(decomposition) We will show the equivalent condition:

if ©@1,...,x0) <OWO1,...,yn), then © (x1,..., x5, w) <OW1, ..., Yn, W).

Suppose O(x1, ..., xy) < O(¥1, ..., yn). Let us consider two interpretations w, o’ s.t. for
everyiel,...,n,wehaved(w, K;) = x; andd (&, K;) = y;. From the definition of DA2
operators, we get o = Atorm({w,o') (K1, ..., Kn}) @d o' = Atormijo, o)) (K1, - - Kn}).
Now let us consider a base K’, such that d(w, K') = d(’, K') = z; we have o =
Atorm({w,0') (K) and o' = Atorm(jw,w') (K'). SiNCE © = Atorm(jw,w')) (K1, - .- Kn}) A
Aform(w.')) (K'), the conjunction is consistent and from (IC6) we obtain
Mod(Aform({w,w'y) {K1, - . ., Kny K'})) € MOd(Aform((w,w'y) {K1, - - ., Kn})) = {w}. So, by
definition of the operator, we have ©(x1, ..., x1,2) < O1, .-+, Yn, 2)-

(and) Suppose that ¢ = @1 A -+ A @, IS consistent. We want to show that for every
interpretation w, ®(d(w, ¢1), ...,d(w, ¢,)) = ®(d(w, ¢)). There are 2 cases:

Casel: w = ¢. By définition of the distances, we have d(w, ¢) = d(w, ¢;) = 0; by
(minimality) of @, ®(d(w, ¢)) = B(d(w, ¢1), ..., d(w, ¢,)) =0.

Case2: w = ¢. Consider the result of Aform((w))ve ({{FOrm({wh}, {¢1, ..., a1}, by
(IC0) and (IC1) this base has to be consistent, so it has to pick some models in {w} U
Mod(¢). Furthermore (1C4) states that w and some models of ¢ have to be in the result.
Let usconsider onesuchmodel o’ of . Thenwehaved (w, {{form({w})}, {¢1, ..., ¢n}}) =
d(', {{form{w)}, {¢1, ..., ¢a}}). Now, by definition of DA2 merging operators:

d(w, E) = 0(®(d(o, form({»}))), ®(d (@, ¢1), ..., d(@, ¢n))),
i.e, ©0,8d(w, ¢1),...,d(w, v;))). We have a so:
d(w', E)=0(e(d(e', form({w}))). ®(d(@', 1), ....d(@, ¢n))).

or equivalently O(®(d (', w)), 0). Now by (symmetry) and (nondecreasingness) of ©, we
get that ®&(d(w, ¢1), ...,d(w, ¢n)) = ®(d (o', w)). By the definition of the distance, this
isequivaentto &(d(w, ¢1), ..., d(®, ¢,)) = B(d(w, ¢)).

7. Conclusion

The major contribution of this paper isanew framework for propositional merging. Itis
general enough to encompass many existing operators (both model -based ones and syntax-
based ones) and to allow the definition of many new operators (symmetric or not). Both
the logical properties and the computational properties of the merging operators pertaining
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to our framework have been investigated. Some of our results are large-scope ones in
the sense that they make sense under very weak conditions on the three parameters that
must be set to define an operator in our framework. By instantiating our framework and
considering severa distances and aggregation functions, more refined results have also
been obtained. Finally, arepresentation theorem for characterizing the “fully rational” DA2
merging operators has been given.

Thiswork calls for the investigation of several other perspectives. One of them consists
in analyzing the properties of the DA2 operators that are achieved when some other
aggregation functions or some other distances are considered. For instance, suppose that a
collection of formulasof interest (topics) isavailable. In thissituation, the distance between
w1 and wy can be defined as the number of relevant formulas on which w1 and w» differs
(i.e., such that one of them satisfies the formula and the other one violates it). Severa
additional distances could aso be defined and investigated (see, e.g., [39] for distances
based on Choquet integrals).

Finally, it would be interesting to extend our study to nonuniform DA? operators, i.e.,
those obtained by associating a specific aggregation function to each belief base K; (instead
of considering the same onefor each K;).

Acknowledgements

The authorswant to thank Laurence Cholvy for several commentson afirst draft of this
paper. They also want to thank the anonymous referees for their helpful comments.

The third author has been partly supported by the IUT de Lens, the Université
d’ Artois, the Région Nord/Pas-de-Calaisunder the TACT-TIC project, and by the European
Community FEDER Program.

References

[2] I. Bloch, A. Hunter, Fusion: General concepts and characteristics, Internat. J. Intelligent Syst. 16 (10) (2001)
1107-1134 (specia issue on Data and Knowledge Fusion).

[2] PZ. Revesz, On the semantics of arbitration, Internat. J. Algebra Comput. 7 (2) (1997) 133-160.

[3] J. Lin, A.O. Mendelzon, Knowledge base merging by majority, in: Dynamic Worlds: From the Frame
Problem to Knowledge Management, Kluwer Academic, Dordrecht, 1999.

[4] P. Liberatore, M. Schaerf, Arbitration (or how to merge knowledge bases), IEEE Trans. Knowledge Data
Engrg. 10 (1) (1998) 76-90.

[5] S. Konieczny, R. Pino Pérez, Merging with integrity constraints, in: Proceedings of the Fifth European
Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’99),
London, in: Lecture Notes in Artificial Intelligence, vol. 1638, Springer, Berlin, 1999, pp. 233-244.

[6] S. Benferhat, D. Dubois, S. Kaci, H. Prade, Encoding information fusion in possibilistic logic: a general
framework for rational syntactic merging, in: Proceedings of the Fourteenth European Conference on
Artificial Intelligence (ECAI’00), Berlin, 2000, pp. 3-7.

[7] C. Bard, S. Kraus, J. Minker, Combining multiple knowledge bases, IEEE Trans. Knowledge Data
Engrg. 3 (2) (1991) 208-220.

[8] C. Bard, S. Kraus, J. Minker, V.S. Subrahmanian, Combining knowledge bases consisting of first-order
theories, Compuit. Intelligence 8 (1) (1992) 45-71.



78 S. Konieczny et al. / Artificial Intelligence 157 (2004) 49-79

[9] S. Konieczny, On the difference between merging knowledge bases and combining them, in: Proceedings of
the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR’ 00),
Breckenridge, CO, 2000, pp. 135-144.

[10] B. Nebel, A knowledge level analysis of belief revision, in: Proceedings of the First International Conference
on the Principles of Knowledge Representation and Reasoning (KR’ 89), Toronto, 1989, pp. 301-311.

[11] S.O. Hansson, Revision of belief sets and belief bases, in: Handbook of Defeasible Reasoning and
Uncertainty Management Systems, vol. 3, 1998, pp. 17—75.

[12] S. Konieczny, R. Pino Pérez, On the frontier between arbitration and majority, in: Proceedings of the Eighth
International Conference on Principles of Knowledge Representation and Reasoning (KR'02), Toulouse,
2002, pp. 109-118.

[13] S. Konieczny, R. Pino Pérez, Merging information under constraints: A qualitative framework, J. Logic
Comput. 12 (5) (2002) 773-808.

[14] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.

[15] T. Eiter, G. Gottlob, On the complexity of propositional knowledge base revision, updates, and counterfac-
tuds, Artificia Intelligence 57 (2-3) (1992) 227-270.

[16] K.W. Wagner, More complicated questions about maximaand minima, and some closures of NP, Theoretical
Comput. Sci. 51 (1987) 53-80.

[17] PZ. Revesz, On the semantics of theory change: arbitration between old and new information, in:
Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Databases
(PODS 93), Washington, DC, 1993, pp. 71-92.

[18] S. Konieczny, R. Pino Pérez, On the logic of merging, in: Proceedings of the Sixth International Conference
on Principles of Knowledge Representation and Reasoning (KR’ 98), Trento, Italy, 1998, pp. 488-498.

[19] M. Daldl, Investigations into atheory of knowledge base revision: preliminary report, in: Proceedings of the
Seventh American National Conference on Artificial Intelligence (AAAI’88), St. Paul, MN, 1988, pp. 475—
479.

[20] N. Rescher, R. Manor, On inference from inconsistent premises, Theory and Decision 1 (1970) 179-219.

[21] G. Brewka, Preferred subtheories: an extended logical framework for default reasoning, in: Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence (1JCAI’'89), Detroit, MI, 1989,
pp. 1043-1048.

[22] S. Benferhat, C. Cayrol, D. Dubois, J. Lang, H. Prade, Inconsistency management and prioritized syntax-
based entailment, in: Proceedings of the Thirteenth International Joint Conference on Avrtificia Intelligence
(IJCAI’'93), Chambéry, France, 1993, pp. 640-645.

[23] S. Benferhat, D. Dubois, H. Prade, Some syntactic approaches to the handling of inconsistent knowledge
bases: A comparative study, Part 1: Theflat case, Studia Logica 58 (1997) 17-45.

[24] S. Benferhat, D. Dubois, J. Lang, H. Prade, A. Saffioti, P Smets, A general approach for inconsistency
handling and merging information in prioritized knowledge bases, in: Proceedings of the Sixth International
Conference on Principles of Knowledge Representation and Reasoning (KR'98), Trento, Italy, 1998,
pp. 466-477.

[25] R. Fagin, J. Ullman, M. Vardi, On the semantics of updates in databases, in: Proceedings of the Second
ACM SIGACT SIGMOD Symposium on Principles of Database Systems (PODS 83), Atlanta, GA, 1983,
pp. 352-365.

[26] B. Nebel, Belief revision and default reasoning: Syntax-based approaches, in: Proceedings of the
Second International Conference on the Principles of Knowledge Representation and Reasoning (KR'91),
Cambridge, MA, 1991, pp. 417-428.

[27] M. Ginsberg, Counterfactuals, Artificial Intelligence 30 (1986) 35-79.

[28] C.E. Alchourrén, P. Gardenfors, D. Makinson, On the logic of theory change: Partial meet contraction and
revision functions, J. Symbolic Logic 50 (1985) 510-530.

[29] C. Lafage, J. Lang, Logical representation of preferences for group decision theory, in: Proceedings of
the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR’ 00),
Breckenridge, CO, 2000, pp. 457-468.

[30] R.R. Yager, On ordered weighted averaging aggregation operators in multi-criteria decision making, |IEEE
Trans. Systems Man Cybernetics 18 (1998) 183-190.

[31] J.L. Marichal, Aggregation operators for multicriteria decision aid, Ph.D. Thesis, Université de Liege, 1999.



S. Konieczny et al. / Artificial Intelligence 157 (2004) 49-79 79

[32] T. Murofushi, M. Sugeno, An interpretation of fuzzy measures and the choquet integral as an integral with
respect to afuzzy measure, Fuzzy Sets Systems 29 (1989) 201-227.

[33] G. Pinkas, Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional
knowledge, Artificial Intelligence 77 (1995) 203-247.

[34] E. Grégoire, A. Sofiane, Fusing syntax and semantics in knowledge fusion, in: Proceedings of the Eusflat
Conference (Eusflat’ 2001), Leicester, 2001, pp. 414-417.

[35] H. Fargier, R. Sabbadin, Qualitative decision under uncertainty: Back to expected utility, in: Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI’03), Acapulco, Mexico,
2003, pp. 303-308.

[36] B. Nebel, How hard is it to revise a belief base?, in: Handbook of Defeasible Reasoning and Uncertainty
Management Systems, vol. 3: Belief Change, 1998, pp. 77-145.

[37] T. Bylander, The computational complexity of propositional STRIPS planning, Artificia Intelligence 69 (1-
2) (1994) 165-204.

[38] P. Liberatore, M. Schaerf, Brels: A system for the integration of knowledge bases, in: Proceedings of
the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR’ 00),
Breckenridge, CO, 2000, pp. 145-152.

[39] C. Lafage, J. Lang, Propositional distances and preference representation, in: Proceedings of the
Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU’01), Toulouse, 2001, pp. 48-59.



