
A Market-Inspired Bidding Scheme for Peer Review Paper Assignment
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Abstract

We propose a market-inspired bidding scheme for the assign-
ment of paper reviews in large academic conferences. We pro-
vide an analysis of the incentives of reviewers during the bid-
ding phase, when reviewers have both private costs and some
information about the demand for each paper; and their goal
is to obtain the best possible k papers for a predetermined k.
We show that by assigning ‘budgets’ to reviewers and a
‘price’ for every paper that is (roughly) proportional to its
demand, the best response of a reviewer is to bid sincerely,
i.e., on her most favorite papers, and match the budget even
when it is not enforced. This game-theoretic analysis is based
on a simple, prototypical assignment algorithm. We show via
extensive simulations on bidding data from real conferences,
that our bidding scheme would substantially improve both the
bid distribution and the resulting assignment.

Introduction
Academics spend much of their time and effort, that is, our
time and effort, on peer-review for journals and conferences.
This is an unpaid labor that academics perform out of sense
of duty, which serves several important purposes for all in-
volved parties. It helps editors and program chairs make in-
formed decisions on what papers to publish; it provides au-
thors with valuable feedback on their work; and it keeps the
reviewer updated about recent advances in their fields.

While in journals the assignment of papers to reviewers
is typically handled manually by the editors, peer-reviewed
conferences often use automated assignment algorithms
based on the stated preferences of the program committee
members (reviewers). The program chairs intervene to solve
problems in the assignment, such as allocating papers that no
one asked to review. Though the frequency of these ‘orphan’
papers varies, they are a recurrent problem in the bidding
processes. Fiez, Shah, and Ratliff (2019) discuss this issue
and highlight the importance of studying and improving the
bidding process.

Our ultimate goal is to improve the assignment, to the ben-
efit of all involved parties: reviewers, program chairs, and
authors. We argue that only designing new assignment algo-
rithms will not help achieve this goal (or help marginally):
what we need before all is to incentivize reviewers to bid in
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a more cooperative way. Thus we do not propose a new as-
signment algorithm but a new bidding scheme that improves
over current bidding schemes. Crucially, the improvements
we suggest are easy to implement: they only require reveal-
ing certain information to the reviewers about the current
paper demands. These suggestions are orthogonal to the as-
signment algorithm and other design choices which are spe-
cific to the conference or the platform in use.

Evaluating our bidding scheme comes with a difficulty:
each conference comes with its own assignment algorithm,
and we do not want a separate analysis for each of these.
However, we argue that what counts is not the precise as-
signment algorithm used, but a simple abstraction of it, rep-
resenting what a reviewer believes about the possible assign-
ments, based on what she can observe. For this we define a
simple algorithm (proportional mock assignment), based on
an adaptation of the trading post mechanism (Shapley and
Shubik 1977), which we use to analyze bidders incentives.

We next describe the current paper assignment process as
it is typically performed in large computer science confer-
ences and demonstrate some of the problematic issues using
statistics from recent real-world conferences.

The Paper Assignment Process
A large CS conference such as AAAI, IJCAI, ICML, or
NeurIPS has some 1,000 – 10,000 submissions and 1,000 –
3,000 reviewers. The assignment process typically proceeds
through the following steps:
• The program chair recruits n program committee mem-

bers (PCMs) to serve as reviewers.
• Authors submit their papers by a certain date. We denote

the set of papers by M and |M | = m.
• PCMs get access to papers’ titles and abstracts via an on-

line platform such as EasyChair or Confmaster, and are
asked to “bid” on papers they want to review. It is typi-
cally possible to bid one of several levels (e.g. “want to
review”, “can review if needed” etc.) as well as to report a
conflict of interest (COI). Typically PCMs are asked (but
not enforced) to bid positively on a minimum number R
of papers, R being much higher than the actual number of
expected reviews (for senior PCMs at AAAI-21,R = 75).

• The final bids are fed as input to an assignment algorithm,
together with additional constraints such as a minimum
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Conference m k < r bids 0 bids bid / paper
IJCAI 18 3470 ∼ 5 140 5 29.7
AAAI 17 2414 ∼ 5.5 47 18 13.66
KSEM 06 235 10.7 18 5 6
KR 08 234 7.5 - - 9.7
TARK 17 91 13.5 32 8 3.4

Table 1: Recent conferences’ statistics.

and maximum number of papers per PCM. Each paper is
assigned to a fixed number r of reviewers, typically 2 – 4.
On average, each PCM should get k := mr

n papers for
review. A conference comes with an assignment algorithm:
either an off-the-shelf algorithm (there are many in use) or
an algorithm written specifically for the conference (Garg
et al. 2010).1 In other cases, the actual assignment algorithm
can be a black-box; see discussion by Lian et al. (2018).

Unfortunately, it is common that bidding across papers is
highly skewed, with some papers getting an overwhelming
amount of positive bids, while others remain with very few
or none at all, see Table 1 .2 For instance, at AAAI-17 each
paper got > 13 bids on average, yet 18 papers got no bid at
all.

Drawbacks of commonly used bidding-assignment proto-
cols include: (1) program chairs spend a lot of time and ef-
fort coping with underdemanded papers; (2) the assignment
of these papers is somewhat arbitrary, and results in addi-
tional work for PCMs and lower quality reviews; (3) PCMs
spend time and effort bidding on papers they are unlikely to
get, either because they are overdemanded, or because they
already unknowingly bid on enough papers.

Paper Goal and Contribution
Our goal is to improve paper bidding, which in turn will im-
prove paper assignment. We present a simple protocol called
the trading post bidding scheme: PCMs are each assigned
some initial budget R they are expected to exhaust, and the
“price” of every paper changes dynamically, proportional to
its demand. Then, papers are assigned based on these bids
using any ordinary assignment algorithm. That is, we do not
aim to replace existing assignment algorithms, but to en-
hance their input—and thus to improve their output.

In order to compare the trading post bidding scheme to
the current one, the main theoretical challenge is to model
and analyze bidding incentives, without specifying an ex-
plicit assignment algorithm. More specifically:
• We define a “mock assignment” based on a modifica-

tion of the trading post mechanism (Shapley and Shubik
1977). This is an abstraction that captures the key prop-
erties of assignment algorithms and the perceived proba-
bility, for a PCM, to be assigned a paper.

• We prove that in the game induced by the trading post
bidding scheme and the mock assignment, there is an in-

1One of the program co-chairs of AAAI-17, Shaul Markovitch,
wrote his own algorithm to handle assignments.

2We thank the program chairs of these conferences that have
agreed to contribute these statistics.

centive for PCMs to make sincere bids that match the re-
quested bidding amount R.

• We show via extensive simulations that if bidders are sen-
sitive to price (less likely to bid on cheap, low probability
papers) then the trading post bidding scheme obtains so-
cially better outcomes after a single bidding round: bids
are more balanced across papers, and PCMs get more de-
sired papers.

A secondary claim that we make is that the trading post bid-
ding scheme can make the bidding process easier for some
PCMs under the assumption that there is some effort in-
volved in checking one’s own utility for each paper.

We defer most proofs and simulation results to the ap-
pendix of the full version at https://tinyurl.com/y8z4y3z4.

Related Work
Algorithms. A first stream of papers consists of information
retrieval approaches to the assignment problem.

From these, we only mention a recommendation-based
approach that aims at easing paper bidding, namely the
Toronto Paper Matching System (TPMS) (Charlin, Zemel,
and Boutilier 2011): for each paper j and each reviewer i, a
fitness degree is determined by the proximity between j and
some of the papers authored by i. The PCM can e.g. sort
papers by their fitness degree during the bidding process to
facilitate bidding and read fewer abstracts. Our trading post
bidding scheme is compatible with TPMS or similar systems
as well as advances in assignment and matching algorithms,
and the PCM can sort/filter papers according to their fit, their
price, or some combination thereof.

A second stream deals with assignment algorithms. Some
of these are based on bids (Lian et al. 2018; Garg et al. 2010;
Goldsmith and Sloan 2007); they are highly relevant to us,
and we go back to them when describing our evaluation.
Bidding Behavior Very few papers focus on the behavior
of bidders within the assignment system. The only empiri-
cal work we know of is (Rodriguez, Bollen, and de Sompel
2007), which analyses the bids of reviewers for a real con-
ference, and studies its correlation with reviewer-paper fit.
This fit is measured by a complex combination of techniques
involving the co-author network, keyword occurrence, and
more. They find that the bidding behaviour is only weakly
related to the subject of the submission, and is influenced
by plenty of other (unidentified, conjectured) factors. They
repeat the observation on unbalanced bids, and conclude that

Since bidding is the preliminary component of the
manuscript-to-referee matching algorithm, sloppy bid-
ding can have dramatic effects on which referees actu-
ally review which submissions.
Closer to our work, Fiez et al. (2019) assume a position-

based click model from the literature, and determine an op-
timal order to present papers to PCMs based on their prefer-
ences and paper demands. We see this approach as comple-
mentary to ours, as PCMs are likely to be affected by both
order of presentation (as in that paper) and explicit informa-
tion on the demand (as in our paper). Ultimately, both inter-
ventions have similar effects, as they lead to more balanced
bids and thus a better assignment.
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Game Theory, Mechanism Design and Social Choice
Some papers focus on strategyproof peer review (Kurokawa
et al. 2015; Xu et al. 2018; Aziz et al. 2019c). Especially, Xu
et al. (2018) consider scenarios where reviewers (who are
also authors) may bid strategically so as to influence the as-
signment. Here we assume that reviewers bid independently
from their interest as authors, but are still self-interested and
would like to minimize their effort during the bidding and
reviewing phases.

Paper assignment can also be seen as a chore assignment
problem, which is known to be very different from the as-
signment of goods, because chores are non-disposable. The
main two mechanisms used are the egalitarian mechanism
(leximin) and the competitive mechanism based on prices
that derive from the input of the problem (Bogomolnaia et al.
2019; Aziz et al. 2019a; Brânzei and Sandomirskiy 2019;
Freeman et al. 2020; Chaudhury et al. 2020).

Market approaches (e.g., using scrip money) have been
considered for various allocation problems such as course al-
location (Budish 2011; Babaioff, Nisan, and Talgam-Cohen
2017; Othman, Sandholm, and Budish 2010).

All these mechanisms do not readily adapt to the con-
straints of paper assignment, nor do they easily combine
with existing bidding processes, and indeed we are unaware
of a theoretical or practical application to paper assignment.

We conclude, similarly to Fiez, Shah, and Ratliff (2019),
that the most effective way to improve the assignment is
indeed to improve the input to the assignment algorithms,
rather than fine-tuning the algorithms themselves.

Preliminaries
Throughout the paper, we denote the sets of PCMs (review-
ers) and papers by N and M , respectively. Furthermore, we
denote by n and m the sizes of these sets, respectively.

Assignments Each paper j should be ultimately assigned
to rj reviewers, and each PCM i should get exactly ki papers
for review. Note that for an assignment to be possible, we
must assume

∑
i∈N ki =

∑
j∈M rj .

A fractional partial assignment is a matrix X =
(xij)i∈N,j∈M — where xij ∈ [0, 1] can be seen as the prob-
ability that j is assigned to i — and subject to constraints:

Capacity Constraints ∀i ∈ N ,
∑

j∈M xij ≤ ki (every re-
viewer gets at most ki papers);

Quota Constraints ∀i ∈ N, j ∈ M, xij ≤ qij . Typically
qij ∈ {0, 1}, where qij = 0 meaning that there is a COI.

Paper Constraints ∀j ∈M,
∑

i∈N xij ≤ rj .

We say that Xi is valid if it satisfies capacity and quota
constraints; Xi is full if

∑
j∈M xij = ki. We say that X

is valid [resp., full] if Xi is valid [full] for all i ∈ N . An
assignment X is integral if xij ∈ Z for all i, j. For ease of
presentation we assume, unless mentioned otherwise, that
rj = r for all j, that r ≥ 1, and that qij ≤ 1 for all i, j.

Bids A (fractional) bidding profile is a real matrix B =
(fij)i∈N,j∈M , where fij ∈ R+ is the bid of PCM i on paper
j. We always require fij ≤ qij ≤ 1, in particular, a PCM
cannot place a bid on a paper if she has a conflict of interest
with it. The bid of PCM i is the vector Bi := (fij)j∈M . A
bidding profile B is integral if fij ∈ {0, 1} for all i, j. When
bids are integral we sometimes abuse notation by writing Bi

as the subset of papers that PCM i bids on. For simplicity we
assume that there is only one level of positive integral bids.
We later explain how to extend analysis and simulations to
multiple bid levels.

We similarly denote by Dj := (fij)i∈N the demand pro-
file for paper j (induced by B). In a given profile B, we
denote by dj :=

∑
i∈N fij the total demand of paper j, and

d := (dj)j∈M .

An assignment algorithm takes as input a bidding profile
B, and outputs a valid partial fractional assignment X .

The Trading Post Bidding Scheme
As explained in the introduction, we want to present PCMs
with information on the demand in the form of prices. Our
starting point is the trading post (TP) mechanism (Shapley
and Shubik 1977), which assigns to each item j a “price”
Pj :=

dj

r . It then allocates items based on prices, but we
will get back to this later on.

Our suggestion is simple: PCMs should be presented
with the “inverse price” pj := min{1, r

dj
} (henceforth, the

“iprice”) that is being updated dynamically as bids change.3
Let tbi :=

∑
j∈M fijpj be the total bid of i. Given a bidding

requirement R, the instructions to the PCM are to bid until
tbi ∼= R, rather than bidding on R papers. Just like today,
this requirement is not enforced, and PCMs may, but are not
required to, login later on and revise their bid. Unlike current
systems, they may see different iprices each time (see the
Discussion section). To avoid changing the presented iprices
as the PCM bids, the demand dj during i’s bidding is always
computed as if fij = 1 (see Example 1, Item 2).

As we will show, the TP bidding scheme will facilitate
both the formal analysis and the behavior of the PCMs.
Example 1. We have m = 4 papers (a, b, c, d) and n = 6
reviewers; r = 2, therefore each reviewer should get k =
mr
n = 4

3 papers. We only use integral bids in this example.
• Initially, bids areB1 = {a, b}, B2 = {a, c}, all other bids

are empty. This yields d = (2, 1, 1, 0)
• Reviewer 3 logs in. She sees the iprices pa =

min{1, r
|Da∪{3}|} = 2

3 , pb = min{1, r
|Db∪{3}|} =

min{1, 22} = 1, pc = pd = 1 (since the PCM is counted
in the demand). Suppose she bids on {a, b, d}.

• Now Reviewer 4 logs in and sees iprices of pa = 2
4 =

1
2 , pb = 2

3 , pc = 1, pd = 1. Suppose he bids on {b, d}, so
now demands are (3, 3, 1, 2).
• Now, Reviewer 2 logs in again, and sees iprices of pa =

2
3 , pb =

1
2 , pc = 1, pd = 2

3 .
3We call it “inverse price” because it is not a price that the PCM

pays for reviewing a paper but rather a ‘payment’ that she receives,
since papers are chores and not goods.
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Proportional Mock Assignments
In order to analyze the bidding behavior, we must also take
into account the assignment algorithm. However, since most
practical assignment algorithms are based on integer pro-
gramming, the connection between input (bids) and output
(assignment) is either unknown, or quite complicated and
sensitive to small changes in the input. Thus a PCM cannot
readily use them to derive her beliefs about her assignment.
Moreover, computing the assignment requires the bidder to
know the full bid matrix, and this is not available to her.

To make a rigorous theoretical analysis possible, instead
of dealing with particular assignment algorithms, we de-
scribe a (fractional) mock assignment that captures in an in-
tuitive way the connection between the bid of a single PCM
and her assigned papers. In the remainder of this section and
the next one, we consider the assignment from the point of
view of a particular PCM I . While the exact incentive model
is described below, the general idea follows expected cost
minimization: our assumption will be that every allocated
paper inXI has a certain ‘cost’, and I bids in a way that min-
imizes the total cost. Since the assignment algorithm maps
any possible bid of I to an allocation XI , the expected cost
of every bid is well defined.

Mock TP Assignment As a first attempt, we can consider
the (modified) trading post assignment (TPA) itself. That is,
define the assignment to be xIj := fIjpj for all j.

We make a distinction between two cases: if tbI > kI
we say that I overbids; and if tbI < kI we say that she
underbids. If tbI = kI then we say that the bid is exact,
and this can be considered both as a weak overbid or weak
underbid. Similarly, a paper can be either overdemanded (if
dj > r) or underdemanded (if dj < r). We thus define:

uj := [r − dj ]+, oj := [dj − r]+. (1)

Recall that we also defined pj := min{1, r
dj
}, thus un-

derdemanded papers have iprice pj = 1.
The TPA guarantees that each overdemanded paper is

fully allocated, as
∑

i∈N fijpj = pj
∑

i∈N fij =
r
dj
dj = r,

but puts no constraint on the number of assigned papers to
each PCM, which is inconsistent with actual assignments.
We would therefore like to extend the TPA XI = (xIj)j∈M
to a full and valid assignment in a reasonable way.

Definition 1 (PMA). A valid and full assignment XI =
(xIj)j∈M is a proportional mock assignment for PCM I
w.r.t. input BI , qI = (qIj)j∈M ,d = (dj)j∈M , if there is
a constant α ≤ 1 such that:

(OB) If I is weakly overbidding, then xIj = α · fIjpj for
all j ∈M ;

(UB) If I is weakly underbidding, then xIj =
min{qIj , fIjpj + α · uj} for all j ∈M .

A few explanations are in order. If I is overbidding, then
the assignment is simply proportional to bids weighted by
paper iprices. If I is underbidding, such as assignment may
both violate validity (if α is too large) and fail to be full
(if α is too small). In that case, a proportional assignment

will assign first papers for which the reviewer has placed a
bid, weighted by their iprice, and then completes reviewer
i’s assignment by giving her a fraction of underdemanded
papers, proportionally to their degree of underdemand uj ,
while making sure that the quota constraints are not violated.

The UB step can also be thought of as a “water filling”
process where each paper j is a tube of width uj (the rate at
which it is being filled) and height qIj − xIj (the cap).

Existence and Uniqueness of PMA A proportional mock
assignment is not guaranteed to exist. We give a necessary
and sufficient condition for its existence and prove that in
this case it is unique.

Definition 2 (Extendable assignment). A partial assignment
XI is extendable w.r.t. input (BI , qI ,d) if there is a valid
and full XI such that xIj ≤ xIj + uj for all j.

Extendability means that there is some way to par-
tially allocate leftover papers, so that I obtains a full and
valid assignment. A TPA is almost always extendable: A
sufficient condition is that either I overbids, or kI ≤∑

j∈M min{qIj , uj}. Thus, for the rest of the paper we
will assume that extendability always holds (for PCM I).4

Proposition 1. Given bid BI , quotas qI and demands d,
there exists a PMA if and only if the TPA XI is extendable.
Moreover, the PMA is unique.

The proof is constructive and relies on a simple algorithm
that roughly proceeds as follows: it starts from the TPA XI ;
then, if I is overbidding α is a simple normalization factor;
if I is underbidding, α is computed at most m iterations.

We demonstrate here how the algorithm works on a sim-
ple example. The full details of the algorithm and the exam-
ple are in the full version.

Example 2 (Proportional Mock Assignment). n = 5, m =
6 (papers are called a, b, c, d, e, f ) r = 2, and all quotas
are 1. We use PCMs with different ki for exposition pur-
poses only. The bids fij and assignments are shown only
for i ∈ {1, 2}, together with the totals:
fij a b c d e f ki
1 1 1 1 1 2
2 1 1 4/5 1/2 3
dj 3 4 5 1 4/5 3/2
pj 2/3 2/4 2/5 1 1 1

This induces the following TP assignment X:
xij a b c d e f ubi obi
1 2/3 1/2 2/5 1 17/30
2 1/2 2/5 4/5 1/2 4/5
uj 0 0 0 1 6/5 1/2

PCM 1 is overbidding, thus α1 = r
tb1

= 60
77 . PCM 2 is un-

derbidding. If we independently compute the PMA for each

4We do note that the extendability for each PCM separately
does not mean that we can extend the partial allocation into a full
allocation for all PCMs. This will not matter for our purpose.
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agent, we get:
xij a b c d e f αi

1 44/77 30/77 24/77 60/77 0 0 60/77
2 0 1/2 2/5 2/5 1 7/10 2/5

Properties of PMA Two crucial properties of the PMA
are monotonicity and continuity.

Definition 3 (Assignment monotonicity). Consider two bids
BI = (fIj)j , B

′
I = (f ′Ij)j for which a (unique) PMA exist,

where for some specific j, f ′Ij < fIj whereas all other bids
are the same. An assignment is monotone in bids if for any
such BI , B

′
I , the respective obtained assignments XI , X

′
I

satisfy:

MON1 x′Ij ≤ xIj;

MON2 x′Ij′ ≥ xIj′ for all j′ 6= j;

That is, by decreasing her bid on paper j PCM I gets no
more of paper j and no less of all other papers.

Proposition 2. The PMA is monotone in bids.

The proof outline is simple: we consider a sufficiently
small change in the bid such that no paper goes from un-
derbid to overbid or vice versa. Then, for papers with over-
bid monotonicity is immediate as increasing the bid means
higher allocation both before and after normalization. For
papers with underbid this is more tricky since a higher initial
assignment also means less leftovers to assign at the second
step. However due to proportionality we can show that the
net change is positive.

Proposition 3. The (unique) PMA is continuous in the bid.

Here the main obstacle is to show that the allocation does
not change abruptly when one of the constraints becomes
binding.

Incentives
The bidding process can be thought of as a game, where
every time a PCM logs in, she sees the current iprices (which
reflect current demand) and reacts with her own bid. Given
demands d−I , every bid BI induces a PMA XI (as I does
not know — and cannot know — the actual assignment), and
therefore some expected utility for PCM I .

In order to define this utility, we assign a cost CIj reflect-
ing the inconvenience of reviewing paper j to PCM I:
cI(BI ,d

−I) :=
∑

j∈M xIjCIj , where XI = (xIj)j∈M is
the unique PMA corresponding to bid BI . We assume that
costs are generic, in the sense that no two sets of papers have
exactly the same cost.

A best response of I to d−I is a bid BI such that
cI(BI ,d

−I) ≤ cI(B
′
I ,d
−I) for all B′I . Note that a best re-

sponse always exists since the strategy sets are compact .
Given d−I , two bidding strategies BI , B′I are said to be

equivalent if they induce the same PMA, i.e., XI = X ′I .

Sincere and Exact Bids
By genericity, I has a strict preference order over papers. We
say that a bid BI = (fIj)j∈M is sincere if there is j′ such

that fIj = 1 for all papers that I prefers over j′, and fIj = 0
for all papers that I prefers less than j′.

Note that a sincere bid can be characterized by a single
number bI , meaning that the PCM bids fIj = 1 on her fa-
vorite bbIc papers and bI − bbIc on the next paper.

Recall that a bid BI = (fIj)j∈M is exact under iprices
(pj)j∈M ,5 if

∑
j∈M fIjpj = kI , that is, the PCM neither

overbids nor underbids. Under the genericity assumption,
there is a unique sincere exact bid. We denote the sincere
exact bid of I (w.r.t. d−I , qI , kI ) by b∗I . Our main theoreti-
cal result is the following.

Theorem 4. Any best response is equivalent to b∗I .

Proof sketch. We first show that every best response is
sincere: Let j′ = argminj∈M :fIj<1 CIj and j′′ =

argmaxj∈M :fIj>0 CIj . If j′ ≥ j′′ then IN(BI) := 0 (bid is
sincere). Otherwise, the “insincerity” of BI is IN(BI) :=
j′′ − j′ − fIj′ + fIj′′ . We show that if IN(BI) > 0 we
can construct a bid that is just as good and is strictly more
sincere: the easy case is when I is weakly overbidding, as
slightly increasing the bid on j′ will improve both cost and
sincerity. If I is underbidding, we need to both increase the
bid on j′ and decrease the bid on j′′ in a subtle way so as
to strictly decrease the cost. Then, we take the sincere best
response bI ∈ R+. If bI is an overbid, we slightly decrease it
and get rid of the least favorable papers. If bI is an underbid,
we slightly increase the demand on the last paper, and show
that this does not affect the more favorable papers.

Observation 5. If BI is exact, then xIj = fIjpj . In partic-
ular, if I places a full bid on j (fIj = 1) then xIj = pj: the
iprice is exactly the probability that I gets j if she bids on it.

This means that by meeting the (voluntary) bidding re-
quirement R, the PCM is both being rational (by Thm. 4),
and has a decent idea on which papers they will get.

Price-Sensitive Bids
Intuitively, a PCM facing a bidding requirement will tend
to skip papers with a low iprice, as they don’t help reach-
ing the requirement and are also less likely to be obtained
(Obs. 5). This is especially true if learning one own’s private
cost requires some effort (like reading the abstract). We thus
consider two bidding behaviors that capture this effect.

Sincere Bidding + Costly Exploration Preferring high-
iprice papers may be due to uncertainty on their true cost.
Consider a model where for each paper j and PCM I , there
is a distribution CIj from which the “true” cost cIj will be
realized. During bidding, the PCM can decide to invest some
effort, and then observe the realization cIj . For simplicity,
suppose that the realization is either 0 or 1, meaning that the
paper is a good fit or a bad fit for the reviewer. In that simple
case, CIj is the probability of a bad fit. Note that now the
strategy of the PCM is more complex: first decide (perhaps
sequentially) on which papers to explore, and then decide

5Note that the iprices are affected by the entire demand, which
in turn depends on the bid BI .
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what bid to submit. The last step is already solved in the
previous section, as given her current state of information
the PCM is best off submitting her sincere exact bid b∗I .

We argue that if exploration is myopic, i.e. the PCM al-
ways explores as if this is the last possible exploration, then
the utility from exploration is weakly increasing in the iprice
pj . The formal details are in the full version. Indirectly, this
also means that ceteris paribus, the PCM is more likely to
bid on papers with a higher iprice.
Greedy Price-Sensitive Bidding The “attractiveness” of
each paper is some function that is increasing (linearly) in
iprice and decreasing (linearly) in private cost. The bidder
selects papers greedily by decreasing attractiveness, until
reaching the bidding quota. This greedy heuristic is easy to
apply and similar to how a rational decision maker would
behave under quasi-linear utilities, or in other contexts of se-
lecting multiple items (Bettman, Johnson, and Payne 1991).

In-Silico Experiments
In order to test the effect of the TP bidding scheme, we sim-
ulated PCMs who interact with a bidding system. The PCMs
observe dynamic paper iprices and bid in turn. To keep sim-
ulations as realistic as possible, we used bidding data from
real conferences to generate PCMs’ costs and behaviors.

The hypothesis we want to verify is that the trading post
bidding results in a better bidding matrix, which in turn leads
to a better assignment, from both points of view of the re-
viewers and of the system (i.e., the chair).

Datasets We used all 5 bidding datasets (DP1-DP5) avail-
able on PrefLib (Mattei and Walsh 2013, 2017). In addition,
we used random samples in varying proportions from an-
other large AI conference (DA1-DA3). In all datasets, we
use r = 3. Every bid in the input has up to three levels,
interpretable as “strong bid”, “weak bid”, and “no bid”.

Private Costs From each instance (original bid matrix) we
derived costs and quotas as follows. We set qij = 0 in case of
COI and otherwise qij = 1. We generated costs in the ranges
[0, 1] for strong bids, [1, 2] for weak bids, and [2, 8] for no
bid, so a stronger bid in the input file always indicates higher
preference. As these ranges are somewhat arbitrary, we also
present metrics that are independent of the numerical costs.

We also used two datasets (DI1, DI2) sampled from the
ICLR’18 dataset used in Fiez, Shah, and Ratliff (2019). This
dataset has a score uij ∈ [0, 1] for each (i, j). The dataset
does not contain the true bids.

Bidding scheme and PCM behavior Recall that R is the
bidding requirement for each PCM. We use integral bids,
which is more realistic. In the fixed bidding scheme, we con-
sidered the following PCM behaviors.

original The PCM bids exactly as in the original data.

uniform The PCM bids on the R papers with lowest cost.

In the trading post bidding scheme, we let a PCM bid exactly
once, in random order. Since as long as there are few bidders

Figure 1: Tradeoff between system satisfaction (Y-axis) and
bidder satisfaction (X-axis). In each figure, we show satis-
faction under the three behaviors we consider, as we vary the
bidding requirement, if available. The number above each
bullet is the average number of positive bids per PCM. The
highlighted ‘Greedy’ bullet marks the outcome for R = k.

the demands are too low to induce an informative iprice, we
use a “virtual bootstrap bid”: every PCM starts with a virtual
bid of k

m on each paper, which entails an initial demand of
exactly r for each paper. This virtual bid is replaced by her
real bid when she acts. We update the iprices every 5 bids.

We also use the greedy price-sensitive behavior:

greedy The PCM bids on papers in increasing order of
(Cij − β · pj), until their cumulative iprice reaches or
exceeds R. Unless specified otherwise, we use β = 2.6

All behaviors only decide whether to bid positively or not.
COI declarations are as in the original data. When the PCM
chooses to bid on a paper, the strength of the bid (needed for
the assignment algorithm) is the same as in the original data.
For the Uniform and Greedy behaviors, we also varied R.

We emphasize that the bid strength was used only for cal-
culating the final assignments. The demands and iprices dur-
ing the bidding process considered every positive bid as 1.

Evaluation To evaluate the benefit of the trading post bid-
ding scheme, we simulated different PCM behaviors using
the same private costs generated from the datasets above.
Since the greedy scheme has a random component (bidding
order), we run it multiple times and take the average metrics.

We first evaluate paper-side gain and reviewer-side gain
of the obtained bidding matrix, following Fiez, Shah, and
Ratliff (2019). Their advantage is that they are independent
of any particular assignment.

System satisfaction SYSS(B) := 1
m

∑
j∈M

min{r,dj}
r .

Thus a maximal gain of 1 indicates all papers have suf-
ficient bids, whereas a low score on this metric indicates
there are many ‘orphan papers’ with insufficient bids.
SYSS(B) is a rough upper bound on the ability of any
assignment algorithm to satisfy all papers.

Bidder satisfaction Let OPTi := 1
R
min{Ci(S) : |S| = R}

be the best average paper cost that i could hope for. We set
BIDS(B) := 1

n

∑
i∈N

OPTi
1

|Bi|
∑

j∈Bi
Cij

. Thus a low value

indicates that reviewers get a far-from-optimal bunch of

6In the ICLR data we first transformed the cost to the right range
by C′ij := 6 · (1− uij

maxj′ uij′
)2.
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papers. Note that by definition, the original bids maximize
BIDS if the total number of bids is fixed.

On Figure 1 we plot SYSS vs. BIDS and give the aver-
age number of positive bids per PCM. We neatly see the
SYSS-BIDS tradeoff. We also see that the greedy scheme
completely dominates the uniform bidding scheme. More-
over, it leads to the same tradeoff as the original bids, but
with much fewer positive bids.

Evaluating Assignments Ultimately, we care about good
assignments rather than good bids. Following Garg
et al. (2010) and Lian et al. (2018), and implementations
from Aziz et al. (2019b), we used the following algorithms
which have been proposed in the literature for discrete al-
location. The Utilitarian and Rank Maximal algorithm have
been used in real conferences. (It is most likely that the Util-
itarian algorithm is used by EasyChair; see footnote in Lian
et al. (2018).) Note that our PMA plays no role in the empir-
ical evaluation and is used only for incentive analysis.

Utilitarian. The Utilitarian assignment algorithm takes a
set of bids and returns the assignment that maximizes the
sum of bids (utilities) of the papers assigned to each PCM.

Egalitarian. The Egalitarian assignment algorithm takes a
set of bids and returns the assignment that maximizes the
sum of bids (utility) of the least well-off PCM.

Rank Maximal. The Rank Maximal assignment algorithm
ignores the cardinal value of the bids. It returns an as-
signment minimizing the maximum, over all PCMs, of the
rank of the lowest ranked paper received. It is studied and
highly advocated for by Garg et al. (2010).

Our results show that findings are similar across different
assignment algorithms, we thus present the results mainly
for the Utilitarian algorithm. Since assignments are always
in {0, 1}, we use Xi ⊆ M to denote the set of papers as-
signed to i. Recall that Bi = {j ∈M : fij > 0}.

Satisfaction Measures for Assignments After the assign-
ment takes place, we return to measure the system and bid-
der satisfaction. SYSS(X,B) := 1

rm

∑
i∈N |Xi∩Bi|mea-

sures the fraction of papers that were assigned to PCMs
that bid on them (as all other papers may require inter-
vention and possibly reassignment); and BIDS(Xi,Bi) :=
|Xi ∩ Bi|/|Bi| measures, for each PCM, the fraction of re-
alized bids. Note that both measures are based only on the
bids and not on the private costs.

We also measure the social cost, which is independent of
the bids: SC(X) := 1

n

∑
i∈N

∑
j∈M Cijxij .

Results
Table 2 compares the social cost obtained under the Origi-
nal bidding behavior, with the social cost obtained under the
trading post bidding scheme with the greedy behavior. It can
be clearly seen that the latter substantially reduces the social
cost, especially for the large datasets. In the ICLR datasets
where original bids are not available, we considered the min-
imum social cost of the uniform bid over all R we tried.

Figure 2: The Utilitarian assignment for datasets DP4 and
DA2 under all three behaviors.

Recall-precision tradeoff Just like in the bid matrix, the
tradeoff as we increase R clearly reflects in the assignment.
Figure 2 shows the Utilitarian assignments. Increasing the
bidding requirement results in a lower fraction of assigned
papers without bid (higher precision, higher SYSS), and a
lower fraction of fulfilled bids (lower recall, lower BIDS).

More importantly, the graphs highlight the benefits of the
trading post bidding scheme. First, both BIDS and SYSS un-
der the greedy behavior are substantially better than under
the uniform or original behavior. Second, this is obtained
with much fewer bids and thus presumably less effort on be-
half of the PCM. Finally, in the current (no iprice) bidding
scheme, the bidding requirementR is usually set to some ar-
bitrary high number. In the new iprice scheme, we can rec-
ommend setting R = k to guarantee sufficient bids, or a bit
above for a safety margin.

In the full version we show that all of our datasets exhibit
a similar pattern, under all three assignment algorithms. We
also show that the satisfaction measures gracefully degrade
if PCMs are less sensitive to the presented iprices, or if some
PCMs ignore them altogether and stick to their original bids.

Sensitivity to Behavior
Since we cannot control the behavior of the PCMs, it is im-
portant to check that the results are not too sensitive to small
changes in the behavior. We therefore varied the parameter β
in the greedy behavior (recall that higher β means the PCM
will lean more towards ignoring low-price papers), as well
as the fraction of PCMs who comply with the price-scheme
bidding instructions (non-compliant PCMs follow the Orig-
inal behavior).

We can see that the quality of assignment gradually im-
proves as the sensitivity to prices (Figure 3, left) increase.
This pattern means, perhaps counter-intuitively, that strictly
following a sincere behavior (where β = 0) is not ideal
from a social perspective, as the PCM is likely to bid on
moderately-desired papers that fit better many other PCMs.
As for the compliance rate, as more PCMs switch to greedy
bids the assignment improves at a linear rate, see Fig. 3 right.

Discussion
In this paper we proposed the trading post bidding scheme:
reviewers observe dynamic “prices” that reflects papers’ de-
mands and update throughout the bidding process.

We showed via the introduction of a stylized assignment
that changes linearly with the bids (the PMA), that bidders
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Dataset DP1 DP2 DP3 DP4 DP5 DA1 DA2 DA3 DI1 DI2
m×n 176×146 52×24 54×31 442×161 613×201 600×400 1200×300 2000×200 600×400 900×300
Original 5.05 6.5 8.8 14.8 15.5 9 27 81.3 0.716 0.583
Greedy 4.6±0.04 7.5±0.22 8.2±0.16 11.2±0.06 11.8±0.09 5.5±0.05 15.6±0.06 42.9±0.02 0.684±0.001 0.554±0.001

Table 2: A comparison of the social cost under original bids and the trading post bidding scheme, under the Utilitarian algorithm.
We compare the Original bids (For ICLR data, the minimum over all uniform bids) and the trading post bidding scheme (with
the Greedy behavior and R = k). We add a confidence interval of 2 standard deviations due to random bidding order.

Figure 3: On the left, the effect of varying the parameter β
in the greedy behavior (see labels on bullets). On the two
figure, we see the effect of decreasing the compliance rate
from 100% (rightmost bullet) to 0%.

have an incentive to follow instructions and sincerely bid on
their favorite papers until they reach the bidding requirement
(in terms of overall price of papers).

Interestingly, sincere bidding is not socially favorable,
as can be seen also from the results of Fiez, Shah, and
Ratliff (2019). In contrast, any bidding that pushes PCMs
to skip overdemanded papers will substantially improve the
allocation under a broad range of conditions, and will reduce
the exploration effort during bidding as a side effect. Thus
everyone benefits: the PC chair has fewer orphan papers to
deal with, reviewers are happier with their allocation of pa-
pers, and reviewers spend less time in the bidding process it-
self. This can be obtained either by reordering the papers as
in (Fiez, Shah, and Ratliff 2019), or by placing a “price tag”
on papers. These approaches can be naturally combined.

Our suggestions can be easily implemented in existing
conference management platforms such as EasyChair, al-
lowing reviewers to get a better lot of papers for less effort.

Temporal Considerations Since paper iprices change dy-
namically, one possible concern is that PCMs will choose
strategically when to bid. We do not see this as a problem:
PCMs are free to login and modify their bids any number
of times, and in doing so they generally improve the assign-
ment, as they can focus on the most relevant information.
Thus there is no incentive to avoid early bidding. There is in
fact one real reason and one perceived reason to bid early:
placing an early bid on a popular paper will reduce its iprice
and deter other potential reviewers, thereby increasing the
chances of the early bidder to get the desired paper. Again
this is not a problem in termas of fairness, as a reviewer that
really wants the paper is free to bid on it regardless of its
iprice, and the order of bids does not affect the assignment.

The perceived incentive for an early bid is to more easily

reach the bidding requirement, as the iprices of popular pa-
per will still be relatively high. However this is not a ‘real’
incentive since the requirement is only a recommendation
anyways and is never enforced. Early PCMs who reached
their budget requirement may turn out to be underbidding
once more bidders entered their bids.. Crucially, this is also
true in today’s bidding scheme when PCMs have no infor-
mation on the demand whatsoever. A possible improvement
is to either remind early bidders that they can check and up-
date their bids later on, or provide early bidders with a some-
what higher budget or project lower iprices. That said, more
research is required to understand the temporal behavior of
bidders and its effects on the outcome.

Multiple Bid Levels There are several ways of defining
paper iprices in the presence of multiple bid levels. The tech-
nical properties of the PMA (with slight modifications) eas-
ily generalize. Bidders still have an incentive to be sincere:
more precisely, they will place a maximal bid on some t
most preferred papers, and no bid on papers below.

Privacy and Bias One may be concerned that information
on the demand biases the judgment of PCMs is shown, and
also that authors are unhappy about the popularity of their
paper being public. We argue that these concerns are unjus-
tified. First, there is no obvious connection between paper
popularity and quality: PCMs bid on a paper either because
of relevance to their specific interests, or because it seems to
be an easy reject (Rodriguez, Bollen, and de Sompel 2007).
Second, the demand information is shown at a very crude ac-
curacy: the PCM only observes some arbitrary snapshot, and
even then cannot differentiate e.g. a paper with 0 bids from
a paper with r bids. Adding the uniform bootstrap (as we
do in the simulations and recommend doing also in practice)
demand makes any such inference even less likely. More im-
portantly, revealing information on their demand does not
harm unpopular papers: on the contrary, they are likely to
get suitable reviewers in our trading post bidding scheme,
whereas in the current system they may end up with review-
ers who did not bid for them.

Next Steps We are currently designing lab experiments
that will help us understand the bidding behavior of people
with and without iprices. This should enable us to fine-tune
the mechanism and understand how it can be best explained
and implemented. We are also discussing using our scheme
with the chairs of several medium-sized workshops.
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