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In Praise of Nonanonymity:
Nonsubstitutable Voting

Jérôme Lang

Abstract In voting theory, it is generally assumed that voters are substitutable with
each other, a property referred to as anonymity (which I will also call nonsubsti-
tutability because of the possible ambiguity of the former): the outcome should
remain unchanged after a permutation of agents’ identities. Nonsubstitutability is
generally taken for granted. While it is certainly highly desirable in political elec-
tions, I try to argue here that there are a whole lot of contexts where substitutability
leads to questionable outcomes, and I suggest a simple way of generalizing almost
all common voting rules to nonsubstitutable settings.

In the rest of this position paper, N = {1, . . . , n} is a set of agents and A is a finite
set of alternatives. An ordinal profile is a collection (V1, . . . , Vn) of linear orders on
A, and in this case rank (x, Vi ) is the rank of x in Vi and N (a ≻ b) is the set of
agents who prefer a to b. An approval profile is a collection (V1, . . . , Vn) of subsets
of A, and in this case App(a) is the set of agents who approve a.

1 Three Examples

1.1 Elections in Shawington

Until now, Shawington, the federal capital of theUnited States of PlanetMars, did not
have amayor. Now it has to elect one. As we know, Shawington is split in three ethnic
communities: the Greens, the Purples, and the Blues. Each community represents
one third of the population, with 100 voters each. The candidates are a, b, c and d.
The preferences of the population are as follows:

J. Lang (B)
CNRS, PSL, LAMSADE, Université Paris-Dauphine, Paris, France
e-mail: lang@lamsade.dauphine.fr

© Springer Nature Switzerland AG 2019
J.-F. Laslier et al. (eds.), The Future of Economic Design, Studies in
Economic Design, https://doi.org/10.1007/978-3-030-18050-8_15

97



lang@lamsade.dauphine.fr

98 J. Lang

60 Greens a ≻ b ≻ c ≻ d
10 Greens a ≻ b ≻ d ≻ c
30 Greens a ≻ c ≻ d ≻ b
40 Purples a ≻ b ≻ c ≻ d
30 Purples a ≻ b ≻ d ≻ c
30 Purples a ≻ d ≻ c ≻ b
70 Blues d ≻ b ≻ c ≻ a
30 Blues d ≻ a ≻ c ≻ b

The Shawingtonians decide to use a positional scoring rule associated with a
vector (s1, s2, s3, 0), with s1 ≥ s2 ≥ s3 and s1 > 0. The scores of the 4 candidates
are as follows:

a 200s1 + 30s2
b 210s2
c 30s2 + 230s3
d 100s1 + 30s2 + 70s3

Since a Lorenz-dominates (or stochastically dominates) all other candidates, it is
always a winner (and a single winner except if s1 = s2 = s3, in which case it is tied
with c). Is it the best outcome? Not sure, as the cumulated scores by population are
as follows (we show in boldface the minimum value in each row):

Greens Purples Blues
a 100s1 100s1 30s2
b 70s2 70s2 70s2
c 30s2 + 60s3 70s3 100s3
d 40s3 30s2 + 30s3 100s1

It seems that b is a good trade-off: all populations are equally satisfied. It does not
mean that voters are equally satisfied, though: b is theworst alternative for 30Greens,
30 Purples and 30 Blues. But each of the three communities is solidary enough so
that the dissatisfaction of 30% of the community be compensated by other means;
on the other hand, choosing a is really unfair to the Blues, and no compensation
from the other communities is possible: in other terms, on planet Mars, utility may
be transferrable within a single community but not between communities.1

1Readerswho feel uncomfortablewith grouping voters by race, religion, nationality, ethnicity, or any
such criterion can consider instead a similar example where professors are grouped by department
when a university makes a policy decision. It may seem acceptable to be fair across departments,
rather than fair across individual faculty members. Thanks to Nisarg Shah for this suggestion.
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1.2 Family Smith Watching Television

Family Smith lives in Shawington. Every day, they watch a movie on TV. There are
three channels c1, c2, c3, and the preferences of the family members for every day
of the week are as follows (we recall that Martian weeks contain three days):

Earthday Arrowday Senday
Ann c1 ≻ c2 ≻ c3 c3 ≻ c2 ≻ c1 c1 ≻ c2 ≻ c3
Betty c1 ≻ c3 ≻ c2 c3 ≻ c2 ≻ c1 c1 ≻ c2 ≻ c3
Charles c2 ≻ c3 ≻ c1 c1 ≻ c2 ≻ c3 c3 ≻ c1 ≻ c2

Let us first assume that the TV programs for the whole week are known at the
beginning of the week. A fair decision with a reasonable trade-off between efficiency
and fairness seems to bewatching c2 onEarthday, c3 onArrowday, and c1 on Senday.

Now, if the programs for each day are known only on the same day, planning ahead
is not possible. On Earthday, c1 seems a reasonable decision. Next, when choosing
the program for on Arrowday, it makes sense to introduce a bias towards Charles
(who had to watch a movie he did not like on Earthday) and choose c2, and then
c1 on Senday (while choosing c3 on Arrowday would likely lead to choosing c3 on
Senday).

These two scenarios are respectively off-line and on-line temporal voting scenar-
ios.

Off-line temporal voting can be seen as a standard multiple election (Brams et al.
1998) and can be formulatedmore generally as a fair public decisionmaking problem
(Conitzer et al. 2017), with the issues being the different days of the week. On the
other hand, its structure is very close to the structure of our previous example (voting
by community): what plays the role of the Greens, the Purples and the Blues are here
the ‘theAnns’ (Ann onEarthday, Ann onArrowday andAnn on Senday), ‘the Bettys’
and ‘the Charles’. Utility is transferrable between the three Anns (respectively, the
three Bettys, the three Charles).2

On-line temporal voting is a very different problem that has received only little
attention, one exception being (Freeman et al. 2017), who deal with it by giving at
each step more weight to the voters who were less satisfied in the previous steps.

2That utility is transferrable between the three Anns, etc. may be debatable under certain circum-
stances: if Ann may prefer (2, 2, 2) to (3, 3, 0), i.e., she may be adverse to utility dispersion (a
timewise version of risk aversion). One may also argue that if the time scale is long, agents may dis-
count future utilities; this fits the setting, however: after scores have been transformed into utlities,
we simply apply a discounting factor to them.
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1.3 Fair Public Decision Making in Shawington

Shawington has a budget to be spent on public projects, and it wants to decide which
project to build according to a participatory budgeting process, following other cities
such as Paris.3 Paris’ participatory budgeting works as follows: each voter is allowed
to support 6 projects for the whole city and 6 for her district (“arrondissement”).
Shawington takes a slightly different view: it is not true that only the inhabitants of
a district are concerned by the projects to be realized in the district. For instance,
when choosing which facility to build in a district d, it is not unreasonable to give
more weight to the inhabitants of district d, some lower weight to those who live
in a district close to d, and yet a smaller weight to all other inhabitants. What’s
more, it is a good idea to be fair to the inhabitants of the various districts—again,
to communities. The recent approach to fair public decision making (Freeman et al.
2017) does take fairness issues into account but does not differentiate between voters
for a given project, nor considers communities of voters.

Yet other examples have to do with epistemic social choice: first, some agents
may have more expertise on some issues than in some others; second, their opinions
may often be positively correlated, for instance because they have similar sources,
so that the weight of two correlated voters should count less than the sum of their
weights. This idea is developed further in Ani and Nehring (2014).

2 Choquet Voting

The common point of Examples 1, 2 and 3 is that voters’ utilities should not be
simply added, but aggregated in a more subtle way. We outline here a general model
for voting, which handles most of the variants of Examples 1, 2 and 3. It is based
on Choquet integrals (see Grabisch and Labreuche 2010 for a good survey), widely
known in decision under uncertainty and in multicriteria decision making, but much
less in voting theory, probably because of this obsession for anonymity.

A (normalized) capacity on N is a functionµ : 2N → [0, 1] satisfyingµ(∅) = 0,
µ(N ) = 1, andmonotonicity (S ⊆ T impliesµ(S) ≤ µ(T )). Let u⃗ = (u1, . . . , un) ∈
(IR+)n . The Choquet integral of u⃗ w.r.t. µ is defined by

Cµ(u⃗) =
n∑

i=1

uσ (i)µ(σ (i)|A(i − 1))

where

• σ is a permutation of N such that uσ (1) ≤ . . . ≤ uσ (n);
• A(0) = ∅ and for all i ∈ N , A(i) = {σ (1), . . . , σ (i)} and µ(σ (i)|A(i − 1)) =
µ(A(i)) − µ(A(i − 1)) = µ(A(i − 1) ∪ {σ (i)}) − µ(A(i − 1)).

3https://www.paris.fr/actualites/the-participatory-budget-of-the-city-of-paris-4151.
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In words, µ(σ (i)|A(i − 1)) is the marginal importance contribution of agent σ (i) to
the set of agents {σ (1), . . . , σ (i − 1)}.

If µ is additive, then Cµ is simply a weighted average. If µ is anonymous, that is,
ifµ(S) depends only on |S|,Cµ is an orderedweightedaverage. Ifµ is dichotomous
and u⃗ ∈ {0, 1}n , Cµ is a simple game.

Surprisingly (or perhaps not), all commonly used voting rules can be generalized
to nonanonymous settings in a naturalway viaChoquet integrals. For approval voting,
the µ-approval voting rule AVµ is simply defined as

AVµ(V ) = argmaxx∈Aµ(App(x))

If Fs is a positional scoring rule induced by scoring vector s, then for each ordinal
profile V ,

Fs,µ(V ) = argmaxx∈ACµ(srank(x,V1), . . . , srank(x,Vn))

Rules based on iterated elimination of alternatives such as STV can also be easily
generalized. For instance, for STV, the definition is as usual, replacing plurality scores
by µ-plurality scores.

The µ-majority graph MV,µ associated with V contains, for each pair (a, b) of
alternatives, an edge (a, b) if and only ifµ(N (a ≻ b)) > µ(N (b ≻ a)). The pairwise
comparison matrix associated with V is defined by WV (a, b) = µ(N (a ≻ b)) −
µ(N (b ≻ a)). The µ-majority graph and µ-pairwise majority matrix being defined,
rules based on the majority graph or (more generally) on the pairwise comparison
matrix can be defined as usual.

If µ is anonymous and additive, that is, µ(S) = |S|, then we find the classical
versions of the voting rules. Ifµ is additive (but not necessarily anonymous), we find
the versions of the rules with weighted voters. Ifµ is anonymous (but not necessarily
additive), we find ranked-dependent versions of the rules; seeGoldsmith et al. (2014),
García-Lapresta and Martínez-Panero (2017) for two independent investigations of
this family of rules.

Let us come back to our first introductory example (the election of the mayor of
Shawington). We define the following capacity: for each S ⊆ N , let S = SG ∪ SP ∪
SB , where SG is the set of Green voters in S, etc. Finally,

µ′(S) = max(|SG |, |SP |, |SB |)

Under a scoring rule, after some simple calculations, we find that the score of an
alternative is the minimum, over all three communities, of the score they obtain for
this community. Take Borda as an example. As a gets 300 among the Greens, 300
among the Purples and 60 among the Blues, its Bordaµ score is 60. b gets 140 among
the Greens, 140 among the Purples and 140 among the Blues: its Bordaµ score is 140.
We let reader check that b is the winner. As a slightly more sophisticated capacity,
take

µ′(S) = 7max(|SG |, |SP |, |SB |)+ 2med(|SG |, |SP |, |SB |)+min(|SG |, |SP |, |SB |)
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The intuition is as follows: the least satisfied community counts 7 times more than
the most satisfied community, and the one in the middle twice as much. We let the
reader check that the winner is still b, but this time by a small margin.

We let the reader check that the other two examples can also be expressed as
Choquet voting.

Acknowledgements Thanks to Klaus Nehring, Ali Özkes, Marcus Pivato, Nisarg Shah and Mark
Wilson for useful comments and suggestions.
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