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Abstract
In strategic candidacy games, both voters and candidates have preferences over pos-
sible election outcomes, and candidates may strategically choose to join or leave the
election. Following the model by Dutta et al. (Econometrica 69:1013–1037 2001) and
(Journal of Economic Theory 103:190–218 2002), this paper presents a first system-
atic analysis of such games for a list of common voting procedures. We address the
question of whether such games possess a pure strategy Nash equilibrium in which
the outcome is the same as if all candidates run (which we call genuine equilibria). We
give a number of negative results: unless the number of candidates is small (less than
3, 4 or 5, depending on the voting rule), there may be games without such stable out-
comes. When the existence of genuine equilibria is not guaranteed, we also consider
a weaker stability version, namely the existence of a pure strategy Nash equilibrium.
Although most of our results are on the negative side, we identify one prominent rule
that guarantees the existence of a genuine equilibrium, for any number of candidates,
and for an odd number of voters: the Copeland rule. However, strong equilibria, where
no coalition of candidates has a profitable collective deviation, are not guaranteed to
exist, for almost any voting rule, including Copeland. Finally, we establish for the first
time a strong relationship between equilibria of candidacy games and a form of voting
control by adding or removing candidates, where candidates must consent to addition
or deletion, and we initiate the study of resistance to this new version of control in
elections.

Keywords Computational social choice · Voting theory · Game theory

1 Introduction

Voting mechanisms (or, rules) are a common tool for making collective decisions by
aggregating the preferences of concerned agents. A critical issue for the evaluation
(and hence, comparison) of voting rules is their ability to resist various sorts of strate-
gic behavior by the election participants. Strategic behavior can come from the voters
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Table 1 Strategic behavior in elections. Rows correspond to types of strategic agents, columns indicate the
direction of strategic action

impact →
agents ↓

voters votes candidates

voters strategic abstention manipulation –

third party / chair voter control bribery, lobbying candidate control,
cloning

candidates – – strategic candidacy

reporting insincere votes (manipulation) or from a third party, typically the chair,
acting on the set of voters or candidates (control), or on the votes (bribery, lobby-
ing). However, strategic behavior by the candidates has received very little attention
compared to that by the voters and (to a lesser extent) by the chair: one form thereof
involves choosing optimal political platforms, while another simply reflects the ability
of candidates to strategically decide whether to run for the election or withdraw. In
this paper, we focus on this latter form of strategic behavior by the candidates.

Table 1 below gives a summary of strategic behavior in elections, split into two
dimensions corresponding to types of the agents that act strategically and whether
their strategic action impacts voters, votes, or candidates. 1

Strategic candidacy often occurs in real-life scenarios, both in large-scale political
elections and in small-scale, low-stake elections. In the political arena, perhaps the
most typical example of strategic candidacy is due to the high vulnerability of the
voting rules in use (typically, plurality or plurality with runoff) to cloning [41]. A
spoiler is a candidate c whose platform is close enough to that of another (more
important) candidate c′, and who will “steal” enough votes from the supporters of
c′ to prevent their victory. Strategic candidacy can occur in both directions: spoiler
candidates can be encouraged to run by the competitors of c′, or (more often) they can
be encouraged to withdraw by the promoters of c′ to help them win. As an example,
in the 2017 presidential election in France (where the voting rule was plurality with
runoff), centrist candidateBayrouwithdrew to helpMacron qualify to the second round
(successfully), and green candidate Jadot withdrew to help the socialist candidate
Hamon qualify (not successfully).

In low-stake contexts, strategic candidacy is even more frequent. On electronic
democracy platforms, candidates are typically suggested by citizens or groups of
citizens, who also have the power to withdraw them.2 We are also aware of the chair
elections for research or teaching departments in an academic institution where the set

1 This classification is not complete, as there are other types of strategic behavior such as, e.g., agenda
control (by the chair), but we exclude these for the sake of brevity. There are also some forms of strategic
behavior that are specific to multiwinner elections such as gerrymandering (by the chair) – see [7] for
a recent survey – or vote pairing/swapping (by the voters) [3, 13]. This paper, however, only addresses
single-winner elections.
2 A well-documented example (prior to the electronic age) is the vote for the choice of the name of the
City of Thunder Bay. QuotingWikipedia (https://en.wikipedia.org/wiki/Thunder_Bay#Amalgamation), its
name was the result of a referendum held previously on 23 June 1969, to determine the new name of the
amalgamated Fort William and Port Arthur. Officials debated over the names to be put on the ballot, taking
suggestions from residents including “Lakehead” and “The Lakehead”. Predictably, the vote split between
the two, and “Thunder Bay” was the winner.
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of candidates kept evolving until it stabilized (sometimes, to a singleton).Moving away
from single-winner elections, strategic candidacy also occurs in committee elections,
such as in the board of scientific associations: if the number of candidates related to a
particular subfield is too low, more candidates have an incentive to run, while if it is
too high, some have an incentive to withdraw.
Against this background, we consider a setting with a finite set of potential candidates
(which we simply call candidates when this is not ambiguous), where:

(1) each candidate may choose to run or not for the election;
(2) each candidate has a preference ranking over the candidates;
(3) each candidate places themselves on the top of their ranking;
(4) the candidates’ preferences are common knowledge among them;
(5) the outcome of the election as a function of the set of candidates who choose to

participate, is common knowledge among the candidates.

These features are part of the original model by Dutta et al. [15], which we discuss
below. Assumption (2) amounts to saying that a candidate only cares about who
wins the election,3 and has no indifferences or incomparabilities. Assumption (3)
(considered as a domain restriction in [15]; still, their main result holds even under
this restriction) is natural in most contexts; and, as noted in [15], without such a
domain restriction, there may be extreme cases where all candidates prefer to exit.
Assumptions (4) and (5) are common game-theoretic assumptions: note that we do
not have to assume that the candidates know precisely how voters will vote, nor even
the number of voters who participate in the election; all they need to know is the choice
function mapping every subset of candidates (the runners) to a winner of the election.
In fact, assumption (4) is only required when strong equilibria are considered.

Related work on st rategi c candidacy Existing work on strategic candidacy is
rather scarce. Dutta et al. [15] formulate the strategic candidacy game and prove that
no non-dictatorial voting procedure satisfying unanimity is candidacy-strategyproof
(or equivalently, that for any non-dictatorial and unanimous voting procedure, there
is a profile for which the joint action where all candidates enter the election is not
stable). In [16], Dutta et al. study the implications of strategic candidacy on binary
tree voting, and as a particular case, voting by successive elimination with sophisti-
cated voters. For sophisticated voting by successive elimination, they show that the
candidacy game always possess a pure strategy Nash equilibrium. For sophisticated
binary tree voting, they show that the set of winners in some Nash equilibrium when
candidates’ preferences vary is contained in the top cycle, and contains the genuine
winner. (However, for fixed candidate preferences, the existence of a pure strategy
Nash equilibrium for the candidacy game is an open question.)

A more detailed, technical comparison of our results with the results in [15, 16] is
exposed in Section 2.3.

Some of these results are discussed further (together with simpler proofs) by Ehlers
and Weymark [17], and extended to voting correspondences by Ereslan [19] and
Rodriguez [37], and to probabilistic voting rules by Rodriguez [36].

3 In some contexts, candidates may have more refined preferences that bear, for instance, on the number
of votes they get, how their score compares to that of other candidates, etc. We do not consider these issues
here.
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Studying the equilibria of a candidacy game helps predicting the set of actual
candidates and therefore the outcome of the vote. However, little was known about
this from earlier research, like for instance whether such equilibria always exist for
common voting rules such as plurality, Borda or Copeland.

A systematic analysis of candidacy games under common classes of voting mech-
anisms has only started a few years later with our SAGT paper that was a preliminary
version of this work [29]. Subsequent papers on strategic candidacy propose different
variants of the model and explore the conditions for equilibrium existence, as well
as its reachability by iterative dynamic processes. Brill and Conitzer [6] extend the
analysis to the setting where both candidates and voters act strategically, but focus on
two special cases: namely, of majority-consistent voting with single-peaked prefer-
ences and of voting by successive elimination. Polukarov et al. [35] study equilibrium
dynamics in candidacy games, where candidates may strategically decide to enter the
election or withdraw their candidacy in each iteration of the process until (and if) it
converges to a stable state. Obraztsova et al. [33] analyze strategic candidacy games
with so called lazy candidates, whose utility function results form the outcome of the
election minus a small penalty for running for election. Obraztsova et al. [34] extend
the candidacy game model to the setting of multiwinner elections, where the goal is
to select a fixed-size subset of candidates (a committee), rather than a single winner.
Sabato et al. [40] introduce what they term real candidacy games where candidates
have a continuous range of positions that affect their attractiveness for voters and also
have their own non-trivial preferences over the candidate set.

Finally, two lines of work that are somewhat related to strategic candidacy, albeit
with notable differences, include the strategic nomination by parties, and Hotelling-
Downs games. Recall that strategic candidacy games assume that candidates are
independent and have full power to decide whether to run for the election or not;
in strategic nomination by parties [8, 20, 25], the set of potential candidates is clus-
tered into political parties, and that the decision for a candidate to enter the election
is decided by their party. In Hotelling-Downs games [14, 28], candidates lie on a
left-right political axis, and have to choose which position to adopt on the line. These
games have recently been studied on richer structures [31].

Related work on vot ing cont rol and cloning Strategic candidacy is highly related
to a family of problems that have received a great deal of focus in computational
social choice: voting control. As opposed to manipulation (which is a strategic action
performed by voters), control is performed by the chair or the election organizer, who
is assumed to have the power to change the structure of the election by adding, deleting
or partitioning voters or candidates. The existence of pure strategy Nash equilibria of
strong Nash equilibria is highly related to a stronger variant of candidate control,
termed consenting control, whose only difference with the standard version of control
is that candidates have their word to say about being deleted or added.4

Constructive control by adding or deleting candidates (where the control action is
successful if some designated candidate wins) was introduced by Bartholdi et al. [2].

4 Control by partitioning candidates will not be discussed since it not obviously related to strategic can-
didacy, and also perhaps less common. We shall not discuss the control on the voters either, although its
consenting version looks particularly interesting.

123



Theory of Computing Systems            (2025) 69:23 Page 5 of 37    23 

Hemaspaandra et al. [26] introduce more control types, including destructive control
(where the control action is successful if some designated candidate does not win). For
each control type T , voting rules can be partitioned into those (rare) that are immune
to T (successful control actions cannot occur), those that are resistant to T (deciding
the existence of a successful control action isNP-hard) and those that are vulnerable to
T (deciding the existence of a successful control action is in P). See [23] for a survey
of work on the topic until 2016; since then, research has focused on parameterized
studies of resistance to candidate control [9, 12] or sequential candidate control [27].

Candidate cloning [18, 41] also deals with a dynamic set of candidates: given an
initial election with a set of candidates and a profile, cloning of the candidate, say z,
into a set of clones Z = {z1, . . . , zq}, results in a new profile where all voters rank all
candidates on Z contiguously, and where for each zi ∈ Z and x /∈ Z , a voter prefers
zi to x (respectively, x to zi ) if and only if she prefers z to x (respectively, x to z) in
the initial profile. A resolute rule is clone-proof if for any initial profile P and profile
P ′ obtained after cloning z into a set of clones Z , either the winner in P is z and the
winner in P ′ is in Z , or the winner in P is x �= z and the winner in P ′ is x . When
the rule is not clone-proof, candidate cloning can be a way for the chair to influence
the outcome of an election, and for a candidate to join or to withdraw. As a matter
of fact, many instances of strategic candidacy in the real world are due to a spoiler
effect caused by some candidate having some clones (or quasi-clones). Note that the
impact of a cloning action on the outcome of an election varies largely with the voting
rule [18].

Finally, other (albeit somewhat less relevant) works that also consider a dynamic
set of candidates include the computation of possible winners when new candidates
join [10], and the unavailable candidate model [30].

Cont r i but i on Following the model by Dutta et al. [15, 16], here we give a first
systematic analysis of candidacy games for a list of common voting rules. Our results
demonstrate that voting rules behave very differently with respect to the guarantee
of existence of genuine equilibria and pure strategy Nash equilibria (see Section 2.3
for formal definitions of these notions and the different degrees of stability in can-
didacy games, as well as a more detailed discussion of the results presented in this
paper and their implications). In short, while for most scoring rules, as well as for
single transferable vote and plurality with runoff, there is no such guarantee from
four candidates already, Condorcet-consistent rules offer a more diverse picture. We
show, in particular, that for the Copeland rule, and an odd number of voters, there
is always a genuine pure strategy Nash equilibrium, no matter what the number of
candidates is. Other Condorcet-consistent rules provably ensure the existence of such
equilibria for moderate numbers of candidates, but fail to provide a general guarantee.
We also prove a simple impossibility theorem showing that strong equilibria are not
guaranteed to exist for a class of voting rules characterized by two natural properties,
which are satisfied by almost any common voting rule. Finally, by exhibiting a strong
connection between the strategic candidacy model and the well-studied problem of
control by adding or deleting candidates, we define the notion of consenting control
and initiate the study of resistance to this new version of control in elections.
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Organi zat i on The paper unfolds as follows. In Section 2, we formally define the
framework for strategic candidacy games and state a few preliminary results on their
genuine and pure strategy Nash equilibria, which give the basis to a deeper analysis
presented in following sections. We start with the special case of three candidates
only, for which in Section 3 we present an exact characterization of voting rules that
guarantee the existence of a genuine equilibrium. For larger numbers of candidates,
we study candidacy games based on common classes of voting rules and demonstrate
how they differ with respect to their stability properties: Section 4 deals with positional
scoring rules; in Section 5, we focus on the rules based on successive elimination; and
finally, Condorcet-consistent rules are analyzed in Section 6. In Sections 7 and 8, we
discuss the concept of strong equilibrium in strategic candidacy and relate the model
to candidate control. We conclude with discussion in Section 9. This paper comes with
a repository5 providing the code used to derive some of the results.

2 Model and Preliminaries

In this section, we formally define the strategic candidacy model in a framework of
ordinal normal form games [24], and present several preliminary observations on their
stability properties. We start with describing a voting setting with strategic candidates
in 2.1; accordingly, in 2.2, we adjust the definitions of common classes of voting rules
to apply to varying subsets of candidates who may strategically choose to run in the
election. The induced game form and related solution concepts are formulated in 2.3;
finally, 2.4 states the preliminary results on stability of candidacy games, useful for
their further analysis in the remainder of the paper.

2.1 Setting

Let X = {x1, x2, . . . xm} be a set of m potential candidates and N = {1, 2, . . . n} a set
of n voters so that X ∩ N = ∅. We assume n is odd, so that pairwise majority ties do
not occur: while this is a mild assumption when the number of voters is large, if this
implies a loss of generality for any of our results, we shall make it clear.

Unlike in traditional voting settings where candidates merely represent the alterna-
tives for voters to choose from but themselves are assumed to be “unconcerned” about
the outcome of the election (as their opinions about it are not specified), in strategic
candidacy [15] both candidates and voters have explicit preferences over the set of
potential candidates, defined for each i ∈ X ∪ N by a linear ordering 
i over X . As
in [15], we also assume that the candidates’ preferences are self-supporting—that is,
each candidate places themselves at the top of their ranking. Let C = (
c)c∈X denote
the candidates’ preference profile, and let V = (
v)v∈N be the voters’ profile.

Depending on their preferences, each candidate may strategically choose to run
in the election or withdraw, in which case we shall refer to them as active or idle,
respectively. The election outcome is then determined by a voting rule that selects a
winner among the active candidates, based on reported voter preferences (or, votes).

5 Available at https://gitlab.lip6.fr/projects/2071
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Note that votes are only submitted by voters, while candidates’ preferences play the
role in their own strategic considerations regarding entering the race.

Traditionally, voting rules are defined for a fixed set of candidates; in strategic
candidacy though, the set of active candidates to which they are applied may vary, so
we extend the definition to an arbitrary subset of the set of potential candidates. We
say that for any Y ⊆ X , a Y -vote is a linear ordering over Y , and a Y -profile P is a
collection of n such Y -votes. A (resolute) voting rule maps every Y -profile, for every
Y ⊆ X , to a candidate in Y . We shall only consider rules which are resolute: formally,
we shall first define their irresolute version, and then break the ties according to a
fixed priority relation over the candidates, which is given by the restriction of a linear
ordering on the whole set of potential candidates X , projected to Y such that: if a is
prioritized over b (denoted a � b) in X , then a is prioritized over b in any Y ⊆ X
containing a and b.

We assume that voters are sincere; thus, when the set of active candidates is Y ⊆ X ,
each voter v reports the restriction of 
v to Y , and the obtained Y -profile P is the
restriction of V to Y , denoted by V ↓Y . For a given voter profile V , a voting rule r
can then be seen as a mapping of each Y ⊆ X to a winner r(V ↓Y ) in Y . We use the
notation Y �→V ,r x , or simply Y �→ x when there is no ambiguity, to state that the
outcome of rule r , applied to profile V , restricted to the subset of candidates Y ⊆ X ,
is x .

2.2 Voting Rules

We now list the common classes of voting rules studied in this work, and adjust their
definitions to accommodate varying sets of active candidates. Recall that |X | = m,
and for any Y ⊆ X let |Y | = k where k ≤ m.

Scor ing rules A scoring rule is defined by a collection of vectors �Sk = 〈s1, . . . sk〉
for all k ≤ m, with s1 ≥ s2 ≥ . . . ≥ sk and s1 > sk . For each k ≤ m and each
i ≤ k, si is the number of points given to a candidate ranked in position i , and
the winning candidate(s) maximize(s) the sum of points received from all n votes.
Formally speaking, defining a family of scoring rules requires to specify a scoring
vector for each size k ≤ m of an active candidate set (for instance, 〈3, 1, 0〉 for three
candidates, 〈4, 3, 2, 0〉 for four candidates, and so on). However, for the most popular
scoring rules, these collections of vectors are defined in a natural way:

– plurality: �Sk = 〈1, 0, . . . 0〉;
– veto (or antiplurality): �Sk = 〈1, . . . 1, 0〉;
– Borda: �Sk = 〈k − 1, k − 2, . . . 1, 0〉.

Condorcet − consi stent rules For any Y ⊆ X , let P be a Y -profile and NP (c, x)
be the number of votes in P who rank c above x . The majority graph M(P) associated
with P is a graph whose vertices are the candidates in Y , with an edge from x to
y whenever NP (x, y) > n

2 (in which case we say that x beats y in M(P), denoted
by x →P y). Since n is odd, M(P) is a tournament, i.e, a complete asymmetric
graph. A candidate c is a Condorcet winner if c →P y for all y �= c. A voting rule
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r is Condorcet-consistent if r(P) = {c} whenever there exists a (unique) Condorcet
winner c for P . A candidate c is a Condorcet loser if y →P c for all y �= c.

Given a Y -profile P , the top cycle TC(P) is the smallest set S ⊆ Y such that for
every x ∈ S and y ∈ Y \ S, x →P y . The uncovered set UC(P) is the set S ⊆ Y of
candidates such that for any c ∈ S and for any other candidate x , if x →P c then there
is some y such that c →P y and y →P x . The maximin rule chooses the candidate(s)
c that maximize(s) minx∈Y\{c} NP (c, x). The Copeland rule chooses the candidate(s)
c that maximize(s) |{x ∈ Y |c →P x}|.
Ma jor i t y − consi stent rules A rule is called majority-consistent if it selects a
majority winner (i.e., a candidate which is ranked first by a majority of voters) when
one exists; for two candidates only, such rule coincides with majority.

Rules based on successive el iminat i on of candidates Plurality with runoff
proceeds in two rounds: we first select the two candidates x and y with highest plural-
ity scores, and then choose the majority winner between the two. Single transferable
vote (STV) proceeds in k − 1 rounds: at each round, the candidate with the lowest
plurality score among the remaining candidates (using tie-breaking if necessary) is
eliminated.

2.3 Game-Theoretic Formulation

St rategi c candidacy games Each voting rule r induces a natural game form,
where the set of players is given by the set of potential candidates X , and the strategy
set available to each player is {0, 1} with 1 corresponding to entering the election and
0 standing for withdrawal of candidacy. A state s of the game is a vector of strategies
(sc)c∈X , where sc ∈ {0, 1}. For convenience, we use s−z to denote (sc)c∈X\{z}—i.e.,
s reduced by the single entry of player z. Similarly, for a state s we use sZ to denote
the strategy choices of a coalition Z ⊆ X and s−Z for the complement, and we write
s = (sZ , s−Z ). The outcome of a state s is r

(
V ↓Y )

where c ∈ Y if and only if sc = 1.6

Coupled with a voter profile V and a candidate profile C , this defines an ordinal nor-
mal form game � = 〈X , V , r ,C〉 with m players.7 Here, player c prefers outcome
�(s) over outcome �(s′) if ordering 
c ranks �(s) above �(s′).

Related solut i on concepts Having defined a normal form game, we can now apply
standard game-theoretic solution concepts. Let � = 〈X , V , r ,C〉 be a candidacy
game, and let s be a state in �. We say that a coalition Z ⊆ X has an improving
move in s if there is s′

Z such that �(s−Z , s′
Z ) is preferred to �(s) by every z ∈ Z .

In particular, the improving move is unilateral if |Z | = 1. A state is a pure strategy
Nash equilibrium (PSNE)8 if it has no unilateral improvingmoves, and a k-PSNE if no
coalition Z with |Z | ≤ k has an improvingmove. A strong equilibrium (SE) [1] is an n-

6 When clear from the context, we use notation s to also indicate the set of active candidates Y that
corresponds to state s: e.g., for X = {x1, x2, x3}, we use (1, 0, 1) and {x1, x3} interchangeably; we also
generally omit curly brackets and write x1x3 instead of {x1, x3}.
7 See [24] for discussion of ordinal preference models versus traditional cardinal expressions of preference
and particularly, their representation based on an ordinal normal form game.
8 Also referred to as entry equilibrium in the context of strategic candidacy [15].
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PSNE, that is, a state with no improving moves by any coalition. The concept of strong
equilibrium captures stability not only at the individual level but also against coalitions
of candidates. While a pure strategy Nash equilibrium ensures that no single candidate
has an incentive to deviate unilaterally, it does not prevent groups of candidates from
benefiting by coordinating their actions. In contrast, strong equilibrium provides a
more robust solution concept in candidacy games, where candidates might have both
individual and collective incentives to alter their strategies. Thus, it offers a stricter
criterion for stability, making it particularly relevant in scenarios where cooperation
or collusion among candidates is possible. Furthermore, to evaluate the effects of
strategic behavior in the specific context of candidacy games, we are interested in
solution concepts indicating whether strategic candidacy can effectively change the
election winner. We say that a candidate w is a genuine winner if it gets elected when
all candidates run; that is, w = r(V ). A state s is called genuine if its outcome is
genuine; that is, if r(V ↓s) = r(V ). A genuine state s which is also a PSNE is called
a genuine PSNE. The following Example 1 illustrates these notions. The first row in
V indicates the number of voters casting different ballots, which are presented in the
corresponding columns, with the topmost candidate being preferred. The candidates’
preferences C are detailed in a similar way.

Example 1 Consider game � = 〈abcd, V , r ,C〉 with 4 potential candidates, where r
is the Borda rule (with an arbitrary tie-breaking relation) and V and C are given as
follows:

V C
1 1 1 1 1 1 1
b c c a d b a
d d d c a c b
a a b b c d c
c b a d b a d

a b c d
a b c d
d a b a
b d a c
c c d b

The state (1,1,1,1) is not a PSNE: abcd �→ c, but abc �→ a, and d prefers a to c,
so for d, leaving is an improving move. Now, (1,1,1,0) is a PSNE, as no one has an
improving move neither by joining (d prefers a over c), nor by leaving (obviously, not
a; if b or c leaves then the winner is still a). It can be checked that this is also an SE.
It is however not a genuine PSNE, since the winner is a whereas the winner in state
abcd is c.

Degrees of stabi l i t y There is a hierarchy of stability properties of particular inter-
est in the context of candidacy games. Previous work has made some important initial
steps towards their exploration, that motivated the systematic analysis we offer in this
paper. Below, we list these properties and outline the respective results.

1. Candidate Stability (CS): the set of all candidates is a (clearly, genuine) PSNE.
2. Entry Equilibrium Stability (EES): there exist PSNE, and all of them are genuine.
3. Convergence to Genuine Equilibrium (CGE): from the initial state where all can-

didates run, there is a deviation path towards a genuine PSNE.
4. Existence of Genuine Equilibrium (EGE): there always exists a genuine PSNE.
5. Convergence to Equilibrium (CE): from the set of all candidates there is a deviation

path towards a PSNE.
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6. Existence of Equilibrium (EE): the existence of a PSNE is guaranteed.

The first two properties, CS and EES, were considered in [15], and we follow
their original terms referring to them. The convergence properties, CE and CGE, are
relaxations of the notion ofweak acyclicity that requires the existence of an improving
path leading to a stable state (usually, PSNE, but here we also consider genuine PSNE)
from any initial state, while we have a designated initial state.9 These properties can
be seen as a weak form of implementability in the mechanism design sense. Finally,
the existence of a stable state (again, usually of PSNE or SE, but here we extend
consideration to genuine PSNE) is one of the fundamental questions studied in game-
theoretic analysis, and most of our results are also about EE and EGE.

Now, for scenarios where the sets of candidates and voters do not intersect (which
is the case in our setting), it was shown in [15] that EES implies CS. We thus have the
following implications:

– EES ⇒ CS ⇒ CGE ⇒ EGE ⇒ EE
– EES ⇒ CS ⇒ CGE ⇒ CE ⇒ EE

Note that EGE and CE are incomparable: for illustration, recall Example 1 where
there exists a deviation path to a non-genuine PSNE, regardless of whether genuine
equilibria may or may not exist in the game.

Dutta et al. [15] focus on CS and EES and observe that such high degrees of stability
cannot be expected from any non-dictatorial voting rule satisfying unanimity.10 In their
follow-up paper [16], they also consider EE, and exhibit one voting rule that satisfies it:
namely, sophisticated voting by successive elimination. As for EGE, it was mentioned
in [15] (page 14, condition (i)), however, a more systematic study of EE and EGE is
left for further research, which is what we do in this work.

Our main result shows EGE for Copeland with any number of candidates, and for
other rules we show that the property holds for small sizes of candidate sets. Note
that EGE is a stronger notion of stability than EE and, arguably, more desirable, as
it means that there exists a stable candidacy configuration, under which the original
winner is preserved. However, whenever EE holds in the absence of EGE, this means
that strategic candidacy can effectively change the election outcome, which in certain
situations (for instance, in scenarios with highly polarized populations of voters) may
in fact be desirable.11 Further, negative results on EE are also important, as they
imply negative results on EGE and generally, indicate the susceptibility of the voting
procedure to strategic candidacy. Indeed, our work demonstrates that for most of
the common voting rules we can only expect stability of small candidate sets. This,
clearly, also refutes the possibility to reach such states from the initial candidacy

9 See [32] for the formal definitions of different degrees of acyclicity in normal form games, and their
analysis in settings with strategic voters.
10 This, however, is in contrast with settings with approval-based votes, for which, in the context of multi-
winner elections, Obraztsova et al. [34] identify classes of voting rules that satisfy both CS and EES (in
which case, they term the respective candidacy game genuine), as well as families of rules, for which CS
but not EES holds (which is in contrast with the result of [15] showing that EES implies CS in the ordinal
(and single-winner) setting).
11 For instance, in the 2024 French legislative elections, strategic withdrawing has prevented the election
of more than 100 far-right candidates.
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configuration, so positive results about CGE and CE are hard to hope for (and indeed,
we show negative result even for Copeland where, as we prove, EGE does hold). A
natural question is then to decide whether an equilibrium outcome exists, and can be
reached, in a particular instance of a candidacy game, and consider the computational
complexity of respective decision problem, in spirit of the analysis done in [35] for
the special case of plurality. Our storyline is the following:

– From [15], we know that in general, candidacy games are helplessly unstable.
– However, we can obtain positive results under strong domain restrictions such as
Condorcet domains (under which Condorcet-consistent rules are stable).

– We also explore another way of obtaining positive results: we do not assume any
domain restriction but consider specific classes of voting rules separately.

– On the positive side, we identify a natural voting rule (Copeland) for which EGE
is guaranteed to exist for an arbitrary number of candidates; for other rules we
show positive results only for low numbers of candidates (between 3 and 6); on
the negative side, we obtain a number of negative results for EE (and hence, EGE).

2.4 Preliminary Results

Regardless of the number of voters and the voting rule used, a straightforward obser-
vation is that a candidacy game withm = 3 always admits a PSNE. Moreover, for this
case we are also able to provide an exact characterization of voting rules that guarantee
the existence of a genuine equilibrium (see Section 3).

For m > 3 candidates, we find examples of games without equilibria, and the first
question that comes to mind is whether they can be easily adapted to transfer these
results to larger sets of candidates. The following Lemma 1 shows that they do indeed,
under a really mild assumption. We say that a voting rule is insensitive to bottom-
ranked candidates (IBC) if given any Y-profile P over Y ⊆ X with |Y | = k ≤ m, if
P ′ is the profile over Y ∪ {xk+1} obtained by adding xk+1 at the bottom of every vote
in P , then r(P ′) = r(P). This property is extremely weak (much weaker than Pareto
efficiency) and is satisfied by almost all common voting rules.

Lemma 1 For any voting rule r satisfying IBC, if there exists a candidacy game � =
〈X , V , r ,C〉 with no (genuine) PSNE, then there is also a game �′ = 〈X ′, V ′, r ,C ′〉
with no (genuine) PSNE where |X ′| = |X | + 1.

Proof Take a candidacy game�with the set of potential candidates X = {x1, . . . , xm},
and let X ′ = X ∪ {xm+1}, V ′ be the voter profile obtained from V by adding xm+1 at
the bottom of every vote, and C ′ be the candidate profile obtained by adding xm+1 at
the bottom of every ranking of a candidate xi , i ≤ m, and whatever ranking for xm+1.

Assume � has no PSNE. Let Y ⊆ X . Since Y is not a PSNE for �, there is some
candidate xi ∈ X that has an interest to either leave or join the election, and so Y is
also not a PSNE for �′. Furthermore, since r satisfies IBC, such candidate xi ∈ X
will have an incentive to also leave (resp., join) Y ′ = Y ∪ {xm+1}, as the winner in
Y ′ \ {xi } (resp., Y ′ ∪ {xi }) is the same as in Y \ {xi } (resp., Y ∪ {xi }), and so Y ′ is not
a PSNE either. Therefore, �′ has no PSNE in such case.
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Now assume that Y is a non-genuine PSNE for �. Then, no candidate xi ∈ X
wants to leave or join Y , and candidate xm+1 has no interest to join as their presence
will not affect the outcome due to IBC. Moreover, Y ′ = Y ∪ {xm+1} yields the same,
non-genuine, outcome as Y , and due to IBC no candidate xi ∈ X ′ has an incentive
to deviate, so both Y and Y ′ are non-genuine PSNE for �′. Coupled with the above
arguments regarding non-PSNE states of �, we get that �′ has no genuine PSNE. ��

We shall use this induction lemma to extend some of our negative results to an
arbitrary number of candidates. A noticeable exception is the veto rule, which does
not satisfy IBC. In the appendix, we provide a specific lemma to handle this rule.

Unlike genuine and pure strategy equilibria, strong equilibria are not guaranteed
even for games with m = 3 candidates, as we show in Section 7. However, there are
positive results for some families of voting rules or restricted preference profiles. Brill
and Conitzer [6] prove that under the assumption of single-peaked preferences, if the
voting rule is majority-consistent, then the candidacy game has an SE, and in all such
equilibria, the winner is the Condorcet winner. Here, we present the following result,
that applies to all Condorcet-consistent rules, with any number of candidates.

Proposition 1 Let � = 〈X , V , r ,C〉 be a candidacy game where r is Condorcet-
consistent. If V has a Condorcet winner c then for any Y ⊆ X,

Y is a SE ⇔ Y is a PSN E ⇔ Y is a genuine PSN E ⇔ c ∈ Y .

The proof of Proposition 1 can be found in the appendix. If the voter profile V has
no Condorcet winner, the analysis becomes more complicated. We provide results for
this more general case in the following sections.

3 Three Candidates

We study the case of three candidates separately as here we obtain an exact character-
ization of voting rules for which the existence of a genuine equilibrium is guaranteed
(see Proposition 2). Recall that we assume the number of voters to be odd, to avoid
ties.12

Proposition 2 Let � = 〈X , V , r ,C〉 be a candidacy game form where voting rule r is
majority-consistent. For m = 3 candidates, a genuine PSNE exists for all preference
profiles if and only if r never elects a Condorcet loser.

Proof Letm = 3 and let the candidates be a, b, c. Assume there is a voter profile V for
which there is aCondorcet losera and r(V ) = a.Wehaveabc �→ a because r(V ) = a,
ab �→ b, ac �→ c because a is a Condorcet loser and r is majority-consistent. Assume
also that c prefers b to a: then, abc is not a PSNE because c prefers to withdraw. The
only other state where a wins is the state where only a runs; however, it is not a PSNE

12 Without this assumption, the following weakening of Proposition 2 holds: a genuine PSNE exists if r
never elects a candidate which, in the majority graph, is beaten or tied with any other candidate, and beaten
by at least one candidate.
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because b (and c) wants to join. Assume r never elects a Condorcet loser. Let V be a
voter profile. If V has a Condorcet loser a then r(V ) �= a. Without loss of generality,
assume r(V ) = b. We have ab �→ b because r is majority-consistent. Therefore, ab
is a genuine PSNE. If V has no Condorcet loser then because n is odd, the majority
graph associated with V has a preference cycle, say a → b → c → a. Without loss
of generality, assume r(V ) = b. Then bc is a genuine PSNE. ��

4 Positional Scoring Rules

As a corollary of Proposition 2, the only scoring rule for which the existence of a
genuine PSNE is guaranteed for games with three candidates m = 3, is the Borda
rule, as this is the only one that never elects a Condorcet loser. Now we move to
m ≥ 4.

We make use of the powerful result by Saari [38], stating that for almost all scoring
rules, any choice function can result from a voting profile. For four candidates [39],
we define a Saari rule as a rule for which, when the scoring vector for three candidates
is of the form 〈w1, w2, 0〉, then the vector for four candidates is not 〈3w1, w1 +
2w2, 2w2, 0〉. For instance, plurality and veto are Saari rules, but Borda is not a Saari
rule.

Now, since for any Saari rule, any choice function can result from a voting pro-
file [38, 39], this means that our question boils down to check whether a choice
function, together with some coherent candidates’ preferences, can be found such that
no PSNE exists for m = 4. We answer this question by encoding the problem as an
Integer Linear Program (ILP).

It turns out that such choice functions do exist.We depict one such function in Fig. 1,
where the outcome of the choice function (the winner in each state) is given in bold-
face. The arrows in the figure denote deviations, based on the following candidates’
preferences:

a : a 
 b 
 c 
 d
b : b 
 a 
 c 
 d
c : c 
 d 
 a 
 b
d : d 
 a 
 b 
 c

The next results then follow directly.

Proposition 3 For m = 4 candidates, if r is a Saari rule, there are candidacy games
without pure strategy Nash equilibria.

Corollary 1 For m = 4 candidates, for plurality and veto voting rules, there are
candidacy games without PSNE.

Note that the result holds more generally for k-approval with any k. We emphasize
that even though Saari’s result suggests that counterexamples can be obtained for all
these scoring rules, it does not directly provide a profile that would satisfy such a
choice function. These profiles may involve a large number of voters. For plurality,
we exhibit a profile with 13 voters corresponding to the choice function given in
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Fig. 1 A choice function without PSNE

Fig. 1, whose preferences are shown on the left part of the table below. Tie-breaking
is lexicographic. The right part of the table represents the candidates’ preferences.

3 1 1 1 1 1 1 2 2
d d d a a a b b c
c b a b c d c a b
a c b c b b d c d
b a c d d c a d a

a b c d
a b c d
b a d a
c c a b
d d b c

Similar profiles can be obtained for other Saari rules. As for the Borda rule, which is
not a Saari rule, it stands as an exception.

Proposition 4 For m = 4 candidates, for the Borda voting rule, (i) every candidacy
game has a PSNE. However, (ii) the existence of a genuine PSNE is not guaranteed.

Proof (i) This result relies on the fact that the outcome of Borda winner can be com-
puted from the weighted majority graph. We create an Integer Linear Program (ILP)
aiming at finding a counterexample for Borda: the infeasibility of the resulting set of
constraints shows that no instances without PSNE can be constructed. We now give
the details of this ILP. Let S be the set of states, and A(s) be the set of agents who are
candidates in state s ∈ S. Note that |S| = 2|X |. ��
Choi ce f unct i onswi th no PSNE We introduce a binary variable wsi , meaning
that agent i wins in state s. We add constraints enforcing that there is a single winner
in each state:

∀i ∈ X ,∀s ∈ S : ws,i ∈ {0, 1} (1)

∀s ∈ S : ∑
i∈X ws,i = 1 (2)

∀s ∈ S,∀i ∈ X /∈ A(s) : ws,i = 0 (3)

Now, we introduce constraints related to deviations. We denote by D(s) the set of
possible deviations from state s (state where a single agent’s candidacy differs from
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s). We also denote by a(s, t) an agent potentially deviating from s to t . We define
binary variables ds,t indicating a deviation from state s to state t . In each state, there
must be at least one deviation, otherwise this state must be a PSNE:

∀s ∈ S,∀t ∈ S : ds,t ∈ {0, 1} (4)

∀s ∈ S : ∑
t∈D(s) ds,t ≥ 1 (5)

Now we introduce constraints related to the preferences of the candidates. For this
purpose, we introduce a binary variable pi, j,k , meaning that agent i prefers candidate
j over candidate k. If there indeed is a deviation from s to t , the deviating agent must
prefer the winner of the new state compared to the winner of the previous state:

∀s ∈ S,∀t ∈ D(s),∀i ∈ X ,∀ j ∈ X : ws,i + wt, j + ds,t − pa(s,t), j,i ≤ 2 (6)

Finally, we ensure that the preferences are irreflexive and transitive, and respect the
constraint of being self-supporting:

∀i ∈ X ,∀ j ∈ X : pi, j, j = 0 (7)

∀a ∈ X ,∀i ∈ X∀ j ∈ X ,∀k ∈ X : pa,i, j + pa, j,k − pa,i,k ≤ 1 (8)

∀i ∈ X ,∀ j ∈ X : pi,i, j = 1 (9)

Const raints f or Borda We introduce a new integer variable Ni, j to represent the
number of voters preferring i over j in the weighted tournament. We first make sure
that the values of Ni, j are consistent throughout the weighted tournament:

∀i ∈ X ,∀ j ∈ X ,∀k ∈ X ,∀l ∈ X : Ni, j + N j,i = Nk,l + Nl,k (10)

In each state, when agent i wins, we must make sure that its total amount of points
is the highest among all agents in this state (note that i can simply tie with agents it
has priority over in the tie-breaking; we omit this for the sake of readability):

∀s ∈ S,∀i ∈ A(s),∀k ∈ A(s) \ {i} :
(1 − ws,i ) × M +

∑

j∈A(s)\{i}
Ni, j >

∑

j∈A(s)\{k}
Nk, j (11)

Here, M is a large value, used to relax the constraint whenws,i is 0. For this we need to
find a large enough value of M such that every choice function that can be obtained for
Borda and 4 candidates is implementablewith aweighted tournamentwhere the largest
value occurring is lower than M . To find such an M , we first write a computer program
that enumerates all such choice functions. Then, for each of these choice functions,
write a a dedicated MIP which returns the minimum value N occuring in the weighted
tournament when it is feasible, or unfeasible otherwise. By calling this MIP for each
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choice functions (up to symmetries), we retrieve the maximal value required overall).
(ii) To see that there may be no genuine PSNE, consider the following profile.

1 1 2 1 1 1 1 1 1 1
c c a d b b d b a a
d b c c c a b d d d
b a d b a d c c b c
a d b a d c a a c b

a b c d
a b c d
c c a b
d d b a
b a d c

The corresponding choice function is detailed below. Tie-breaking is lexicographic.

a b+
b c+
c d+
d a+

ab
ac b+
ad
bc d+
bd a+
cd a+

abc a−
abd c+
acd b+
bcd a+

abcd d−

As in Fig. 1, winners are indicated in boldface, and to make the representation more
compact, next to each state we just indicate one deviation from this state, where x+
(respectively, x−) means that x has a profitable deviation by joining (respectively,
by leaving) this state. There are only two PSNE (ab and ad) but neither of them is
genuine as the Borda winner in the full profile abcd is c. ��

The existence of PSNE with four candidates makes Borda a noticeable exception
from the family of scoring rules, for most of which Proposition 3 implies negative
result. However, as Proposition 4 demonstrates, we cannot guarantee the existence of
genuine equilibria for Borda with m = 4 and, as we show in the following Propo-
sition 5, there is no longer guarantee for the PSNE existence when the number of
candidates is m = 5.

Proposition 5 For the Borda rule with m = 5 candidates, there are candidacy games
with no pure strategy Nash equilibria.

Proof The following counterexample has been obtained by applying the same ILP
technique as described above. We do not specify the voter profile V explicitly, but
only give its majority margin matrix in the left part of the table, where the number
corresponding to row x and column y is given by NV (x, y) − NV (y, x); by Debord’s
theorem [11], the existence of a profile V realizing thismatrix is guaranteed because all
elements of thematrix have the same parity. Tie-breaking is irrelevant. The candidates’
preference are specified explicitly in the right part of the table.

a b c d e
a 0 −3 −1 +1 +3
b +3 0 −5 +1 −1
c +1 +5 0 −5 −1
d −1 −1 +5 0 −3
e −3 +1 +1 +3 0

a b c d e
a b c d e
b a a c c
e e d e d
c c e a a
d d b b b
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Below we give the explicit listing of all 31 states, using the same representation as
in Proposition 4:

a b+
b c+
c d+
d e+
e a+

ab c+
ac d+
ad b+
ae b+
bc d+
bd e+
be c+
cd e+
ce a+
de a+

abc d+
abd c+
abe c+
acd c−
ace e−
ade b+
bcd e+
bce b−
bde a+
cde a+

abcd e+
abce b−
abde c+
acde e−
bcde d−

abcde b−

Alternatively, one can also depict the deviation graph explicitly (see Figure 2). ��
Now, we finally move to the general case with an arbitrary number of candidates.

For all rules that satisfy IBC and forwhichwe have already found a counterexample for
somem, we know that counterexamples exist for any number of candidatesm′ ≥ m. As
we previously noted, veto is an example of a rule not satisfying IBC, but an adapted
version of Lemma 1 can easily be derived (see Lemma 2 in the appendix). As a
corollary of these, and of Propositions 3 and 5 we thus get:

Corollary 2 There exist profiles with no PSNE in the following cases:

– For all Saari scoring rules satisfying IBC (including plurality), as well as for veto,
for all m ≥ 4.

– For Borda, for all m ≥ 5.

Fig. 2 Borda, five candidates: a choice function without NE
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5 Rules Based on Successive Elimination

Let us now focus on plurality with runoff and single transferable vote (STV). For these
rules, it is no longer the case that any choice function can be implemented by such rules.
For instance, for plurality with runoff, a necessary condition for the choice function to
be implementable is that, for any subset of candidates Y with |Y | ≥ 3, if r(V ↓Y ) = x ,
then x must win in pairwise comparison against some candidate y ∈ Y \ {x}. For STV,
even a stronger condition is required: for any subset of candidates Y , if r(V ↓Y ) = x ,
it must be the case that r(V ↓Z ) = x for some set Z ⊂ Y such that |Z | = |Y − 1|.

We make no claim that these conditions are sufficient to ensure a possible imple-
mentation. However, by adding these constraints into our ILP, we generated a choice
function that we could in turn implement with a specific profile, thus providing us
with the following result.

Proposition 6 For m ≥ 4 candidates, for plurality with runoff and single transferable
vote, there are candidacy games without PSNE.

Proof We exhibit a counterexample with 19 voters. Tie-breaking is lexicographic.
The corresponding choice function is identical for plurality with runoff and single
transferable vote.

2 2 2 2 2 2 2 2 2 1
b b d d d c c a a a
c a b c a d a b c b
d d c b c a b d b c
a c a a b b d c d d

a b c d
a b c d
b d b b
c a d c
d c a a

We detail the choice function below, with one example deviation per state :

a c+
b c+
c d+
d b+

ab d+
ac b+
ad c+
bc a+
bd c+
cd a+

abc d+
abd a−
acd b+
bcd b−

abcd a−

Regrading the general case with an arbitrary number of candidates, we simply note
that the rules satisfy IBC. As we have already found a counterexample for 4, we know
that counterexamples exist for any number of candidates greater than 4. ��

Finally, since plurality with runoff and STV never elect a Condorcet loser, then for
m = 3 candidates the existence of a PSNE is guaranteed as a corollary of Proposition 2.

6 Condorcet-Consistent Rules

Wenow turn our attention to Condorcet-consistent rules. First, we show that candidacy
games with four candidates, must have a PSNE under any such rule. Recall that we
assume the number of voters n to be odd.
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Proposition 1 For m = 4 candidates (and odd number of voters), if r is Condorcet-
consistent then every candidacy game has a PSNE.

Proof For any voter profile V , let GV be the complete tournament obtained from
the majority graph associated with V . Although we do not assume that r is based
on the majority graph, we nevertheless prove our result by considering all possible
tournaments on four candidates. In fact, the proof never uses the fact that two profiles
having the same majority graph have the same winner.13 In the proof, when we speak
of a “PSNE in G” we mean a PSNE in any candidacy game for which the profile V
is associated with the majority graph G. There are four tournaments to consider (all
others are obtained from these ones by symmetry).

a b

c d

G1

a b

c d

G2

a b

c d

G3

a b

c d

G4

For G1 and G2, any subset of X containing the Condorcet winner is a PSNE (see
Proposition 1). ForG3, we note that a is a Condorcet loser. That is, N (a, x) < N (x, a)

for all x ∈ {b, c, d}. Note that in this case, there is no Condorcet winner in the reduced
profile V ↓{b,c,d} as this would imply the existence of a Condorcet winner in V (case
G1 or G2). W.l.o.g., assume that b beats c, c beats d, and d beats b. W.l.o.g. again,
assume that bcd �→ b. Then, {b, c} is a PSNE. Indeed, in any set of just two candidates,
none has an incentive to leave. Now, a or d have no incentive to join as this would
not change the winner: in the former case, observe that b is the (unique) Condorcet
winner in V ↓{a,b,c}, and the latter follows by our assumption. There is always a PSNE
for G3.

The proof forG4 is more complex and proceeds case by case. Since r is Condorcet-
consistent, we have acd �→ a, bcd �→ c, ab �→ b, ac �→ a, ad �→ a, bc �→ c,
bd �→ d and cd �→ c. The sets of candidates for which r is undetermined are abcd,
abc and abd.

We have the following easy facts: (i) if abcd �→ a then acd is a PSNE, (ii) if
abcd �→ c then bcd is a PSNE, (iii) if abc �→ a then ac is a PSNE, (iv) if abd �→ a
then ad is a PSNE, (v) if abc �→ c then bc is a PSNE. The only remaining cases are:

1. abcd �→ b, abc �→ b, abd �→ b.
2. abcd �→ b, abc �→ b, abd �→ d.
3. abcd �→ d, abc �→ b, abd �→ b.
4. abcd �→ d, abc �→ b, abd �→ d.

In cases 1 and 3, ab is a PSNE. In case 2, if a prefers b to c then abc is a PSNE, and if
a prefers c to b, then bcd is a PSNE. In case 4, if a prefers c to d, then bcd is a PSNE;
if b prefers a to d, then ad is a PSNE; finally, if a prefers d to c and b prefers d to a,
then abcd is a PSNE. ��
13 For instance, we may have two profiles V , V ′ both corresponding to G4, such that r(V ) = a and
r(V ′) = b; the proof perfectly works in such a case.
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Thus, the picture for four candidates shows a sharp contrast. On one hand, we show
that “almost all scoring rules” [38], single transferable vote, and plurality with run-off,
may fail to have a PSNE. On the other hand, Condorcet-consistency alone suffices to
guarantee its existence.14 Note though, that the proof of Proposition 1 does not extend
to imply the existence of genuine PSNE for Condorcet-consistent rules with m = 4
candidates. As can be seen from the remainder of this section, different families of
Condorcet-consistent rules show different results with respect to the EGE property for
m = 4 candidates, as well as w.r.t. the EE property for m > 4.

6.1 Maximin, Uncovered Set, and Top Cycle

As the following Proposition 7 demonstrates, for the maximin rule and the uncovered
set rule, the existence of PSNE is no longer guaranteed beyond four candidates. The
proof, consisting of two counterexamples, is detailed in the appendix.

Proposition 7 For themaximin rule and the uncovered set rule,withm = 5 candidates,
there are candidacy games without PSNE.

However, this negative result does not extend to all Condorcet-consistent rules, as
can be seen from the Proposition 8 below and the following Proposition 13.

Proposition 8 For the top cycle rule, every candidacy game with m ≤ 6 candidates
has a PSNE, and for m = 7 candidates, there are candidacy games without PSNE.

Proof The proof for 5 candidates is reasonably easy to follow. Let V be a voter profile
over X = {a, b, c, d, e} and without loss of generality, assume that the tie-breaking
priority ranks a above all other candidates.

If |TC(V )| ≤ 4 then consider the restriction V ↓TC(V ) of V to TC(V ). It is a q-
candidate profile for q ≤ 4, therefore by Proposition 1 the corresponding candidacy
game has a PSNE Z ⊆ TC(V ). Since it is a PSNE in V ↓TC(V ), no candidate in TC(V )

has an incentive to deviate. Now, if a candidate in X \ TC(V ) joins, the outcome does
not change, therefore no candidate outside TC(V ) has an incentive to join. Therefore,
Z is a PSNE for V .

Assume now that TC(V ) = {a, b, c, d, e}, so a is preferred by the tie-breaking.
Without loss of generality, let themajority graph contain a → b → c → d → e → a.
For abcde not to be a PSNE, a withdrawing agent x has to induce a new top cycle not
containing a. If this top cycle is a singleton, then X \ {x} is a PSNE. Therefore, the
top cycle after the withdrawal of x must be of size 3: it can only be {c, d, e}, with b
withdrawing because it prefers the most prioritized candidate (let us call it y) among
{c, d, e} to a. At this stage, we know that d → a, c → a, e → a, c → d → e → c,
and that the winner in acde is y. Observe that, irrespective of the tie-breaking winner,
agent a will not leave because the winner would remain the same. Thus, there are three
cases to consider:

– Case 1: y = c. Consider acd �→ c. Since ac �→ c, cd �→ c, and acde �→ c, acd
is not a PSNE only if b wants to join; but abcd �→ a, and b prefers c to a: bcd is
a PSNE.

14 Note that this positive result holds as well for the Banks rule, since uncovered set and Banks do coincide
up to six candidates [5].
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– Case 2: y = e. Consider ace �→ e. Since ae �→ e, ce �→ e, and acde �→ e, ace is
not a PSNE only if b wants to join. For this to be possible, we must have b → e,
and then abce �→ a. But in this case, since abc �→ a, abe �→ a, and abcde �→ a,
abce is a PSNE. Therefore, either ace or abce is a PSNE.

– Case 3: y = d. Consider ade �→ d. Since ad �→ d, de �→ d and acde �→ d,
ade is not a PSNE only if b wants to join. For this to be possible, it must be that
b → d (and b prefers a over d). Thus, abde �→ a. In this case, since abd �→ a
and abcde �→ a, abde is not a PSNE only if d wants to leave. This is possible
only if e → b (and d prefers e over a). But then, abe �→ e, ae �→ e, be �→ e, and
abce �→ e: abde is a PSNE. Therefore, either ade or abde is a PSNE.

For the case of m = 6 candidates it becomes too tedious to perform a similar
case analysis, so we obtain the result with the help of computer techniques. More
specifically, we first prune the domain to reduce the number of majority graphs to
consider (for instance, we can safely assume the existence of a top cycle involving all
the candidates). Then, for each remaining graph, we compute the co-winners given by
the top cycle rule, and launch a feasibility problem asking the computer to build an
instance without equilibrium. This is similar in spirit to the programs used in previous
sections, but including additional types of decision variables: one for encoding the
fact that candidates are co-winners, and one for the tie-breaking ordering. Additional
constraints then make sure that winners are indeed among the co-winners, and that if a
candidate is winning among co-winners, then this has to be thanks to the tie-breaking.
The infeasibility of each integer program called tells us that an equilibrium always
exists, but we could not extract any readable proof from the result. For the case with
m = 7 candidates, the same methodology provided a counterexample that we detail
in full in the appendix. ��

We now turn to show that in contrast to the EE property of Condorcet-consistent
rules with four candidates, genuine equilibria may fail to exist for maximin, top cycle
and the uncovered set rule with m = 4 candidates (see Propositions 9, 10 and 11).

Proposition 9 For the maxinim rule, with m = 4 candidates, some candidacy games
have no genuine PSNE.

Proof Consider the following profile with 9 votes over the set abcd of 4 candidates.

3 2 1 3
a b d d
b c b c
c a c a
d d a b

We thus have: N (a, b) = N (b, c) = N (c, a) = 6 and N (a, d) = N (b, d) =
N (c, d) = 5. Tie-breaking is arbitrary. The genuine winner in the full candidate
profile abcd is d, who is a Condorcet loser, and the only other state where d gets
elected is d where any other candidate would have an incentive to join. Therefore,
there is no genuine PSNE. ��
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Proposition 10 For the top cycle rule, with m = 4 candidates, some candidacy games
have no genuine PSNE.

Proof Assume the majority graph is G4 as in the proof of Proposition 1. Assume
the tie-breaking priority relation is d � c � b � a. Then abcd �→ d, abc �→ c,
abd �→ d, acd �→ a, ad �→ a, bd �→ d, cd �→ c. Assume that a prefers c to d and b
prefers a to d. The only states where d is elected are

– abcd, which is not a PSNE because a wants to withdraw;
– abd, which is not a PSNE because b wants to withdraw;
– bd, which is not a PSNE because c wants to join;
– d, which is not a PSNE because a wants to withdraw.

Therefore, there is no genuine PSNE. ��
Proposition 11 For the uncovered set rule, with m = 4 candidates, every candidacy
game has a genuine PSNE.

Proof We reason over a majority graph, and reuse the constructs G1, . . . ,G4 as in the
proof of Proposition 1. If the majority graph is G1 or G2 then there is a Condorcet
winner, and so abcd is a genuine PSNE. If the majority graph is G3, without loss of
generality, assume that the tie-breaking priority relation is such that b � c � d (a has
whatever priority). Then abcd �→ b, abc �→ b, ab �→ b, bc �→ b: abc is a genuine
PSNE. If the majority graph is G4, note first that a, b and c are uncovered set winners
but not d. We do a case by case study according to the possible tie-breaking priorities:

1. if a has the highest priority in �: abcd �→ a, abc �→ a, abd �→ a, acd �→ a:
abcd is a genuine PSNE.

2. if b has the highest priority in �: abcd �→ b, abc �→ b, abd �→ b, ab �→ b: ab is
a genuine PSNE.

3. if c has the highest priority in �: abcd �→ c, bcd �→ c, bc �→ c, cd �→ c: bcd is
a genuine PSNE.

4. if d has the highest priority in �, followed by a: abcd �→ a, acd �→ a, ac �→ a,
ad �→ a: acd is a genuine PSNE.

5. if d has the highest priority in �, followed by b: abcd �→ b, ab �→ b, abc �→ b,
abd �→ b, a �→ a, a �→ a: ab is a genuine PSNE.

6. if d has the highest priority in �, followed by c: abcd �→ c, bcd �→ c, bc �→ c,
cd �→ c: bcd is a genuine PSNE.

In all cases, we don’t need to specify candidates’ preferences because the genuine
PSNE obtained are such that all adjacent states have the same winner (except in case
2 for ab, where the winner is b, and a, but there b does not want to withdraw because
b prefers themselves to a). All cases have been covered. There is always a genuine
PSNE. ��

The result of Proposition 11 does not, however, extend beyond four candidates, as
implied by Proposition 7.

Proposition 12 For the uncovered set rule, with m = 4 candidates, some candidacy
games have no genuine PSNE.
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Proof We take a profile whose associated majority graph is G4 as in the proof of
Proposition 1. The tie-breaking priority relation is d � b � a � c. The candidates’
preferences are such that a prefers c to b, and are otherwise arbitrary. In the state abcd,
a, b and c are uncovered set co-winners (but not d), and by tie-breaking, the winner
in abcd is b and a genuine PSNE must have b as winner. The choice function induced
from the profile is abcd �→ b, abc �→ b, abd �→ d, acd �→ a, bcd �→ c, ab �→ b,
ac �→ a, ad �→ a, bc �→ c, bd �→ d, cd �→ c. In state abcd, a wants to leave. The
only states other than abcd where the winner is b are abc, ab and b. abc is not a PSNE
because a wants to leave; ab and b are not PSNEs because in both, d wants to join.
Therefore, there is no genuine PSNE. ��

The only common rule we could identify for which the EGE property holds for any
number of candidates, is Copeland, as we show next.

6.2 Copeland

Here, we prove our main positive result showing the existence of genuine pure strategy
Nash equilibrium for Copeland, under deterministic tie-breaking, for any number of
candidates (provided the number of voters, n, is odd).

Proposition 13 For Copeland, for any number of candidates and an odd number of
voters, every candidacy game has a genuine PSNE.

Proof Let V be a profile and →V its associated majority graph. Let N (x, V ) be the
number of candidates y �= x such that x →V y. The Copeland co-winners for V are
the candidates maximizing N (·, V ).

Let Cop(V ) be the set of Copeland co-winners for V and let c be the Copeland
winner—i.e., the most prioritized by the tie-breaking order candidate in Cop(V ). Let
Dom(c) = {c}∪ {y|c →V y} and q = N

(
c, V ↓Dom(c)

) = |Dom(c)|−1 ≥ N (c, V ).
Also, since any y ∈ Dom(c) is beaten by c, we have N (y, V ↓Dom(c)) ≤ q − 1.

We claim that Dom(c) is a PSNE.Note that c is aCondorcetwinner in the restriction
of V to Dom(c), and a fortiori, in the restriction of V to any subset of Dom(c). Hence,
c is theCopelandwinner in Dom(c) and any of its subsets, and no candidate in Dom(c)
has an incentive to leave.

Now, assume there is a candidate z ∈ X \ Dom(c) such that r
(
V ↓Dom(c)∪{z}) �= c.

Note that z →V c as z does not belong to Dom(c); so, N (c, V ↓Dom(c)∪{z}) = q.
For any y ∈ Dom(c) we have N (y, V ↓Dom(c)∪{z}) ≤ (q − 1) + 1 = q =

N (c, V ↓Dom(c)∪{z}). If N
(
y, V ↓Dom(c)∪{z}) < N (c, V ↓Dom(c)∪{z}), then y is not the

Copeland winner in V ↓Dom(c)∪{z}. If N
(
y, V ↓Dom(c)∪{z}) = N

(
c, V ↓Dom(c)∪{z}),

then N (y, V ) ≥ N (c, V ). That is, either c /∈ Cop(V ), a contradiction, or both y, c
are in Cop(V ). The latter implies c � y; hence, y is not the Copeland winner in
V ↓Dom(c)∪{z}.

Hence, r
(
V ↓Dom(c)∪{z}) = z. That is, either (1) N

(
z, V ↓Dom(c)∪{z}) > q, or (2)

N
(
z, V ↓Dom(c)∪{z}) = q and z � c. If (1) holds then N (z, V ) > N (c, V ), which

contradicts the fact that c is the Copeland winner in V . If (2) holds then N (z, V ) =
N (c, V )—i.e., both c and z are inCop(V ), which implies that c � z, and z cannot win
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in V ↓Dom(c)∪{z}. Therefore, the Copeland winner in V ↓Dom(c)∪{z} is c, which implies
that z has no incentive to join Dom(c). ��

Note that the proof of Proposition 13 not only implies the existence of a PSNE, but
the existence of a genuine PSNE where the Copeland winner is the same as in the full
candidate profile. This, however, does not imply the candidate stability for candidacy
games under Copeland—that is, that the set of all potential candidates is a PSNE.15

When n is even, the result of Proposition 13 carries on whenever no pairwise
majority ties occur. In the general case, however, the result depends on the way ties
are taken into account for computing the Copeland score of a candidate. For the variant
Copeland0 where the Copeland score is given by the number of outgoing edges (i.e.,
ties not giving any point), the result still holds. Whether it holds for other variants of
the rule, is an open question. The next step for Copeland in the hierarchy of stability
properties (see Section 2.3) would be to prove CGE—that is, to show that a genuine
PSNE characterized in Proposition 13 can be reached by a sequence of improving
moves starting from the set of all candidates. Unfortunately, as the next Proposition 14
demonstrates, there is no such guarantee.

Proposition 14 For the Copeland rule, there exist candidacy games such that no gen-
uine PSNE is reachable from the set of all candidates.

Proof Consider a profile corresponding to the majority graph below, together with the
following partial candidates’ preferences (unspecified preferences play no role). The
tie-breaking priority relation is lexicographic.

a : a 
 b 
 e 
 d 
 c
d : d 
 c 
 e 
 a 
 b
b : b 
 a 
 c 
 d 
 e

a

b

c

e d

The Copeland winner is e. The Nash equilibrium characterized in the proof of Propo-
sition 13 is acde (the winner is e as in the full profile). The choice function, restricted
to the states that contain e, is abcde �→ e, abce �→ c, abde �→ a, acde �→ e,
bcde �→ d, abe �→ a, ace �→ e, ade �→ e, bce �→ b, bde �→ b, cde �→ e, ae �→ e,
be �→ b, ce �→ e, de �→ e. Therefore, the other states where e wins are acde, ace,
ade, cde, ae, ce, de, and e. The only one of them which is a PSNE is acde: in all

15 For instance, let X = {a, b, c, d}, and consider the majority graph a → b, a → c; b → c, b → d; d →
a, d → c, with the tie-breaking priority relation a � b � c � d. The Copeland winner is a (by the tie-
breaking). We only need to specify that b : d 
 a on top of self-supported preferences. X is not a PSNE,
because it is a profitable deviation for b to leave.
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other states ace, ade, cde, ae, ce, and de, b wants to joins. Now we show that acde
cannot be reached by a sequence of deviations from the initial state abcde.

We first exhibit the following sequence of deviations starting from the initial state.

abcde �→ e
d withdraws: abce �→ c
awithdraws: bce �→ b
d joins: bcde �→ d
a joins: abcde �→ e

We cannot reach acde by a series of individual deviations: not from abcde because
the winner does not change; not from ade (the winner is a, thus b does not want to
join); not from ace (e is the winner); and not from cde (c is the winner). It is reachable
from acd by e joining, since acd �→ a and acde �→ e. Now, we show that acd cannot
be reached through a deviation path from abcde. acd cannot be reached from abcd
because abcd �→ a, nor from abce because abcd �→ e, nor from ac because ac �→ c
and d prefers c to a, nor from ad because ad �→ a; it an however be reached from
cd by a joining; however, cd cannot be reached through a deviation path from abcde:
it cannot be reached from acd since acd �→ a, nor from bcd since bcd �→ d and
cd �→ d, nor from cde since cde �→ e, nor from d; it can be reached from c, but c,
like any singleton state, cannot be reached by any deviation. ��

7 Strong Equilibria

Turning attention to coalitional deviations, in this section we prove that strong equi-
libria are not guaranteed for almost any voting rule and any number of candidates
m ≥ 3.

Let r be a voting rule defined for a varying set of candidates Y ⊆ X . We say that r
is majority-extending if for any Y ⊆ X such that |Y | = 2, if the two candidates in Y
are not tied in V ↓Y , then r(V ↓Y ) is the majority winner in V ↓Y (in case of a tie, we
do not need to specify the outcome). Then we can state that:

Proposition 15 For any majority-extending and IBC voting rule, and for any m ≥ 3,
there is an m-candidate profile without a SE.

Proof Let r be a majority-extending and IBC rule. Consider the following 3-voter,
k + 3-candidate profile (k ≥ 0):

1 1 1
a b c
b c a
c a b
x1 x1 x1
...

...
...

xk xk xk
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The preferences of candidates include: a : a 
 b 
 c; b : b 
 c 
 a; c : c 
 a 

b; the preferences of candidates beyond a, b, c are not relevant.

By a repeated application of IBC, for any nonempty Y ⊆ {a, b, c}, and any Z ⊆
{x1, . . . , xk}, we have r(V ↓Y∪Z ) = r(VY ).

We already know that r(V ↓{a,b,c,x1,...,xk } ∈ {a, b, c}. Without loss of generality,
assume that r(V ↓{a,b,c,x1,...,xk }) = a. For any Z ⊆ {x1, . . . , xk}, by IBC and majority-
extension, the resulting choice function must be:

abcZ �→ a; abZ �→ a; bcZ �→ b; acZ �→ c; aZ �→ a; bZ �→ b; cZ �→ c

But then, given the candidates’ preferences, for any Z ⊆ {x1, . . . , xk} we have:
– abcZ is not a SE: abcZ �→ a, b leaves �→ c
– abZ is not a SE: abZ �→ a, b leaves and c joins �→ c
– acZ is not a SE: acZ �→ c, a leaves and b joins �→ b
– bcZ is not a SE: bcZ �→ b, a joins �→ a
– aZ is not a SE: aZ �→ a, c joins �→ c
– bZ is not a SE: bZ �→ b, a joins �→ a
– cZ is not a SE: cZ �→ c, b joins �→ b
– Z is not a SE: any of a, b or c wants to join. ��

The result of Proposition 15 applies to most common voting rules. A noticeable excep-
tion is veto; however, we already know that for veto, there exist profiles without PSNE,
and therefore without SE.

8 Strategic Candidacy and Consenting Candidate Control

In this section, we present the conceptual contribution of our work. We define the
notion of consenting control and discuss its relation to strategic candidacy; we then
prove the very first results on resistance to this new version of candidate control. We
start by listing different types of candidate control, relevant for our study.

8.1 Background on candidate control

Throughout this section, we continue to assume that voting rules are resolute. Can-
didate control was introduced for the first time by Bartholdi et al. [2].16 Since then,
several variants of candidate control have been proposed:

– An instance of constructive control by deleting candidates (CCDC) [2] consists
of a profile V over set of candidates X , a distinguished candidate c, an integer k,
and we ask whether there exists a subset Y of X with |X \ Y | ≤ k such that c is
the (unique) winner in Y .

16 They also defined other versions of control: control by partitioning candidates, as well as by adding,
deleting or partitioning voters. We do not discuss them in this paper because they are not (as far as we can
see) related to strategic candidacy.
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– An instance of constructive control by adding an unlimited number of candidates
(CCAUC) [2] consists of a profile V over set of candidates X1∪X2, a distinguished
candidate c, and we ask whether there exists a subset Y of X2 such that the winner
in X1 ∪ Y is c.

– An instance of constructive control by adding candidates (CCAC) [22] consists
of a profile V over set of candidates X1 ∪ X2, a distinguished candidate c, and we
ask if there exists a subset Y of X2 such that |Y | ≤ k and the winner in X1 ∪ Y is
c.

Control by adding candidates is highly related to the determination of robustwinners
under candidate uncertainty [4]: given a set of candidates, a subset of which may turn
out to be unavailable (and then decline the offer to take the position if they are elected);
a winner is robust if it wins for any possible set of available candidates. Destructive
versions of control have been defined by Hemaspaandra et al. [26]:

– destructive control by deleting (DCDC) is similar to CCDC, except that we ask
whether there is a subset Y of X \{c}with |X \Y | ≤ k such that c is not the winner
in X \ Y ; and

– destructive control by adding candidates (DCAC) is similar to CCAC, except that
c should not be the winner in Y .

Finally, there are also multimode versions of control [21]: especially, constructive
control by deleting and adding candidates, abbreviated into CC (DC+AC), allows the
chair to delete some candidates and to add some others (subject to some cardinality
constraints).

8.2 Consenting Candidate Control and its Relation to Strategic Candidacy

Nash equilibria and strong equilibria in strategic candidacy relate to amore demanding
notion of control, which we call consenting control, and that we find an interesting
notion per se. In traditional control, candidates have no preferences and no choice—
the chair may add or delete them as she likes. In contrast, an instance of consenting
CCDC consists of an instance of CCDC plus, for each candidate in X , a preference
ranking over X , and we ask whether there is a subset Y of X with |X \Y | ≤ k such that
c is the unique winner in Y , and every candidate in X \ Y prefers c to the candidate
which would win if all candidates in X were running. An instance of consenting CCAC
consists of an instance of CCACplus, for each candidate in X2, a ranking over X1∪X2,
and we ask whether there is a subset Y of X2, of cardinality at most k, such that the
unique winner in X1 ∪ Y is c, and every candidate in Y prefers c to the candidate
which would win if only the candidates in X1 were running. Consenting versions of
destructive control are defined similarly.
The following observations are straightforward:

Observation 1 For any profile V , the joint action (1, . . . , 1) is a SE if and only if there
is no consenting destructive control by deleting candidates against the current winner
r(V ), with the value of k being fixed to m.
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The reason for k = m is that the chair has no limit on the number of candidates to
be deleted; on the other hand, control actions are restricted by the requirement for the
deleted candidates to give consent.

Observation 2 For any profile V , the joint action (1, . . . , 1) is a PSNE if and only if
there is no consenting destructive control by removing candidates against the current
winner r(V ), with the maximum number k of candidates to be deleted fixed to 1.

For candidate sets that are different from the set X of all candidates (as some may
leave and some other may join), we have to resort to consenting DC(DC+AC). Let s be
a state and Y the set of running candidates in s: then, s is a SE if there is no consenting
destructive control by removing and adding candidates against the current winner
r(V ↓Y ), without any constraint on the number of candidates to be removed or added.
For a PSNE, this is similar, but with the bound k = 1 on the number of candidates to
be deleted or added. Finally, s is a k-PSNE if (V ,Y , X \ Y , k) is a negative instance
of consenting CC (DC+AC). In particular, s is a PSNE if (Y , X \ Y , 1) is a negative
instance of consenting destructive control by adding or removing candidates, and s is
a SE if (Y , X \ Y ) is a negative instance of consenting destructive control by adding
or removing an unlimited number of candidates.

8.3 Resistance to Consenting Candidate Control

Given a voting rule r and a type of control T : voting rule r is said to be immune to T
if there are no positive instances of T for r ; it is vulnerable to T if there are positive
instances of T for r and the problem of deciding whether a successful control exists is
polynomial; and resistant to T if the problem of deciding whether a successful control
exists is NP-hard. Identifying the status of the different types of control for various
rules has been the topic of a number of papers, starting by [2]: see [23] for a survey at
the time; several additional results have appeared since then, as detailed in Section 1.

Clearly, a consenting candidate control strategy (consisting of a set of candidates
to add or delete) is also a standard candidate control strategy, while the converse is
not true. However, this does not allow to derive results about resistance to consenting
candidate control from results about standard candidate control. Nonetheless, in five
forms of candidate control out of six, we can find a polynomial reduction from control
to consenting control of the same type.

Proposition 16 For any resolute voting rule r , resistance to standard control implies
resistance to consenting control, for the following five control types: CCAC, CCAUC,
DCAC, DCAUC and DCDC.

Proof The proof consists of a generic reduction from standard control to consenting
control of the same type.

1. Let I = (V , X1, X2, k, c) be an instance of CCAC (respectively, an instance
I = (V , X1, X2, c) of CCAUC). We extend I into an instance I ′ of consenting
CCAC (respectively, CCAUC), where V ′ is defined as follows: every candidate in
X1 has itself on top (and no other constraint); every candidate in X2 has itself on
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top, then c, and no other constraint. If there is a succeeding constructive control
for c, then the added candidates (all from X2) consent, since they like c at least as
much as the previously winning candidate. Therefore, I is a positive instance of
CCAC (respectively, CCAUC) if and only if I ′ is a positive instance of consenting
CCAC (respectively, CCAUC).

2. Let I = (V , X1, X2, k, c) be an instance of DCAC (respectively, an instance
I = (V , X1, X2, c) of DCAUC). We extend I into an instance I ′ of consenting
DCAC (respectively, DCAUC), where V ′ is defined as follows: candidates of X1
have themselves on top, and no other constraint; candidates of X2 have themselves
on top, c bottom-ranked, and no constraint for the candidates in-between. If there
is a successful destructive control against c, then the deleted candidates (which
do not include c, by definition) consent, since they prefer the new winner to c.
Therefore, I is a positive instance of DCAC (respectively, DCAUC) if and only if
I ′ is a positive instance of consenting DCAC (respectively, DCAUC).

3. let I = (V , X , k, c) be an instance of DCDC. We extend I into an instance I ′ of
consenting DCDC, where V ′ is defined as follows: c has itself on top and no other
constraint; every other candidate has itself on top, c bottom-ranked, and no other
constraint in-between. If there is a successful destructive control against c, then
the deleted candidates (which do not include c, by definition) consent, since they
prefer the new winner to c. Therefore, I is a positive instance of DCDC if and only
if I ′ is a positive instance of consenting DCDC. ��
As a corollary of Proposition 16, all results about resistance to control for these five

types of standard candidate control [23] carry on to the consenting control version. As
an example, plurality is resistant to these five types of consenting control.

For constructive control by deleting candidates, these simple generic reductions do
not work, because a control strategy sometimes needs to delete the current winner,
who will never consent to such a deletion. Worse than that, there cannot be a generic
reduction from CCDC to consenting CCDC. To see it, consider the artificial voting
rule r that fixes a priority ranking x1 � x2 . . . � xm over X and outputs the candidate
with highest priority among those who are running. When x1 runs (and in particular,
when all candidates run), it wins. Therefore, there cannot be a constructive control for
c �= x1, since it would need x1 to be deleted, which x1 will never consent to: in other
terms, F is immune to consenting CCDC. However, for CCDC there are positive and
negative instances, and it is easy to see that r is vulnerable to CCDC.

In the other direction, there is a generic polynomial reduction for several types of
control, provided that the voting rule is polynomial-time computable.

Proposition 17 For any resolute rule r with polynomial-time winner determination:

– vulnerability to CCAC implies vulnerability to consenting CCAC;
– vulnerability to CCAUC implies vulnerability to consenting CCAUC;
– vulnerability to consenting CCAC (resp. CCAUC) implies vulnerability to con-
senting DCDC (resp. DCAUC).

Proof 1. Let I = (V , X1, X2, k, c,
X ) be an instance of consenting CCAC. Let
w be the current winner and let Xc
w

2 be the set of candidates in X who prefer
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c to w. There is a consenting constructive control by adding candidates for c
if there is a standard constructive control by adding candidates for the instance
I ′ = (V , X1, Xc
w

2 ,min(k, |Xc
w
2 |), c). Sincew can be determined in polynomial

time, this is a polynomial reduction.
2. For consenting CCAUC, the reduction is similar, with I = (V , X1, X2, c,
X )

and I ′ = (V , X1, Xc
w
2 , c).

3. It is already known (footnote 4 in [26]) that for resolute voting rules, destructive
control (of any type) can be polynomially reduced to constructive control (of the
same type), because there is a destructive control against c if there is a constructive
control for some x �= c. This, together with points 1 and 2 above, shows that
vulnerability to CCAC and CCAUC implies vulnerability to consenting DCAC
and DCAUC. ��
Propositions 16 and 17, together with the fact that immunity, resistance and vulner-

ability form a partition of all cases, imply that for any polynomial-time computable
rule (which is the case for all rules considered in Table 7.3 in [23]), the standard version
and the corresponding consenting version of CCAC (respectively, CCAUC) have the
same status (immunity, resistance of vulnerability). For DCAC and DCDC, we only
know that resistance to standard control implies resistance to consenting control.

For CCDC, we do not have any generic link between the standard and consenting
versions. As we said above, there are rules which are immune to consenting CCDC
while being vulnerable to standardCCDC,which precludes the existence of a reduction
between consenting and standard control, in either direction, and which in turn implies
that results should be obtained directly (which we leave for further research).

Figure 3 shows polynomial reductions between different forms of control (we omit
the versions with adding an unlimited number of candidates for brevity). Plain arrows
are valid for all voting rules, whereas dashed arrows are valid only for polynomial-time
computable voting rules.

Fig. 3 Reductions between control problems
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Table 2 PSNE existence guarantee for classes of strategic candidacy games.In brackets, we specify genuine
PSNE existence. By “yes∗” we mean that the guarantee holds under the assumption that n is odd, or more
generally, that pairwise majority ties do not occur

3 4 5-6 ≥ 7

plurality yes (no) no (no) no (no) no (no)

veto yes (no) no (no) no (no) no (no)

pl. runoff yes (yes∗) no (no) no (no) no (no)

STV yes (yes∗) no (no) no (no) no (no)

Borda yes (yes∗) yes (no) no (no) no (no)

maximin yes (yes∗) yes∗ (no) no (no) no (no)

UC yes (yes∗) yes∗ (no) no (no) no (no)

TC yes (yes∗) yes∗ (no) yes∗ (yes∗) no (no)

Copeland yes (yes) yes∗ (yes∗) yes∗ (yes∗) yes∗ (yes∗)

9 Conclusion

Our work offers a first systematic analysis of strategic candidacy equilibria for a list of
most prominent voting rules, and proves several (non)-existence results (see Table 2).

A full characterization of classes of voting rules under which all strategic candidacy
games have genuine pure strategy Nash equilibria, at least for an odd number of voters,
is left for further research. We know that such equilibria are guaranteed to exist for
Copeland, as well as for the rule defined by the sophisticated successive elimination;
however, these two rules do not have much in common, which suggests that such a
characterization could be highly complex.

Following the work of Polukarov et al. [35], another important research direction is
the study of (stable) states that can be reached by some (e.g., best response) dynamics,
starting from the set or all potential candidates. In some cases, even when the existence
of PSNE is guaranteed (e.g., for Copeland), we could already come up with examples
where none is reachable by a sequence of best responses; however, other types of
dynamicsmay also be studied.We are also interested in determining the computational
complexity of deciding whether there is a PSNE or SE, and whether they are reachable
by natural dynamic processes.

Finally, in this workwemake the first steps into exploring the concept of consenting
control, which as we show is closely related to strategic candidacy, and hope to see
many exciting results in this direction in the future.

Appendix : Missing Proofs

Proposition 1 1 Let � = 〈X , V , r ,C〉 be a candidacy game where r is Condorcet-
consistent. If V has a Condorcet winner c then for any Y ⊆ X,

Y is a SE ⇔ Y is a PSN E ⇔ Y is a genuine PSN E ⇔ c ∈ Y .
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Proof Assume c is a Condorcet winner for V and let Y ⊆ X such that c ∈ Y . Since r is
Condorcet-consistent, and since c is a Condorcet winner for V ↓Y , we have r

(
V ↓Y ) =

c. Assume Z = Z+ ∪ Z− is a deviating coalition from Y , with Z+ the candidates
who join and Z− the candidates who leave the election. Clearly, c /∈ Z , as c ∈ Y and
c has no interest to leave. Therefore, c is still a Condorcet winner in V ↓(Y\Z−)∪Z+

,
which by the Condorcet-consistency of r implies that r

(
V ↓(Y\Z−)∪Z+)

= c, which

contradicts the assumption that Z wants to deviate. We thus conclude that Y is a SE,
and a fortiori a PSNE (which is also genuine). Finally, let Y ⊆ X such that c /∈ Y .
Then, Y is not a PSNE (and a fortiori not a SE), because c has an interest to join the
election. ��
Proposition 8 For maximin and the uncovered set, with m = 5 candidates, there are
profiles without PSNE.

Proof For maximin, a counterexample is the following weighted majority graph along
with the candidates’ preference profile. The tie-breaking priority is lexicographic.

a b c d e
a 0 −3 3 −1 1
b 3 0 −3 3 1
c −3 3 0 −1 −1
d 1 −3 1 0 −5
e −1 −1 1 5 0

a b c d e
a b c d e
c e d a b
b c a c a
e a e b d
d d b e c

Below we give all 31 states, with the usual notation.

a b+
b c+
c a+
d b+
e a+

ab c+
ac d+
ad b+
ae b+
bc a+
bd c+
be c+
cd b+
ce a+
de a+

abc e+
abd c+
abe c+
acd b+
ace b+
ade b+
bcd a+
bce b−
bde c+
cde a+

abcd e+
abce a−
abde c+
acde b+
bcde b−

abcde a−

Here is now a counterexample for the uncovered set rule. Here we represent the
majority graph by its adjacency matrix. The tie-breaking rule is a � b � d � c � e.

a b c d e
a 0 0 0 1 0
b 1 0 1 0 0
c 1 0 0 1 0
d 0 1 0 0 1
e 1 1 1 0 0

a b c d e
a b c d e
e e e b b
c c d a a
b a a e c
d d b c d
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a b+
b d+
c b+
d a+
e d+

ab e+
ac b+
ad c+
ae d+
bc e+
bd a+
be d+
cd b+
ce d+
de a+

abc e+
abd d−
abe d+
acd b+
ace d+
ade c+
bcd c−
bce d+
bde a+
cde e−

abcd a−
abce d+
abde c+
acde e−
bcde e−

abcde e−

��
Proposition 9 For the top cycle rule and m = 7 candidates, there are profiles without
PSNE.

Proof We give the majority graph, tie-breaking relation, and the (partially specified)
candidates’ preferences. The tie-breaking relation is a � g � c � b � d � e � f .

a

b c

d

e

fg

a b c d e f g
a b c d e f g
c d c g
f b f d
g a g a
a f b b
d e e c
e g a f
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a g+
b a+
c f +
d c+
e c+
f e+
g e+

ab f +
ac f +
ad c+
ae d+
af e+
ag e+
bc a+
bd a+
be c+
bf e+
bg f +
cd g+
ce g+
c f e+
cg f +
de c+
df e+
dg f +
e f c+
eg d+
fg e+

abc f +
abd f +
abe c+
abf e+
abg f +
acd f +
ace g+
acf e+
acg f +
ade c+
adf e+
adg f +
ae f d+
aeg d+
afg e+
bcd f +
bce g+
bcf e+
bcg f +
bde c+
bdf e+
bdg a+
be f c+
beg d+
bfg e+
cde g+
cdf e+
cdg c−
ce f g+
ceg c−
cfg d+
de f b+
deg b+
dfg e+
e f g d+

abcd f +
abce b−
abcf e+
abcg f +
abde d−
abdf e+
abdg f +
abe f c+
abeg c+
abfg e+
acde g+
acdf e+
acdg c−
ace f g+
aceg c−
acfg e+
ade f c+
adeg b+
adfg e+
ae f g d+
bcde e−
bcdf e+
bcdg a+
bce f g+
bceg a+
bcfg e+
bde f a+
bdeg a+
bdfg e+
be f g d+
cde f g+
cdeg c−
cdfg e+
ce f g c−
de f g b+

abcde b−
abcdf e+
abcdg f +
abce f b−
abceg b−
abcfg e+
abde f d−
abdeg d−
abdfg e+
abe f g c+
acde f g+
acdeg c−
acdfg e+
ace f g c−
ade f g b+
bcde f g+
bcdeg c−
bcdfg e+
bce f g c−
bde f g a+
cde f g c−

abcde f b−
abcdeg b−
abcdfg e+
abce f g b−
abde f g d−
acde f g c−
bcde f g c−

abcde f g b−

��

Lemma 2 For the veto rule r , if there exists � = 〈X , V , r ,C〉 with no NE, then there
exists �′ = 〈X ′, V ′, r ,C ′〉 with no PSNE, where |X ′| = |X | + 1.

Proof Take � with no PSNE, with X = {x1, . . . , xm}, and n voters where n is odd. Let
s(V ,Y , xi ) denote the veto score of xi in V ↓Y . Let X ′ = X ∪ {xm+1}, and Q be the
following 3n-voter profile: for each vote 
i in V we have two identical votes Qi , Q′

i
obtained from 
i by adding xm+1 in the bottom position, and one vote Q′′

i obtained
from 
i by adding xm+1 in the top position. Finally, let C ′ be the candidate profile
obtained by adding xm+1 at the bottom of every ranking of a candidate xi , i ≤ m, and
whatever ranking for xm+1. Let �′ = 〈X ′, V ′, r ,C ′〉

Let Y ⊆ X and Y ′ = Y ∪ {xm+1}.
For all xi ∈ Y , s(Q,Y , xi ) = 3s(V ,Y \{xm+1}, xi ); therefore, r(Q↓Y ) = r(V ↓Y ).

Because Y is not a PSNE for �, some candidate xi ∈ X has a profitable deviation
from Y in �, thus xi has a profitable deviation from Y in �′ too: Y is not a PSNE in
�′.
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For all xi ∈ Y , s(Q,Y ′, xi ) = s(V ,Y \ {xm+1}, xi ) + 2n ≥ 2n, while
s(Q,Y ′, xm+1) = n; therefore, r(Q↓Y ′

) = r(V ↓Y ), and a profitable deviation from Y
in � is also a profitable deviation from Y ′ in �′: Y ′ is not a PSNE in �′. ��
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