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Abstract
Suppose voters are asked to submit approval ballots for a certain set of alternatives,
with approval voting applied to determine a winning alternative. The same voters are
then asked to report rankings over these alternatives, and some voting rule intended
for ranked ballots is applied. If voters are sincere, can an approval winner possibly
win this second election? Can an approval loser lose that election, or all approval
co-winners be co-winners of the election? These questions give rise to three notions
of approval compatibility for voting rules: positive, negative, and uniform positive
approval compatibility (PAC, NAC, and UPAC). We find that NAC is a very weak
notion and UPAC is a very strong one. Moreover, PAC, a stronger variant of it called
OPAC, and aweaker variant of UPAC called FUPAC divide usual voting rules into four
families: Condorcet-consistent rules satisfy all of them; K -approval rules for K ≥ 2
satisfy none; plurality, plurality with runoff and STV satisfy OPAC but fail FUPAC;
and Borda satisfies FUPAC and PAC but fails OPAC.

1 Introduction

Consider a standard voting setting: A winner needs to be determined amongst a set of
alternatives, by aggregating the ballots that are submitted by a group of voters. The
aggregation is achieved through a (single-winner) voting rule. However, the choice
of the voting rule may change dramatically the output of the election. This is already
the case when comparing two rules with a common input format. For instance, it is
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known that if we focus on voting rules that take rankings as input, various rules will
give different outcomes (Taylor 1995; Ratliff 2001; Klamler 2005).1

Now, comparing rules with different input formats is a more intricate question:
How can we compare the outcomes given that the rules never take the same input? We
investigate this question by focusing on the twomost common input formats: rankings
and approvals.2 The prominent rule in which each voter submits an approval ballot
(a set of approved alternatives, with remaining alternatives disapproved) is of course
approval voting, selecting as winners those alternatives that have received the most
approvals from the voters (Brams and Fishburn 1983). Approval voting is put in use
by a number of committees and institutions worldwide, including the United Nations
and the Society for Social Choice and Welfare.3

Although a ranking and an approval set express different types of information, they
are correlated. Brams and Fishburn (1983) suggest that if a sincere voter is asked to
report an approval ballot instead of a ranking ballot, she will construct a compatible
approval set by fixing a certain alternative as a threshold, approving it along with
all alternatives ranked above it, and disapproving all alternatives below it. Suppose,
instead, thatwe startwith the approval ballot of a sincere voter. Reasonably, her ranking
ballot will then rank all approved alternatives above all disapproved ones—this is what
we call a compatible ranking.

Thus, there are two symmetric ways of comparing the outcome under a given
ranking-based voting rule to the outcome under approval voting:

• Given ranking ballots, we can ask which alternatives can possibly be approval
winners if voters report compatible approval ballots.

• Given approval ballots, we can ask which alternatives can possibly be winners
under the ranking-based rule if voters report compatible ranking ballots.

The first direction has been explored by Regenwetter and Grofman (1998), Regen-
wetter and Tsetlin (2004), and Barrot et al. (2013), while some results of Saari yield
contributions to this direction.4 Regenwetter andGrofman assume that each voter has a
fixed ranking of the alternatives and use a probabilistic model to choose as an approval
ballot a subset of alternatives at the top of that ranking. They provide a formula to
calculate ranking winners (specifically under the Borda rule) from approval ballots.
In an experiment based on an election of the Mathematical Association of America,
they also show that the collective rankings of the alternatives induced by approval and
by Borda scores tend to coincide, although theoretically they need not.

1 Note though that probabilistic studies based on real data (e.g., data from the elections of the American
Psychological Association analysed by Regenwetter et al. (2007) and data from an online survey analysed
by Darmann et al. (2019)) and as well as artificial data (Popov et al. 2014) suggest that the disagreement of
voting rules is not very common in practice.
2 See also the work of Endriss et al. (2009), who put forward a framework where the ballots have a different
format than the underlying preferences of the voters.
3 Other single-winner rules with approval ballots as input have been considered as well (Alcalde-Unzu and
Vorsatz 2009; Laslier 2012; Procaccia and Shah 2015; Allouche et al. 2022).
4 For example Saari (2010) shows that for three alternatives, given a ranking profile and any scoring rule,
there exists a compatible approval profile for which the ranking by approval score agrees with the ranking
by the scores of the scoring rule applied to the ranking profile.
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The work of Regenwetter and Tsetlin (2004) also hinges on the probabilistic model
by Regenwetter and Grofman, and shows that the total approval scores of the alter-
natives can be approximated by the scores of a ranking-based positional scoring
rule—moreover, if all sizes of approval ballots are equally frequent, then an approx-
imation of the approval scores is achieved by the Borda rule (an analogous result
was obtained by Gehrlein (1981), for rankings that follow the impartial culture dis-
tribution). Barrot et al. (2013) assumed that the ranking ballots of the voters over
alternatives are known, and address (mostly from a computational perspective) the
question of which alternatives are approval (co)-winners in some compatible approval
profile.

The second direction is the one we study here. Given sincere voters for whom
we only know their approval ballots, multiple rankings can be compatible. Which
alternatives could possibly be the winners if we applied a certain ranking-based voting
rule—in particular, which from among the approval winners? We might hope that
approval winner(s) would be amongst the winners of our favourite ranking-based rule,
were ranking ballots to be reported instead. Interestingly, this is not such a trivial
property; some simple ranking-based rules violate it.

Note that our study is complementary to foundational questions about the nature
of approval preferences, of ranking preferences, and of how they compare—we do
not provide answers to those questions. Further, our contribution does not rely on the
answers. Rather, it is enough to take an agnostic or neutral position on the matter of
what preferences consist of. Preferences are complex, with multiple aspects, and are
unlikely to be fully plumbed by using any known ballot form to elicit voter responses.
Nonetheless we do have elections, some with ballots that are approval sets, and others
with rankings. Moreover, the assumption that sincere voters would rank all approved
candidates over all disapproved candidates seems to be consistent with any reasonable
assumption about the nature of the preferences that lie behind voters’ choices of
approval and ranking ballots.

More concretely, we evaluate the approval compatibility of voting rules accord-
ing to several compatibility notions. These are divided between positive compatibility
notions, which, informally, say that approval co-winners are also winners in a com-
patible ranking election under that rule; and negative notions, which say that approval
losers are also losers in a compatible ranking election.

We study approval compatibility for a number of well-established voting rules
taking rankings as input: the plurality and the Borda rules, K -approval rules, Single
Transferable Vote (STV), and Condorcet-consistent rules. It turns out that negative
compatibility properties are weak enough to be satisfied bymost of these rules. Among
positive properties, three are key: positive approval compatibility (PAC), satisfied
by rule r if each approval co-winner can also be made a winner in a compatible
ranking election under r ; the stronger notion of obvious positive approval compatibility
(OPAC), satisfied by r if each approval co-winner can also be made a winner under
r in an obvious way by ranking it first whenever a voter approves it, and ranking it
higher than any other non approved alternative whenever a voter does not approve
it; and finally, fractional uniform positive approval compatibility (FUPAC), satisfied
if all approval co-winners are simultaneously co-winners under r in some ranking
election that is compatible with some multiple of the original approval profile.
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Althoughwe consider other properties, these three suffice to cluster ranking rules in
four groups: Condorcet-consistent rules satisfy all of them; plurality and its sequential
variants—plurality with runoff and STV—satisfy OPAC (and PAC) but not FUPAC;
Borda satisfies PACandFUPAC, but notOPAC; finally, K -approval for K ≥ 2 satisfies
none.

This paper proceeds as follows. In Sect. 2 we present our basic framework, define
voting with ranking ballots and with approval ballots, and formally introduce all our
notions of approval compatibility. In Sect. 3 we state and prove our results with respect
to the approval compatibility of ranking-based rules, and in Sect. 4 we conclude.

2 Model

In this section we present our formal model together with the necessary notation and
terminology.

2.1 Preliminaries

Consider a finite group of voters N , with |N | = n ≥ 1. Given a finite set of alternatives
X , with |X | = m ≥ 3, an approval ballot of a voter i ∈ N is a subset Ai ⊆ X , denoting
those alternatives that she approves. An approval profile is a vector A = 〈A1, . . . An〉
of approval ballots for all voters in the group N . For our technical proofs, the following
definitions will be handy:

• A(x+y+) = {i ∈ N | x, y ∈ Ai };
• A(x+y−) = {i ∈ N | x ∈ Ai , y /∈ Ai };
• A(x−y+) = {i ∈ N | y ∈ Ai , x /∈ Ai };
• A(x−y−) = {i ∈ N | x, y /∈ Ai }.
The set App(A) ⊆ X contains exactly those alternatives that receive the most

approval votes in the profile A, i.e., the winners of classical approval voting. Writing
AppA(x) = |{i ∈ N | x ∈ Ai }|, we have the following:

App(A) = argmax
x∈X

AppA(x)

Note the following elementary lemma:

Lemma 1 If a is an approval winner for A, then for any x ∈ X, |A(a+x−)| ≥
|A(a−x+)|, with equality if and only if x is an approval winner too.

Proof AppA(a) = |A(a+x−)| + |A(a+x+)| and AppA(x) = |A(a−x+)| +
|A(a+x+)|. Since a is an approval winner, AppA(a) = |A(a+x−)| + |A(a+x+)| ≥
AppA(x) = |A(a−x+)| + |A(a+x+)|, therefore, |A(a+x−)| ≥ |A(a−x+)|. If
|A(a+x−)| = |A(a−x+)| then AppA(x) = AppA(a): x is an approval winner too. ��

Approval voting is homogeneous, in the sense that replicating each ballot in a
profile an equal number of times will not affect the approval winners. Formally, for
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any positive integer k and any approval profile with n voters A = 〈A1, . . . , An〉, kA
denotes the approval profilewith kn voters, composed of k copies of Ai for each i ∈ N .
For every profile A, we have the following:

App(A) = App(kA), for every positive integer k

Next, we denote a ranking over all alternatives in X as x1x2...xm ; a corresponding
ranking ballot Vi of voter i captures that alternative x1 is ranked first by that voter,
x2 is ranked second, and so on, with xm being the least preferred. If alternative x
appears before alternative y in a ranking V , we write (x, y) ∈ V . A ranking profile is
a collection V = 〈V1, . . . , Vn〉 of rankings over X , for all voters in N .

We say that A and V are compatible (denoted by V ∼ A) if there exist n integers
k1, . . . , kn such that Ai is the set of the top ki alternatives in Vi , for all i . Intuitively,
each Vi can be thought of as a ranking ballot that a sincere voter with approval ballot Ai

may possibly report in a ranking election: one for which all approved alternatives are
ranked above the others.

Example 1 For an approval ballot A = {x1, x2} with X = {x1, x2, x3, x4}, the four
ranking ballots compatible with A are V ′

i = x1x2x3x4, V ′′
i = x2x1x3x4,

V ′′′
i = x1x2x4x3, and V ′′′′

i = x2x1x4x3. �
In determining winners for an election with ranking ballots, we allow our voting

rule r to be irresolute: r is a function that maps any given profile V to some non-
empty subset of X . We start by recalling positional scoring rules, which assign points
to alternatives depending on their positions in a voter’s rankings, and elect those
alternatives with the largest total score across all voters. Formally, a positional scoring
rule rs is induced by a positional scoring vector s = (s1, s2, . . . , sm)with sk ≥ sk+1 for
all k ∈ {1, . . . ,m}, and s1 > sm . When voter i ranks alternative x in the j th position,
score s(Vi , x) = s j is assigned to it. We write sV (xi ) = ∑

i∈N s(Vi , x) (simplified by
s(x) when the profile to which we refer is clear) for the total score x receives in V .
Given a ranking profile V , we have the following definition:

rs(V ) = argmax
x∈X

sV (x)

Note that a scoring vector s = (s1, s2, . . . , sm) induces the same rule as any affine
transformation of it s′ = (s′

1, s
′
2, . . . , s

′
m) such that s′

j = αs j + β with α > 0, β ∈ R

for all j ∈ {1, ...,m}. For reasons of simplicity, we will often use the normalised
version of a scoring vector with s1 = 1 and sm = 0.

The most famous positional scoring rule for voting with ranking ballots probably is
the Borda rule (de Borda 1784), induced by the scoring vector (m − 1,m − 2, . . . , 0).
Wewrite BV (x) (or B(x)when it is clear to which profile we refer) for the Borda score
of the alternative x in the profile V . Similarly, BVi (x) is the Borda score assigned to x
only by ranking Vi . The k-approval rules also are popular positional scoring rules,
with the following scoring vectors:

sk−approval = (1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

m−k

), for 1 ≤ k ≤ m
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For k = 1, the corresponding approval rule is known as the plurality rule, while for
k = m − 1 the corresponding approval rule is called the antiplurality rule.

Positional scoring rules are often contrasted with Condorcet-consistent rules. To
define this concept, let us say that alternative x is preferred by amajority to alternative y
in the profile V , writing x >

maj
V y, if strictlymore voters rank x above y than y above x .

We also write maj(x, y) = |{i ∈ N | (x, y) ∈ Vi }| − |{i ∈ N | (y, x) ∈ Vi }| for the
majority margin of x over y in the profile V = 〈V1, ..., Vn〉.

We call an alternative x the Condorcet winner of a profile V if for every other
alternative y �= x it holds that x >

maj
V y. A Condorcet-consistent rule guarantees

that if alternative x is the Condorcet winner of a profile V , then this will be the only
elected alternative. The Copeland rule and the maximin rule, which we present below,
are specific Condorcet-consistent rules.

We define the Copeland score of an alternative x in a profile V as follows:

Copeland(x) = |{y ∈ X | x >
maj
V y}| − |{y ∈ X | y >

maj
V x}|

Then, the winners of the Copeland rule are those alternatives in X with the highest
Copeland score. Themaximin rule on the other hand, elects those alternatives thatmax-
imise the minimum majority margin against all other alternatives, i.e., the alternatives
in the following set:

argmax
x∈X

miny∈X\{x}maj(x, y)

Lastly, two voting rules that are often used in political elections are Single Transfer-
able Vote (STV) and plurality with runoff (Hare 1859). Here we explain the irresolute,
parallel universe tie-breaking version of these rules (Conitzer et al. 2009). STV pro-
ceeds in multiple rounds. In every round, the alternative ranked first by the smallest
number of voters is eliminated (if there is more than one such alternative, each of them
is eliminated in a different parallel universe), leaving each voter’s ranking shorter by
one. Every alternative that survives afterm −1 rounds in at least one parallel universe
is declared a winner. Plurality with runoff proceeds in two rounds. In the first round,
the two alternatives ranked first by the largest number of voters are selected for the
second round, where the winning alternative is chosen by the majority rule (if more
than two alternatives are ranked first by the same, largest number of voters in the first
round, then a different pair passes to the second round in each parallel universe).5

2.2 Definitions of approval compatibility

In this section we introduce different notions of approval compatibility, starting from
the positive ones, which concern approval winners, and continuing with the negative
ones, which focus on approval losers.

If the goal is tomake one approval winner be thewinner in some compatible ranking
profile, then the notion that needs to be satisfied is what we call positive approval
compatibility. If instead we want to make all approval winners simultaneously be

5 In reality, according to plurality with runoff and also to STV, an alternative ranked first by a majority of
voters in the first round would win, with no need to proceed to a second round.
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the winners in some compatible ranking profile, then we need to check the notion
of uniform positive approval compatibility. The latter will be found to be the most
demanding notion from those we consider.

Note that there is an obvious way to promote an approval winner x to make it
win a ranking election, while preserving compatibility between approval and ranking
profiles: rank x first whenever a voter approves it, and rank x higher than all other
non-approved alternatives otherwise. We allow the way other approved (respectively,
disapproved) alternatives are ranked among themselves to vary freely. If every such
construction leads to an approval winner being a winner of a ranking-based rule, we
say that the rule satisfies obvious positive approval compatibility.

Formally, given x ∈ X , we call V = 〈V1, ..., Vn〉 ∼ A a standardised ranking
profile for x based on the approval profile A = 〈A1, ..., An〉 if the following two
conditions hold:

1. For every voter i such that x ∈ Ai , x is ranked first in Vi .
2. For every voter j such that x /∈ Ai , x is ranked in position |A j | + 1 in Vi , right

below all alternatives of A j .

For example, if X = {a, b, c, d, e} and A = 〈{a, b}, {b, c}, {d, e}〉 then
〈bacde, bcade, debca〉 and 〈baedc, bcead, edbac〉 are standardised for b. If every
such construction guarantees that the selected approval winner will be the winner of
the corresponding ranking election, obvious positive approval compatibility holds.

Definition 1 The rule r satisfies:

• positive approval compatibility (PAC) if for every approval profile A and x ∈
App(A) there exists a ranking profile V ∼ A such that x ∈ r(V );

• uniform positive approval compatibility (UPAC) if for every approval profile A
there exists a ranking profile V ∼ A such that App(A) ⊆ r(V );

• obvious positive approval compatibility (OPAC) if for every approval profile A,
x ∈ App(A), and standardised ranking profile V x ∼ A it holds that x ∈ r(V x ).

Let us get accustomed to the above notions via Examples 2, 3 and 4, in all of which
we take X = {x1, x2, x3}.
Example 2 Consider the positional scoring rule with scoring vector (1, 2/3, 0), and
the following profile, in which all alternatives x1, x2, and x3 are approval winners:

A = 〈{x1}, {x2, x3}〉

In every compatible ranking profile, alternative x1 will receive exactly 1 point in total:
the first voter will rank it in the first position of her ranking and the second voter will
rank it in the last position. Now, alternatives x2 and x3 will receive at least 2/3 points
each by the second voter. But one of them has to also be ranked second by the first
voter, which will result in at least 4/3 > 1 points in total. This means that the two
voters have no way to make the approval winner x1 win under a compatible ranking
profile, and hence that PAC is violated. Note that this example strongly depends on
the specific scoring vector we chose. �
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Example 3 Consider the plurality rule, and the following approval profile, in which x1
and x2 are the approval winners:

A = 〈{x1, x2}, {x2}, {x1, x3}〉

Suppose we want to make the approval winner x1 win under a compatible ranking
profile. Then everyone who approved x1 (i.e., the first and the third voters) can place
it on top of their rankings, giving it two plurality points. The remaining positions of
the rankings can be completed arbitrarily. As no other alternative can receive more
than one plurality point, x1 will be a plurality winner. This is the idea behind OPAC
for Plurality: any standardised ranking profile for x1 can be used for x1 to win the
Plurality election (see Theorem 1 for the general result). �

Example 4 Consider the plurality rule, and take the simple 1-voter profile, where all
alternatives are approval winners:

A = 〈{x1, x2, x3}〉

Clearly, it is impossible for the voter to provide a compatible ranking profile where
all approval winners will be plurality winners: any such profile will only have one
winner. This indicates that the plurality rule violates UPAC. This argument shows in
Sect. 3 that every rule satisfying the axiom of faithfulness violates UPAC. �

Certain violations of positive approval compatibility arise from numerical indivis-
ibilities that could be avoided if we were allowed, for example, to replace a single
approval ballot by a half-ballot of one compatible ranking and a second half-ballot
with a different compatible ranking. To avoid formal reference to fractional ballots,
we instead circumvent such violations by allowing replacement of the given approval
profile with a suitablemultiple of that profile. The equivalence relies on the homogene-
ity property of approval voting. Formally, under any homogeneous rule the election
outcome will not change if we repeat each ballot k times; loosely speaking, such rules
pay attention only to the fraction of the total electorate (rather than to the absolute
number of voters) reporting each ballot. For example, we will see in Section 3 that
although the Borda rule violates UPAC, it satisfies FUPAC, the weaker, fractional
version. If a rule fails approval compatibility even when such multiples are allowed,
this indicates a more fundamental failure.

Definition 2 The rule r satisfies:

• fractional positive approval compatibility (FPAC) if for every approval profile A
and x ∈ App(A) there exists a positive integer k and a ranking profile V ∼ kA
such that x ∈ r(V );

• fractional uniform positive approval compatibility (FUPAC) if for every
approval profile A there exists a positive integer k and a ranking profile V ∼ kA
such that App(A) ⊆ r(V ).

We next consider analogous notions of negative approval compatibility, which
ensure that an approval loser (or multiple losers) will not win under a ranking rule.

123



Approval compatible voting rules

While negative approval compatibility is satisfied if each approval loser can also
be forced to lose in a compatible ranking election, uniform negative approval com-
patibility ensures that all approval losers will simultaneously be losing under the
ranking-based rule (equivalently, no approval loser will be amongst the winners of the
ranking election).

Definition 3 The rule r satisfies:

• negative approval compatibility (NAC) if for every approval profile A and x /∈
App(A) there exists a ranking profile V ∼ A such that x /∈ r(V );

• uniformnegative approval compatibility (UNAC) if for every approval profile A
there exists a ranking profile V ∼ A such that r(V ) ⊆ App(A).

Definition 4 The rule r satisfies:

• fractional negative approval compatibility (FNAC) if for every approval pro-
file A and x /∈ App(A) there exists a positive integer k and a ranking profile V ∼
kA such that x /∈ r(V );

• fractional uniform negative approval compatibility (FUNAC) if for every
approval profile A there exists a positive integer k and a ranking profile V ∼ kA
such that r(V ) ⊆ App(A).

So far, we have examined positive and negative notions of approval compatibility
separately, as targeting different attributes of the voting rule in question. Consider,
however, the “non-unanimous loser” voting rule r that elects as a co-winner every
alternative not ranked last by all voters. This rule clearly satisfies UPAC, our strongest
positive approval compatibility property. However, by choosing winners so indiscrim-
inately it often also forces approval losers to win ranking elections, violating NAC.
Such examples suggest that when a rule satisfies either positive or negative approval
compatibility, we should be wary—this satisfaction may be due to some extreme
behavior. Only the satisfaction of both properties together should carry a positive
normative message.

With this idea in mind, we define one last notion, which separates winners from
losers; it requires that the election of an approval winner never forces the rule to
simultaneously elect some approval loser: cautious approval compatibility demands
that any single approval winner can be made a co-winner of the ranking election
without also electing any approval losers.

Definition 5 The rule r satisfies:

• cautious approval compatibility (CAC) if for every approval profile A and x ∈
App(A) there exists a ranking profile V ∼ A such that x ∈ r(V ) and r(V ) ⊆
App(A);

• obvious cautious approval compatibility (OCAC) if for every approval profile A,
x ∈ App(A), and standardised ranking profile V x ∼ A it holds that x ∈ r(V x )

and r(V x ) ⊆ App(A).

Figure 1 depicts the logical relations between our notions of approval compati-
bility. Of course, other notions of approval compatibility could be considered, but at
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Fig. 1 Logical relations between different notions of approval compatibility. An arrow points from the
logically stronger to the logically weaker notion

least some of these alternatives lead nowhere. For example, we will say that a voting
rule r satisfies perfect approval compatibility if it is possible to make any approval
winner a ranking winner, and impossible to make any approval loser a ranking win-
ner. Equivalently, it satisfies PAC and for all profiles A and V ∼ A we have that
r(V ) ⊆ App(A). This is a stronger notion than cautious approval compatibility. In
fact, it is far too strong-no voting rule r satisfies it.

To see this, consider two approval profiles A = 〈{x}, {x, y}〉 and A′ = 〈{x, y}, {y}〉.
Let V be a ranking on X with x on top, then y, and all other alternatives ranked below in
an arbitraryway; letV ′ be a ranking on X with y on top, then x , and all other alternatives
ranked below in an arbitrary way. Consider the ranking profile V = 〈V , V ′〉. For r
to be perfectly approval compatible, only alternative x can win on V , since V ∼ A
and x is the only approval winner on App(A). But also, only y can win on V , since
V ∼ A′ and y is the only approval winner on App(A′). This is impossible.

We make no claim that all potential additions to our list of approval compatibility
notions can be dismissed as quickly as perfect approval compatibility; other attractive
properties may well exist. Indeed it was a challenge for us to select, from a great
variety of possible variants, those most interesting and central. Yet we believe that the
notions explored in this paper provide a good starting point.

3 Results

Here we present our results on the satisfaction of different notions of approval com-
patibility by various voting rules, with Table 1 providing a summary.

The results carry several key messages. First, compatibility properties can be clus-
tered in three groups: those that are very easy to satisfy, those that are extremely strong
and tend to exclude all rules, and those that are in between.6 The first group contains

6 Such trichotomies are classical in social choice. See in particular Zwicker (2016) for a similar classification
of classical axioms for voting rules.
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negative approval compatibility (NAC) and fractional negative approval compatibility
(FNAC); they are satisfied by all the rules we considered. The second group contains
uniform positive approval compatibility (UPAC); it is satisfied by none of the rules
we considered. All other properties are in the third group and are more interesting:
they are of mild strength, being satisfied by some certain common voting rules and
violated by others. We also notice that positive approval-compatibility properties are
globally more interesting, since most negative properties seem to be easy to satisfy.

Second, and perhaps even more interestingly, the voting rules themselves can be
clustered into several groups, according to the properties of the third group they sat-
isfy. We can distinguish four families of rules. The Condorcet family contains all
Condorcet-consistent rules, which satisfy all middle-strength axioms. The plurality
family contains plurality and its sequential variants (plurality with runoff, STV), which
satisfy all the middle-strength axioms except fractional uniform positive approval
compatibility (FUPAC). A third group contains only Borda, which satisfies FUPAC
(unlike rules of the plurality family) but violates obvious positive approval compati-
bility (OPAC) and obvious cautious approval compatibility (OCAC) (also unlike rules
of the plurality family). The last group contains K -approval for all K ≥ 2 (including
antiplurality), but also some positional scoring rules that are closer to antiplurality
than to plurality.

Note that the class of positional scoring rules has been seen as rather homogeneous
when it comes to themore classical voting axioms: all such rules satisfy reinforcement,
participation, and monotonicity, while violating Condorcet-consistency and clone-
proofness. Yet rules within this class exhibit a wide range of behaviour when it comes
to approval compatibility, with plurality satisfying almost all such properties, and K -
approval for K ≥ 2 satisfying almost none. Indeed, the clustering now runs transversal
to the family, with plurality lumped together with both STV and plurality with runoff.

3.1 Positive approval compatibility

We first focus on PAC and FPAC. We show that the plurality rule and the Borda
rule, as well as STV, plurality with runoff, and all Condorcet-consistent rules, satisfy
both these notions, while K -approval rules for K ≥ 2 do not satisfy either.7 The
latter observation follows from a necessary condition we provide for FPAC. Notably,
plurality, STV, plurality with runoff, and all Condorcet-consistent rules also satisfy
the stronger notion of OPAC, but the Borda rule and all other K -approval rules violate
it.

Theorem 1 The following two statements hold:

(a) The plurality rule satisfies OCAC (thus also CAC, OPAC, PAC and FPAC).
(b) Any positional scoring rule other than plurality violates OPAC (thus also OCAC).

7 A reasonable conjecture here would be that what distinguishes positional scoring rules that satisfy PAC
from those that do not is the Pareto condition: Borda and plurality are Pareto-efficient, while K -approval
rules for K ≥ 2 are not. However, there are positional scoring rules, like the one with scoring vector
(6, 5, 1, 0) when m = 4, that are Pareto-efficient yet violate PAC.
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Proof For (a), consider an approval profile A and an alternative x ∈ X such that
x ∈ App(A). Suppose that x is approved by k voters in A, and that all these voters
rank her first in a standardised profile V x ∼ A. Clearly no alternative can have more
than k first positions in V x , and every alternative y /∈ App(A) will have strictly fewer
than k first positions in V x . This means that x will be amongst the plurality winners
and no approval loser will be a plurality winner. So OCAC holds for plurality.

For (b), let s = (s1, . . . , sm) be a scoring vector with s2 > sm . Take the approval
profile A = 〈{a}, {x2, . . . , xm}〉 and the following standardised ranking profile for a:
Va = 〈ax1 · · · xm−1, x1x2 · · · xm−1a〉 ∼ A. Alternative a is an approval winner in A,
but x is the unique Fs winner in Va . This means that Fs fails OPAC. ��

Theorem 1 tells that the plurality rule is the only scoring rule that satisfies OPAC.
However, the Borda rule is a rather special case; while it fails OPAC and OCAC, it
satisfies their weaker cousins PAC and CAC.We show this by constructing a particular
type of standardised ranking profile. Observe that if there is a profile V ∼ A for which
x is a Borda winner, then there is a standardised profile V ′ ∼ A for which x is a Borda
winner: moving x in each Vj to the top position (if x ∈ A j ) or to the position |A j |+1
(if x /∈ A j ), leaving unchanged the relative position of other alternatives, can only
increase the score of x and decrease the score of other alternatives.

Theorem 2 The Borda rule satisfies CAC (and thus also PAC and FPAC).

Proof Consider an approval profile A for a set X containing m alternatives, and let
a ∈ App(A) be an approval winner. We will show that there exists a compatible
(and standardised) ranking profile V where a is a Borda winner, and every alternative
x /∈ App(A) is a Borda loser. Given any set S ⊆ X of alternatives with a ∈ S, we
define the approval profile AS = 〈A1 ∩ S, ..., An ∩ S〉 to be the restriction of A to S.
Note that because a ∈ S, it is true that App(AS) = App(A) ∩ S. We will show, by
induction on the number of alternatives in S, that for each such set S there exists a
standardised ranking profile V ∼ AS satisfying that a is a Borda winner, and that for
every alternative x ∈ S, if x /∈ App(A) then x is a Borda loser. Taking S = X then
completes the proof.

First, suppose that |S| = 2, so that for some alternative x ∈ X , we have that
Ai ⊆ {a, x} for all voters i ∈ N . Let V ∼ AS be a standardised ranking profile with
respect to a. Since a is an approval winner, by Lemma 1, |A(a+x−)| ≥ |A(a−x+)|,
with equality if and only if x is an approval winner too. Now, V ∼ AS contains
|A(x+a−)| votes of the form {x, a} and at least |A(a+x−)| votes of the form {a, x}.
Therefore, a is a Borda winner in V , and x can only be a Borda winner in V if it is an
approval co-winner in AS. See Fig. 4 for an example.

Next, assume that our hypothesis holds for each set S ⊂ X with |S| = k < m.
For our induction step, take any S′ ⊂ X with |S′| = k + 1 ≤ m. Then S′ = S ∪ {x}
for some S ⊂ X with |S| = k and some x ∈ X\S. Using the standardised profile V
that the inductive hypothesis provides for S, we can construct a new standardised
profile V ′ ∼ AS′ , ensuring that the relative order of all alternatives in S remains the
same between Vi and V ′

i , for every i ∈ N . We also construct V ′ so that the following
two conditions hold:
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Fig. 2 Treatment of a and of x by an individual voter i

1. For every i ∈ A(x+a−), we rank x as low as possible in Vi , without violating
approval compatibility.

2. For every i ∈ N \ A(x+a−), we rank x as high as possible in Vi , without violating
approval compatibility or the definition of a standardised profile.

An example of the above construction can be found in Fig. 4.
Let αi = |Ai ∩ S|. If αi = 0, then Ai ∩ S = ∅. Because a ∈ S, we necessarily have

a /∈ Ai , which implies that i /∈ A(x−a+). For each i ∈ A(x−a+) we have αi ≥ 1.
The table in Fig. 2 indicates the rank of a and x in the four types of votes of V ′, as
well as the differences in contributions of voter i to the Borda scores of a and x .

Assume x is an approval loser in AS′ . As a is an approval winner, we know (Lemma
1) that |A(x−a+)| > |A(x+a−)|. Then by the construction of V ′:

∑
i∈A(x+a−)∪A(x−a+) BV ′

i
(a) − BV ′

i
(x) =

(∑
i∈A(x−a+) αi

)
− |A(x+a−)|

≥ |A(x−a+)| − |A(x+a−)| > 0

In addition, the following clearly holds since our ranking profile is standardised:

∑

i∈A(x+a+)∪A(x−a−)

BV ′
i
(a) − BV ′

i
(x) > 0

So,wehave that
∑

i∈N BV ′
i
(a)−BV ′

i
(x) = ∑

i∈A(x+a−)∪A(x−a+) BV ′
i
(a)−BV ′

i
(x)+

∑
i∈A(x+a+)∪A(x−a−) BV ′

i
(a) − BV ′

i
(x) > 0. This means that x will be a Borda loser

in V ′. If we instead assume x is an approval co-winner in AS′ , the above inequality
may be weak, implying that x may be a Borda winner in V ′, together with a.

It remains to prove that a’s Borda score in V ′ is greater than the Borda score of each
other alternative y ∈ S\{a} (or equal to that score, in case y is an approval co-winner
in AS′ ). For what remains, let us focus on the case of y being an approval loser, since
the other one is analogous.

We now consider the evolution of the Borda scores of a and y in V ′
i and Vi ,

depending of the type of voter i . We write x1 �i x2 to denote that alternative x1 is
ranked above alternative x2 by voter i in V ′:

• if i ∈ A(a+y−), then a �i x �i y.
• If i ∈ A(a−x+y+), then y �i x � a.
• If i ∈ A(a−x−y+), then y � a � x .
• If i ∈ A(a+y+), then a � y � x .
• If i ∈ A(a−y−x+), then x � a � y.
• If i ∈ A(a−y−x−), then a � x � y.
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Fig. 3 Evolution of the difference between the Borda scores of a and x

Now, in moving from V to V ′ the contribution of voter i to the difference between
the Borda scores of a and y is unchanged if x is either above both a and y or below
both a and y; increases by one unit if x is below a and above y; and decreases by
one unit if x is below y and above a, as summarised on Fig. 3, where (*) means
(BV ′

i
(a) − BV ′

i
(y)) − (BVi (a) − BVi (y)).

Therefore, by our construction, when moving from V to V ′, the following hold
with respect to the changes that occur in the difference of a’s and y’s Borda scores:

∑

i∈A(a+y−)

BVi (a) − BVi (y) =
( ∑

i∈A(a+y−)

BV ′
i
(a) − BV ′

i
(y)

)
− |A(a+y−)|

(1)

∑

i∈A(a−y+)

BVi (a) − BVi (y) ≤
( ∑

i∈A(a−y+)

BV ′
i
(a) − BV ′

i
(y)

)
+ |A(a−y+)|

(2)

∑

i∈A(a+y+)

BVi (a) − BVi (y) =
∑

i∈A(a+y+)

BV ′
i
(a) − BV ′

i
(y) (3)

∑

i∈A(a−y−)

BVi (a) − BVi (y) ≤
∑

i∈A(a−y−)

BV ′
i
(a) − BV ′

i
(y) (4)

Combining the equations and inequalities (1) to (4), we get:

∑

i∈N
BVi (a) − BVi (y) ≤

( ∑

i∈N
BV ′

i
(a) − BV ′

i
(y)

)
− |A(a+y−)| + |A(a−y+)|

(5)

Recall that |A(a−y+)| < |A(a+y−)| because a is an approval winner and y is an
approval loser. Then, inequality (5) implies that:

∑

i∈N
BVi (a) − BVi (y) <

∑

i∈N
BV ′

i
(a) − BV ′

i
(y)

By our induction hypothesis, we have that 0 <
∑

i∈N BVi (a)− BVi (y) because a is
a Borda winner and y a Borda loser in V . This means that 0 <

∑
i∈N BV ′

i
(a)−BV ′

i
(y),

and our proof is concluded. ��
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Fig. 4 Construction of a standardised ranking profile V ∼ A = 〈{a}, {a, x1}, {x1, x2}, {x3}〉, in which
alternative a is a Borda winner. The alternatives that are shaded in the approval profile of each step are
not considered, and the alternatives within the grey box in a ranking are those that are approved in the
corresponding approval ballot

Turning for a moment to some of our other rules, proving that OCAC holds is much
easier.

Proposition 1 STV, plurality with runoff, and all Condorcet-consistent rules (when n
is odd) satisfy OCAC (and thus also PAC and FPAC).8

8 For an even number of voters, we need a condition slightly stronger to Condorcet consistency to ensure
that an approval winner will always be elected. We call an alternative x weak Condorcet winner if it is
preferred over every other alternative by at least half of the voters. As opposed to a Condorcet winner
that—if existing—is unique, there may be multiple weak Condorcet winners in a ranking profile. Let us
call a voting rule weakly Condorcet-consistent if it elects all weak Condorcet winners, whenever there are
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Proof First, we consider STV. Take an arbitrary approval profile A, an approval
winner a ∈ App(A), and a standardised ranking profile V a ∼ A for a. Because
a ∈ App(A), the approval ballots that contain a but not x are at least as many as the
approval ballots that contain x but not a:

A(x−a+) ≥ A(x+a−) (1)

We prove by induction that at each round j of the STV elimination procedure,
there is a parallel universe in which a has not been eliminated. At round 1, because
a is an approval winner and V a is standardised, a has a maximal plurality score in
V a , therefore there is a universe in which a survives to round 2. Assume that there
is a universe in which a survives until round j . Because V a is standardised for a, its
restriction V j

a to the remaining candidates at step j is standardised for a too. Take
any alternative x �= a that has survived until round j in this universe. V j

a being
standardised for a, together with (1), implies that x will appear in the first position
at most A(x+a−) ≤ A(x−a+) times in V j

a , while a will appear in the first position
at least A(x−a+) times in V j

a . Therefore, there is at least one universe in which a
will survive to round j + 1, which proves the induction step. Taking j = m − 1,
we get that there is a universe in which a is the STV winner. In addition, the only
possibility for x �= a to be another STV winner in V a is if A(x−a+) = A(x+a−) and
A(x+a+) = A(x−a−) = 0, implying that x is also an approval winner of A.

Second, for plurality with runoff, the reasoning is analogous to STV. The plurality
points of a in both rounds are at least A(x−a+), and the plurality points of x in both
rounds are at most A(x+a−) ≤ A(x−a+). So alternative a must be a winner. In
addition, the only possibility for the alternative x �= a to be another winner in V is
if A(x−a+) = A(x+a−) and A(x+a+) = A(x−a−) = 0, implying that x is also an
approval winner of A.

Finally, consider an odd number of voters n and an approval profile A =
〈A1, ..., An〉 and x ∈ App(A). We will show that x is the Condorcet winner in any
standardised ranking profile V = 〈V1, ..., Vn〉 ∼ A. Thus, all Condorcet-consistent
rules will elect x as the single winner in V , implying that OCAC holds. We construct
V to be standardised by having each voter i who approves x in A rank x first, and
each voter i who does not approve x in A rank x in position |Ai | + 1. To see that
x is a Condorcet winner in V , consider an arbitrary alternative y �= x . Since x is
an approval winner, we know that A(x+y−) ≥ A(x−y+). Now, the number of vot-
ers ranking x above y in V is N (x, y) = A(x+y+) + A(x+y−) + A(x−y−), and
n − N (x, y) = A(x−y+) ≤ A(x+y−) ≤ N (x, y), which, because n is odd, implies
that N (x, y) > n

2 , and we are done. ��
Before continuing to uniform notions of approval compatibility, it remains to see if

positional scoring rules satisfy the weakest notion of FPAC. For that, Lemma 2 gives
a necessary condition.9 Intuitively, this condition focuses on special profiles where an

some. The fact that all weakly Condorcet-consistent rules satisfy OCAC (and thus also PAC and FPAC) for
even n is proven similarly to the odd case.
9 We conjecture that this condition is also sufficient.
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approval winner x only appears in singleton approval ballots, while other alternatives
are approved together in large ballots (hence forcing x to be ranked below all of them
in the compatible rankings). Then, it states that the average score of all alternatives
should not exceed the score of x ; otherwise, one of the alternatives besides x will win.

For example, take |X | = {x1, x2, x3} and consider the following approval profile A,
where x3 is the only approval winner:

A = 〈{x3}, {x3}, {x3}, {x1, x2}, {x1, x2}〉
For any positive integer k and profile V ∼ kA, the antiplurality score of x3 is

exactly 3k, while the sum of the antiplurality scores of all alternatives is 10k. Since
3k < 10k

3 , at least one alternative amongst x1 and x2 must have an antiplurality score
larger than that of x3, thus FPAC is violated.

Lemma 2 Let rs be the positional scoring rule defined by the scoring vector s =
(s1, . . . , sm). The following is a necessary condition for rs to satisfy FPAC (and thus
also a necessary condition to satisfy PAC):

1

m
(s1 + . . . + sm) ≤ �s1 + (m − 1)s�+1

� + m − 1
, for all � ∈ {2, . . . ,m − 1}

Proof Suppose that the condition of the statement is violated for a given � ∈
{2, . . . ,m − 1}. We will show that rs violates FPAC by constructing a suitable coun-
terexample. Consider an approval profile A with � +m − 1 voters, where each of the
� voters only approve xm and each of the remaining m − 1 voters circularly approve
� alternatives from the set X\{xm}, as follows:

〈
�

︷ ︸︸ ︷
{xm}, . . . , {xm},

m−1
︷ ︸︸ ︷
{x1, x2, . . . , x�}︸ ︷︷ ︸

�

, {x2, x3, . . . , x�+1}︸ ︷︷ ︸
�

, . . . , {xm−1, x1, . . . , x�−1}︸ ︷︷ ︸
�

〉

All alternatives in X are approval co-winners of A, with approval score �. In particular,
xm ∈ App(A), with AppA(xm) = �. But for every ranking profile V ∼ kA, for some
positive integer k, we know that xm can get score atmost s(xm) = k(�s1+(m−1)s�+1),
while the sum of the scores of all alternatives is

∑
x∈X s(x) = k(� + m − 1)(s1 +

. . .+ sm). Since (�+m−1) 1
m (s1 + . . .+ sm) > �s1 + (m−1)s�+1 from the violation

of our condition, it follows that at least one alternative amongst x1, . . . , xm−1 must
have a larger score than xm in V , implying that xm cannot be made a winner under the
given positional scoring rule. ��

To exemplify the necessary condition for FPAC above, let us look at the special case
with three alternatives. Form = 3 and normalising the scoring vector to s = (1, s2, 0),
the characterisation condition states that 1

3 (1 + s2) ≤ 2
4 , or equivalently that s2 ≤ 1

2 .
This is in agreement with Example 2 in the Introduction, demonstrating that for such
scoring vectors with s2 > 1

2 , PAC is violated.
Lemma2 implies Proposition 2, stating that FPAC is not satisfied by any K -approval

rule (except for the plurality rule that we already saw satisfies PAC). Indeed, if we

123



Approval compatible voting rules

consider the scoring vector s = (

K
︷ ︸︸ ︷
1, ..., 1,

m−K
︷ ︸︸ ︷
0, ..., 0) for K ≥ 2 and let � = K in the

inequality of Lemma 2, we get 1
m K > K

m+K−1 , meaning that FPAC is violated.

Proposition 2 For any K ≥ 2, the K -approval rule violates FPAC (and thus also PAC
and CAC).

3.2 Uniform positive approval compatibility

After having looked at notions of positive approval compatibility that refer to a
single approval winner at a time, we continue with uniform ones that examine all
approval winners simultaneously, i.e., UPAC and FUPAC. Although the former notion
is extremely demanding, we find that the latter is satisfied by the Borda rule as well
as Copeland and maximin.

Recall Example 3, where the plurality rule was found to violate UPAC. We will
use the same argument to show that many more rules also fail to satisfy this property.
A voting rule is called faithful if whenever applied to an 1-voter profile, it selects
as winner the voter’s top alternative and only that (Young 1974). For example, the
plurality rule and the Borda rule are faithful, while K -approval rules for K ≥ 2 are
not.

Proposition 3 All faithful rules violate UPAC.

Proof Let n = 1, and consider the approval profile Awhere the unique voter approves
all alternatives. We have that App(A) = X but for every V ∼ A (that is, for every V )
we have |r(V )| = 1, and therefore we cannot have App(A) = r(V ).10 ��

Note that the argument employed in Proposition 3 relies on the fact that there
is a single ranking from which the voting rule should determine a winner. If we
are allowed to take multiple copies of the ballots (aiming for the satisfaction of the
fractional version of UPAC), perhaps there is a hope for a positive result. This intuition
is verified for the Borda rule (specifically, by taking just a double copy of the approval
profile), but is falsified for all K -approval rules, and in particular for plurality. We will
prove the latter by also providing a necessary condition.

Lemma 3 Let rs be the positional scoring rule defined by the scoring vector s =
(s1, . . . , sm). The following is a necessary condition for rs to satisfy FUPAC (and thus
also to satisfy UPAC):

s1 + sm
2

= s2 + · · · + sm−1

m − 2

Proof Take rs to be the positional scoring rule defined by the scoring vector s =
(s1, . . . , sm), and suppose that rs satisfies FUPAC. Then, consider the 2-voter profile A
as follows, where App(A) = X :

A = 〈{x1, x2, ..., xm−1}, {xm}〉
10 With at least three alternatives, a similar argument works without needing the sole voter to approve all
alternatives.
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Since rs satisfies FUPAC, there is a ranking profileV ∼ kA for somepositive integer k,
such that rs(V ) = X . Then, the sum of the scores of the first m − 1 alternatives in V
is the following:

∑

j∈{1,...,m−1}
s(V , x j ) = k(s1 + 2s2 + 2s3 + · · · + 2sm−1 + sm)

Also, the score of sm is s(V , xm) = k(s1 + sm). But as all alternatives are winners
in V , we know that all their scores must be equal, which means that:

k(s1 + 2s2 + 2s3 + · · · + 2sm−1 + sm) = (m − 1)k(s1 + sm)

⇒ k(2s2 + 2s3 + · · · + 2sm−1) = (m − 2)k(s1 + sm)

⇒ s2 + s3 + · · · + sm−1

m − 2
= s1 + sm

2

Therefore, we have obtained our necessary condition for FUPAC. ��

Theorem 3 The following two statements hold:

(a) All K -approval rules violate FUPAC (thus also UPAC).
(b) The Borda rule satisfies FUPAC.

Proof For (a), since the plurality rule violates the necessary condition of Lemma 3,
it violates FUPAC. For any K ≥ 2, it follows from Proposition 2 that the K -approval
rule violates FPAC (hence violates FUPAC too).

For (b), let r be the Borda rule. Given an approval profile A, we construct a ranking
profile V = 〈V 1, V 2〉 ∼ 2A such that r(V ) = App(A), as follows. We first fix the
lexicographical ordering of the alternatives in X : x1, x2, ..., xm . Then for ever voter i ,
V 1
i ranks the alternatives of Ai in the lexicographical order at the top, followed by the

alternatives of X \ Ai in the lexicographical order below; V 2
i ranks the alternatives

of Ai in the reverse lexicographical order at the top, followed by the alternatives of
X \ Ai in the reverse lexicographical order below.

We claim that the Borda score BV (x) of every alternative x in V arises from its
approval score AppA(x) in A via the positive affine transformation:

BV (x) = δAppA(x) + γ

where δ, γ ∈ R are specified below. We next prove our claim. Recall that m(x, y) =
|{i ∈ N | (x, y) ∈ Vi }| − |{i ∈ N | (y, x) ∈ Vi }| and that

∑
y∈X m(x, y) = β

sym
V (x)

is the symmetric Borda score of alternative x (obtained via the vector of symmetric
Borda scores (m − 1,m − 3,m − 5, ...,−(m − 1)), which is equivalent to the more
standard one (m − 1,m − 2, ..., 1, 0)). For our profile V above, we have that:

m(x, y) = 2(AppA(x) − AppA(y))
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Therefore, it follows that:

β
sym
V (x) = 2

∑

y∈X
AppA(x) − AppA(y) = 2mAppA(x) − 2

∑

y∈X
AppA(y)

This completes the proof of our claim, taking δ = 2m and γ = −2
∑

y∈X AppA(y).
Finally, from our claim it follows that the Borda winners that maximise BV (x)

coincide with the approval winners that maximise AppA(x), and we are done. ��
Note that Lemma 3 implies that when m = 3, the Borda rule is the only positional

scoring rule that potentially satisfies FUPAC. Theorem 3 then confirms that this is
indeed the case. A natural question is whether this extends to m > 3. So far we don’t
have an answer, but we believe that the answer is negative.11

Aswe see in the next proposition, moving away from positional scoring rules brings
mixed news in terms of FUPAC.

Proposition 4 STV and plurality with runoff violate FUPAC (and thus also UPAC).
All weakly Condorcet-consistent rules satisfy FUPAC.

Proof Let m = 3 and consider the following approval profile, where all three alterna-
tives x1, x2, x3 are approval co-winners:

〈{x1}, {x2, x3}〉

For every ranking profile V ∼ k A, alternative x1 will be placed on the first position
k times, but one of the alternatives x2 and x3 will necessarily be placed on the first
position fewer than k times and will be eliminated in the first round of STV. This
means that not all approval winners can be made STV co-winners. For m = 3, STV
and plurality with runoff coincide, and the counterexample works for the latter too.

Continuing to Copeland and maximin, let us fix a lexicographical ordering over the
set of alternatives: x1, x2, ..., xm . Consider App(A), the set of approval co-winners of a
profile A. Take a compatible ranking profile V = 〈V1, V2, ..., Vm〉 ∼ A such in every
Vi , the alternatives in Ai are ranked according to the lexicographical ordering and
above all alternatives in X\Ai , which are also ranked according to the lexicographical
ordering. Take another compatible ranking profile V ′ = 〈V ′

1, V
′
2, ..., V

′
m〉 ∼ A such

in every V ′
i , the alternatives in Ai are ranked according to the reverse lexicographical

ordering and above all alternatives in X \ Ai , which are also ranked according to the
reverse lexicographical ordering.

Then, for each pair of alternatives x, y ∈ App(A), x is ranked equally many times
above and below y in the joint profile V ′′ = 〈V , V ′〉. The same holds for each pair of
alternatives in X\App(A). Moreover, for each x ∈ App(A) and z ∈ X\App(A), we
know as in the proof of Proposition 1 that x is ranked above z in strictly more than n
(out of the total 2n) rankings of V ′′. This means that the approval winners of Awill be

11 For m = 4, we have shown that the following conditions on the scoring weights are necessary for a
scoring rule to satisfy FUPAC: s1 − s2 = s3 − s4 > 0 and s2 − s3 = r(s1 − s2) for some rational number
r with 0 ≤ r ≤ 4. In particular, the scoring rule associated with scoring vector (2, 1, 1, 0) satisfies this
condition and we strongly believe it satisfies FUPAC, but we don’t have a full proof.
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exactly the weak Condorcet winners of V ′′, and FUPAC will hold for every weakly
Condorcet-consistent rule. ��

3.3 Negative approval compatibility

We have seen so far that satisfying positive notions of approval compatibility is not
a trivial task for many voting rules: K -approval rules (except for the plurality rule)
fail all such notions we examined, and all our rules fail the uniform notion. On the
contrary, we now focus on negative notions of approval compatibility, asking for a
voting rule to guarantee that approval losers will not be elected. We will see that this
is a much weaker requirement.

Let us start with defining a weak normative principle, satisfied by most known
voting rules. We will then show that this principle implies NAC (so also FNAC).

Definition 6 Given two alternatives x, y ∈ X , we say that x overwhelms y at the
ranking profile V if at least one of the following two conditions holds:

1. x Pareto dominates y at V ;
2. more than half the ballots at V rank x first and y last.

The overwhelmed losers property (aka OWL) then says that if some alternative x
overwhelms an alternative y at profile V and also at profile V ′, then y is not a winner
of the joint profile 〈V , V ′〉.
Lemma 4 If a voting rule satisfies OWL, then it also satisfies NAC.

Proof Consider an approval profile A and two alternatives x, y such that x ∈ App(A)

and y /∈ App(A). Then, we can construct a ranking profile V ∼ A as follows:

• Every voter i with y ∈ Ai and x /∈ Ai ranks y last amongst all her approved
alternatives and ranks x first amongst all her non-approved alternatives. Say we
have α ⊆ N such voters.

• Every voter i with x ∈ Ai and y /∈ Ai ranks x first amongst all her approved
alternatives and ranks y last amongst all her non-approved alternatives. Say we
have β ⊆ N such voters.

• Every voter i with x, y ∈ Ai ranks x first and y last amongst all her approved
alternatives. Say we have γ ⊆ N such voters.

• Every voter i with x, y /∈ Ai ranks x first and y last amongst all her non-approved
alternatives. Say we have δ ⊆ N such voters.

Because x ∈ App(A) and y /∈ App(A), we know that |β| > |α|. Then the profile V
can be decomposed into two profiles V ′ (with the voters from γ ∪ δ ) and V ′′ (with
the voters from α ∪ β), in both of which x overwhelms y. Thus y /∈ r(V ) holds for
any rule r satisfying OWL. ��
Although OWL has some flavour of “negative reinforcement”, it does not imply such
a property, which is too strong to be reasonable. For if y loses both at profile V and
at profile V ′, then it may happen that it barely loses to some alternative z in V and it
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barely loses to some alternative w in V ′. Now if z does very poorly at V ′ and w does
very poorly at V , it’s quite plausible that y should win at 〈V , V ′〉.

But how compelling is OWL? Note also that each of the following two strictly
weaker properties is in fact quite compelling:

1. If some x Pareto dominates y at V , then y is not a winner at V .
2. If a majority of voters rank some x at the top and some y at the bottom at V ′, then

y is not a winner at V ′.

It is difficult to identify plausible voting rules that fail either one of these two weaker
properties, although K -approval rules for K ≥ 2 do not satisfy the Pareto condition.
Note that positional scoring rules with scoring vector (s1, ..., sm) such that s1 > s2 >

... > sm satisfy OWL.
Let us next confirmwhatwe already claimed: thatmany commonvoting rules satisfy

OWL, and therefore NAC and FNAC. Specifically, this holds for STV, plurality with
runoff, the Copeland rule, the maximin rule. Note however that from Proposition 1
we already know that all Condorcet-consistent rules satisfy NAC (which is implied by
OCAC).

Proposition 5 All positional scoring rules satisfying s1 > s2 > ... > sm, STV, plurality
with runoff, theCopeland rule, and themaximin rule satisfyNAC (and thus alsoFNAC).

Proof For STV, plurality with runoff, the Copeland rule, and the maximin rule, we
will show that OWL holds. Then, Lemma 4 implies that NAC holds too. Consider
an alternative y that is overwhelmed by an alternative x in both ranking profiles V
and V ′. For STV, y will be eliminated before x in 〈V , V ′〉 (unless no voter ranks x or
y first, in which case y is eliminated before any z who is ranked first by at least one
voter) and cannot be a winner. Similarly for plurality with runoff, y cannot win since
it loses to x in a majority competition. The Copeland score of alternative y will also
be smaller than that of x in 〈V , V ′〉, ensuring that y cannot win. Similarly, a scoring
rule with scoring vector (s1, ..., sm) such that s1 > s2 > ... > sm will give a smaller
score to y than to x . For the maximin rule, the argument goes as follows: If x Pareto
dominates y on the entire profile V (with V ′ empty) then y’s margin over x achieves
the minimum possible value of −m, and so y cannot be a maximin winner. If not (so
that there is a nonempty V ′ part in which a majority of the voters rank x on top and
y on bottom), then x’s majority margin over any alternative z is strictly greater than
y’s majority margin over z. As x’s majority margin over y is greater than y’s over x ,
x has a larger maximin score than y.

Arbitrary positional scoring rules need not satisfyOWL, soweprovide a direct proof
for NAC. Take a scoring rule with associated scoring vector (s1, ..., sm). Consider
an approval profile A with x1 ∈ App(A) and x2 /∈ App(A). Construct a ranking
profile V ∼ A as follows: All voters who approve x1 in A rank x1 first (let this set
of voters be X1). All voters who do not approve x2 in A rank x2 last (let this set of
voters be N \ X2). Voters otherwise rank alternatives arbitrarily, subject to V ∼ A.
Since |X1| > |X2| and s1 > sm , we have that sV (x1) ≥ s1|X1| + sm |(N\X1)| >

s1|X2| + sm |N\X2| ≥ sV (x2), which guarantees that x2 will not win in V . ��
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3.4 Uniform negative approval compatibilty

In this section we examine UNAC and FUNAC, requiring that a voting rule can ensure
that no approval loser will win in a ranking election. As was the case for PAC and
FPAC, we find that the plurality rule, the Borda rule, all Condorcet-consistent rules,
STV, and plurality with runoff satisfy both these notions, while K -approval rules for
K ≥ 2 violate both. This is not surprising, since we know that the satisfaction of the
positive notions for these rules was due to the satisfaction of CAC, which also implies
UNAC. Part (a) of Theorem 4 then follows from Theorems 1 and 2, and Proposition 1.

Theorem 4 The following two statements hold:

(a) The Borda rule, the plurality rule, STV, plurality with runoff, and all Condorcet-
consistent rules (for an odd number of voters) satisfy UNAC (and thus also
FUNAC).

(b) For all K ≥ 2, K -approval violates FUNAC (and thus also UNAC).

Proof For (b), fix a set of alternatives X = {x1, ..., xm} and a K -approval rule for
some K ≥ 2. Take two approval profiles A′ and A′′ as follows:

A′ = 〈{x1, x2, . . . , xK }, {x2, x3, . . . , xK+1}, , . . . , {xm−1, x1, . . . , xK−1}〉

A′′ = 〈{xm}〉
That is, in the profile A′ each of the alternatives x1, . . . , xm−1 receives K approval
points, and in the profile A′′ the alternative xm receives 1 approval point.

Now take two numbers α, β ∈ N such that β = αK + 1 and β(K − 1) ≥ m − 1
(such numbers always exist, for example by taking a large enough even number α and
a corresponding large enough number β), and consider the following profile:

A = 〈A′, . . . , A′
︸ ︷︷ ︸

α

, A′′, . . . , A′′
︸ ︷︷ ︸

β

〉

In the profile A each of the alternatives x1, . . . , xm−1 receives AppA(x1) = αK
approvals, and the alternative xm receives AppA(xm) = β = AppA(x1)+ 1 approvals
(so xm is the single approval winner).

Then, in every ranking profile V ∼ kA, the alternative xm will get at most
kAppA(xm) points by the K -approval rule, since only the voters in kA′′ can rank
it in one of the top K positions. The alternatives x1, . . . , xm−1 will all get at least
kAppA(x1) points by the remaining voters. Since kAppA(xm) − kAppA(x1) = k, if
any alternative from the first m − 1 ones gets at least k more points by the K -approval
rule in V , it will be a (co-)winner in V . Note that this will necessarily happen, because
there are kβ(K − 1) ≥ k(m − 1) available points to be given from the voters in kA′′,
which must be shared among m − 1 alternatives. ��

Having presented all our formal results, we are ready to conclude.

123



Approval compatible voting rules

4 Conclusion

Social choice theorists standwithin a long tradition of comparing different voting rules.
What are their similarities and differences? Will the same electorate yield similar out-
comes for different rules?Herewe have considered a special case of the latter question:
given an electorate who have cast approval ballots and determined an approval winner,
is it possible for the same electorate to obtain the same winner(s) by using a voting
rule that instead uses ranked ballots? An immediate issue is what “same electorate”
means under a change of ballot format. We have chosen to require only that a voter
who has approved a set A of alternatives in the first (approval) ballot must, in the rank-
ing election that follows, rank all members of A above all non-members. Arguably,
this interpretation better represents a “possibly same electorate”, but it is difficult to
imagine natural alternatives.

We find that the answer varies considerably, depending on both the version of
approval compatibility property at hand, and on the particular voting rule for ranked
ballots. However, some broad patterns emerge. Some properties, such as requiring the
exact same set of co-winners from the second election, are too strong to be satisfied
universally (that is, for all approval profiles) by any ranking rule. Others, such as
requiring any single approval loser to lose the ranking election, are so weak that
they are satisfied by quite a broad variety of ranking rules. An intermediate set of
properties, such as requiring any single approval winner to be a winner of the ranking
election, but without also electing any approval losers, are of intermediate strength,
and differentiate in interesting ways among voting rules. For example, this particular
property is satisfied by all Condorcet consistent rules, STV,Borda, andPlurality voting,
but not by K-approval. Other variants are satisfied by Condorcet consistent rules and
Borda, but not by STV, plurality or K -approval. Borda, in particular, seems to play an
important role as an edge case.

While we have laid the ground for exploring the relations between approval-based
and ranking-based elections, we certainly have not answered all relevant questions.
For instance, we have provided necessary but not sufficient conditions for positional
scoring rules to satisfy the “fractional” version of uniform positive approval com-
patibility, and have only partially linked approval compatibility with other known
axiomatic properties of voting rules (e.g., faithfulness). Also, our results are limited to
a specific collection of voting rules for ranked ballots, and to a single rule—approval
voting—for approval ballots. We leave these matters for future research. A possibly
more important limitation of the current study is that it represents a “worst case” anal-
ysis, in the sense that a rule that violates some approval compatibility property for
even a single approval profile is lumped together with another that might violate that
property most of the time. A particularly interesting follow-up, then, would consider
a probabilistic counterpart to the questions we ask here: given a joint probability dis-
tribution over approval profiles and compatible ordinal profiles, and an ordinal voting
rule r , how likely is it that the approval winner(s) of the approval profile coincide with
the r winner(s) of the ranking profile?
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