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Abstract. We propose a methodology for defining nonmonotonic inference relations, 
involving distances (in a non-topological meaning) between ~labels", each label being 
associated with a logical theory. Our framework is motivated by applications to spatial 
reasoning (reasoning by proximity) and taxonomic reasoning, though it also applies to 
temporal reasoning (degradation of persistence). We propose several ways of defining 
nonmonotonic inference relations from distances. 

1 Introduct ion  

In the literature of nonmonotonic reasoning, and, analogously, belief revision, it has been 
widely recognized that most nonmonotonic inference relations have or impose an underlying 
ordering structure on worlds, or sets of worlds (e.g. [14], [15], [11]). Now, ordering relations are 
also used (in a more syntactical way - they are called then prioi'ities) in syntax-based default 
reasoning (e.g. [17] [3] [1] [16]); and more generally, orderings and priorities are exploited 
in other nonmonotonic formalisms, in belief revision (e.g. [10]'s epistemic entrenchment 
relations), in updat ing formalisms, in logic programming, etc. 

One major question which is often unanswered is where do these orderings and priorities 
come from? Two answers are given in the literature: 

- orderings come from the user. In this case, they usually represent uncertainty: some 
statements are more reliable than others. 

- orderings derive from a knowledge base consisting in a set of default rules cq ~., /~i 
(or equivalently from a set of conditional statements ai  --+ fli) which determines a 
nonmonotonic inference relation. In Rational Closure [15] and in System-Z [18], defaults 
are automatically ranked according to their specificity and this ranking induces a rational 
inference relation. 

In this paper, we propose an alternative way to induce orderings, and consequently an 
alternative way to derive inference relations. Here, orderings come directly from pseudo- 
distances 1. These pseudo-distances can apply to time points, points of space, sources, situa- 
tions, classes, and other types of things. To induce nonmonotonic inferences from distances, 
we "reason by proximity, which is a sort of extrapolation process. Consider for instance a 
t ime-stamped knowledge base, i.e. a set of formulas, each formula being indexed by the t ime 
point when i t  was put  in the knowledge base: it  is clear that the more recent the informa- 
tion, the more certain we are that it is still holding, and thus the more priority it should 
be assigned (provided that  the given formulas encode fluents 2 which generally tend to per- 
sist). As a second example, consider a knowledge base consisting in observations at different 
points of a given region. Suppose that we do not know whether a given formula holds at 

a We avoid using the word distance which evokes the topological definition; our pseudo-distances 
are not necessarily defined on a completely ordered scale, they are not necessarily symmetrical, 
nor necessarily satisfy the triangle inequality. 

2 A fluent is a proposition whose truth value changes with time. 
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a point z. To find out, we may consider points close to x at which information is known; 
the closer y is to z, the more pertinent is the information at y to z. We then extrapolate 
for z. The general principle behind these examples is that distances between "labels" (t ime 
points, points in the space etc.) play the role of priorities: the closer the labels, the higher 
the priority. Thus, from a labelled (temporal, spatial etc.) knowledge base we will define a 
set of nonmonotonie inference relations--one for each label. Our examples will focus on tem- 
poral, spatial, and taxonomic reasoning. We first develop the basle formalism and supply it 
with a modal semantics. Then we propose three different ways of defining nonmonotonie  in- 
ference relations from pseudo-distances: projection (which is intuitive and easy to compute, 
but  which sometimes gives unintended results), radial accumulation (which gives a rational 
inference relation when the distance is complete) and prioritized syntax-based entailment.  

2 Labelled pseudo-metr ic  s t ruc tures  

2.1 Labe l s  a n d  p s e u d o - d i s t a n c e s  

The general structure we have in mind is the following. We have a collection of knowledge 
items, i.e. formulas labelled by something indicating the location of the observation, or when 
it was put  in the knowledge base, etc. This set of "labels" will be equipped with a kind of 
metric. 3 From now on, • denotes a propositional language whose formulas axe denoted by 
greek letters ~, r etc. T and .1_ denote respectively tautology and contradiction, I- classical 
entai lment and Cn(S) the set of all logical consequences of the set of formulas S. 

D e f i n i t i o n  1 ( l abe l  s t r u c t u r e )  A label structure is a pair (Z, d) where X (the label set) is 
a nonempty set and d (the pseudo-distance on X )  is a mapping from X x X to a (completely 
or not) ordered set Ud (the distance scale) with a minimal element denoted O, verifying 
Vy ~ X ,  d ( z ,  y) = 0 iff  z = v. 

From d we induce the collection of pre-ordering relations (i.e. reflexive and transitive 
relations) <x ,x  E X,  defined by: Vx, y ,z  E X ,  y <~ z iff d(x,y) < d(z,z).  Intuitively, 
y <x z means that  y is closer to x than z. If Ua is completely ordered, then all <z axe 
complete preorderings. In this case, d and (X, d) are both said to be complete, y <~: z will 
be an abbreviation for y <x z and not (z <x y). Note that we have Vy E X , x  <~ y and 
V y E X ,  y<_zx r x = y .  

As illustrations, we will explain each new definition with respect to spatial structures. 
However, the reader should keep in mind that  the framework is much more general. As a 
simple example of a label structure, we consider the discretized portion of 2-dimensional 
space {(x, y), z = 0, 1, 2, 3, y = 0, i ,  2, 3} equipped with the distance d((z, y), (x', !/)) = 
] x - x'l + lY - Y~I- The distance scale is obviously Ud = {0, 1, ...,6}. 

D e f i n i t i o n  2 ( l a b e l l e d  f o r m u l a ,  l abe l l ed  k n o w l e d g e  base )  Let (X, d) be a label struc- 
ture. I f  ~ is a formula off_. and Y is a non-empty subset of X then Y : ~ is a labelled formula, 
meaning that ~ holds at every label of Y.  When Y is a singleton we will note y : ~o instead 
of {v}: ~. 

A labelled knowledge base L K B  is a finite set of labelled formulas. 
The theory at label z induced by LKB,  denoted by Cn~:(LKB) is the logical closure of 

the set of all formulas ~ : ~i in L K B  such that x E Yi. The logical closure of LKB,  denoted 
Cn(LKB)  is the collection of closed theories {Cn~(LKB), x E X} .  

3 So far no internal operation on the set of labels is needed,and so our framework has thus far very 
little to do with [9]'s labelled deductive systems. 
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Note that ,  in practice, L K B  may contain punctual observations y~ : ~i as well as con- 
straints holding at every label X : ~j .  

We say that  a labelled knowledge base is consistent iff it is consistent at every label, i.e. if 
all theories C n = ( L K B )  are consistent. In this paper, we restrict our attention to consistent 
labelled knowledge bases only. 4 H being a consistent labelled theory, H ( z ) ( =  C n z ( L K B ) )  
will denote the theory at label z; thus H -- {H(z) lz  E X}. 

Example: let (X, d) be the discrete spatial structure as defined above, and L K B  = { X  : 
-~(r A s); {(0, 1), (0, 2)} : r V s; (1, 0) : -~s; (1, 3) : -~r; (3, 0) : --r A -~s; {(2, 2), (3, 2)} :  r} 
(where r and s stand respectively for raining and snowing). L K B  is depicted by Figure 1. 
The induced labelled theory contains, for example, --s at label (3, 2). 

x y l l  o I 1 I 2 I 3 I 
0 r V s  r V s  
1 ''18 ---It 

2 r 

3 - ,r  A ",s r 

and everywhere: --(r A s) 

Figure 1: a spatial example of a labelled knowledge base 

2.2 E x a m p l e s  o f  l a b e l l e d  p s e u d o - m e t r l c  s t r u c t u r e s  

- X = [train, traa=] is a linear t ime scale (discrete or continuous) and labels are t ime points; 
d(=,  y)  = Ix - y[. 

- X is still a t ime scale but d(x, y) = ( s ign (x  - y), Ix - y]), with (s, a)  _< (s', a ' )  iff s = s' 
and c~ < a ' ,  or c~ = 0. This non-complete, non-symmetrical pseudo-distance considers 
past and future separately. 

- X is a region of a n-dimensioned Euclidean space, and labels are points (of the Euclidean 
plan, of space, ...); d is the Euclidean distance of X.  

- X is still a region of a n-dimensioned Euclidean space, but d(z, y) is the vector xy ,  with 
the ordering u _< v iff u = h.v with 0 < k < 1. 

- X is a set of sources; a source being closer to another if it generally behaves the same 
way, give the same information, has the same opinion etc.). The actual situation may 
be considered as a distinguished source so. 

- X -- 2 s where S is a set of hypotheses; d can be the symmetric difference between subsets 
of S (the ordering on Ud being set inclusion), or the cardinality of the symmetric differ- 
ence. A label, i.e. a set of hypotheses, corresponds to a "situation" or a "configuration". 
Thus, applying our methodology here consists roughly in completing the context of an 
environment by adding what is true in the "closest" environments. 

- X is a taxonomic graph (the labels being classes or types of situations), d is a distance 
between classes - given with the graph. Applying our methodology here means that  if a 
property of an object is not known, one extrapolates from the most similar classes (the 
closest w.r.t d). This gives rise to a kind of reasoning by analogy. 

2.3 A m o d a l  v i e w  o f  p s e u d o - m e t r l c  s t r u c t u r e s  

It is possible to give our labelled structures a modal  interpretation. 5 Since the knowledge at 
a label is generally not complete, each label will be associated not with a single world but 
with a set of worlds: 

4 This restriction to consistent knowledge bases assumes that we get first rid of punctual inconsis- 
tencies (by any method - there are many in the literature). A discussion of this point is beyond 
the scope of this paper. 

5 This section is not necessary for understanding most of the rest of the paper. 
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D e f i n i t i o n  3 ( p s e u d o - m e t r l c  m o d e l )  A pseudo-metric model for  a pseudo-metric struc- 
ture (X, d) is a g-uple M = (W, m, C, O) where W is a set of worlds, m a classical meaning 
function on worlds (i.e. Vw 6 W, m(w) C_ s C is an equivalence relation on W,  and 0 = 
{<to, w E W }  is a collection of reflexive and transitive relations verifying Vw' E W, w <to w'. 

The relation C defines clusters of worlds (one cluster for each label). Now, a consistent 
labelled theory whose atomic formulas and subformulas define a sublanguage o f / : , / : H  L 
induces a "biggest" labelled pseudo-metric model defined as the collection of all maximal  
consistent sets of s  formulas that make all the formulas labelled at x in H true, for all 
x E X. Note that  several duplicate worlds (i.e. mapped identically by m) may appear in 
different dusters, since they may be possible at different labels. We will assume that  these 
are distinguished by indices. Lastly, the preordering <to is the transposition of <~. Formally: 

D e f i n i t i o n  4 The pseudo-metric model MH associated with the consistent labelled theory H 
on (X,d) is the tuple M = (W*,m,C ,O*)  where: W* = U{D(x)  : x E X}, D(x) = {w~lw= 
is a maximal consistent set of s formulas that includes H(x)} (duplicate worlds being 
distinguished by the label z), and O* = {<to [ <to is reflexive and transitive on W* and if  
w e C(x), w' e ccu) a.d w" e C(z) then w' <_to w" iff u <_~ z}.  

In the example of figure 1, for example, C((0, 0)) = {rg, fs,  f~}, C((0, 1)) = {r~, ~s}, etc. 
We have the following property: w being any world in C(x), ia E 11(x) r w ~ t2ia 

(in is known at z). Since this is true for each w E C(x) we will note C(z)  ~ rain. ra is 
from $5 since C is an equivalence relation. The structure (W, m, C) enables us to draw 
monotonic conclusions. O will then enable nonmonotonic conclusions; namely we will define 
a nonmonotonic inference relation o~ ~ H,~/~ for each z E X.  To a class c of nonmonotonic 
inference relations induced by distances there will be a conditional operator =~c such that  

3 Extrapolation by projection 

We now propose to draw nonmonotonic conclusions at a given label, using the following 
intuitive principle: our background knowledge being represented by H, then ia nonmonoton- 
ically entails r at label x iff at the closest labels where ia is known to hold and the truth 
value of r is determined, then this truth value is TRUE. To guarantee that these closest 
labels exist, we have to add an extra assumption: 

Definition 5 (smooth labelled theories) A consistent labelled theory 11 is smooth iff 
Vx E X, Via E s for any infinite <x-descending chain {zi}i_>l such that Vi, ia E H(zi) ,  then 
3~ E X such that 5. = l i m i ~  zl and !a E I-I(~). 

We will only consider subsequently smooth labelled theories. This constraint is easily 
fulfilled, of course if  X is finite or if H associates a non-trivial theory to only a finite number 
of labels. It is also fulfilled also if (X, d) is a topological metric space and Via, the set of labels 
where la is true is topologically closed. 6 In the rest of the Section, 11 is a smooth  consistent 
labelled theory. 

D e f i n i t i o n  6 
KnownH(:) = {x E XI<P E H(x)} ; DetH(x, ~o) = KnownH(~O) U KnownH(-~ia) 

Thus, KnownH(ia) is the set of labels where ia is known to be true (w.r.t. H)  and 
Detg(ia) is the set of labels where !a has a determined truth value. Now, r is inferred 

s Note that this last condition is fulfilled if H is the logical closure of a labelled knowledge base 
LKB = {1~ : ~i, i = 1...n} such that all ~ ' s  are topologically dosed. 
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nonmonotonically from ~ given H iff ~ implies logically r 7 or r holds at all closest labels 
where ~ is known to be true and r is determined: 

D e f i n i t i o n  7 ( p r o j e c t i o n  i n f e r e n e e  r e l a t i o n )  
~., PnOl.t. ig ~ ~-r or Min (<=,Known(~)nDe tn ( r  C Known(C) 

H,z ~" -- -- 

In the simple case where ~ = T (which is frequent in practice) the definition reduces to 
T ~'H,=PROJr iff Min(<~,_ Detn(r  C_ Known(C). 

We can see a similarity between the definition of projection entai lment  and preferential 
entailment where one looks if r holds in all preferred ~-worlds; here we are dealing with 
clusters of worlds instead of worlds, and one looks if r holds in all closest (preferred) "~- 
clusters" where r has a determined truth value, s 

An immediate and important  property of b" gaoa is that it preserves what is already R ' , z  ' 

known in the labelled theory H: 

PROJ Proposition 1 /f ~b e H(z) then ~ H,z 

P r o p o s i t i o n  2 Let =~P be the conditional operator defined by M, w ~ ~=~P r iffVw t < , -  
minimal such that M,w '  ~ t3~ A ( h e  V D~r then w' ~ r Then ~ ~ PRO.rot, t t , z  v t .  i f f  

Mu,/(~) ~ ~, =~P r 

T h e  E x a m p l e  in  F i g u r e  1 a n d  PRO J: 
* at label (1, 1), nothing else than the constraint -~(s A r) is known for sure; the closest 

label where s is determined is (1, 0) (at distance 1), therefore ~,, PRo~ _~o H,0,D ~ Now, the closest 
labels where r is determined are (1, 3) and (2, 2) (at distance 2) but  they disagree about  its 
truth value. Therefore, neither r nor -~r is inferred (from T) at (1, 1). 

- at label (1,2) we get }" u,0,2)'ea~ V s (the closest labels where r V s is determined are 

(0, 2) and (2, 2)) and ~, H,0,2)_~sPROJ - (the closest label where s is determined is (2, 2)). However 
we cannot infer r nor -~r since the closest labels where r is determined, i.e., (1, 3) and (2, 2), 
disagree on r. 

This last example shows that  ~ PnOJ does not satisfy the (And) property since ~,, H j x  
PROd , .  PROJ - PROJ . 9 H,(1,2)r v s,  ~'~ H,0,~)-~s and however ~ H,(1,2)" and thus is not even a basic consequence 
relation in the sense of [11]. However, projection entailment is rather easy to compute and 
we think it might be adequate in some simple cases. In the next section we propose another 
definition which is generally more satisfactory. 

4 E x t r a p o l a t i o n  b y  r a d i a l  a c c u m u l a t i o n  i n  t h e  c o m p l e t e  c a s e  

We assume (X,d) is complete (the general case is not considered in this paper for lack of 
space) and propose now a second inference relation consisting intuitively in gathering to- 
gether the pieces of information attached to the labels inside spheres around z; one considers 
first the smallest sphere {z), and then larger and larger spheres, until  we can prove one of 
the formulas we look for. 

z this condition is needed to ensure that I }.. PnoJ_,. //,z w, and thus to guarantee supracla.ssicality [11]. 
s The alternative definition ~ ~" H,=PROJr ,if" ~ ~- r or Min(<=, Known(~)) C Known(C) would be 

too cautious: take for instance ~ = T, then Min(<=,_ Known(T)) = {z} and thus ~, x,=PR~ iff 
~b E H(z) (i.e., ~ PRos would be reduced to its monotonic part). a~/', z 

9 More intuitively, although there is a close label where r v s  is known and another close label where 
-~s is known, there is no close label where both are known together; in other terms, projection 
does not allow for using in a proof formulas known at different labels 
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D e f i n i t i o n  8 ( sphe re s  a n d  theo r i e s  a r o u n d  a l abe l )  Let H be a labelled theory, x a 
label, ~o a formula and p E U. 

S(z,p) --- {y E Xld(z ,y)  _< p} 
Th(z,  p, H) = Cn(Uues(=,p) H(y)) 

To avoid problems with infinite descending chains of spheres, we add: 

D e f i n i t i o n  9 A labelled theory H is s-smooth iff for any descending chain {Pi}i>_l such that 
Vi, ~ E Th(x, pl, H), then ~o E Th(z,  ~, H) where ~ = lim/~o~ pl 

P r o p o s i t i o n  3 if s is finite then H is s-smoot b iff it is smooth. 

Let H be a s-smooth labelled theory. 

D e f i n i t i o n  10 Rad(z, ~o, H) = M in{p G U, ~o G Th(x, p, I t ) )  

It is worth noticing that  ~o ~-~ Rad(z, ~o, H) is a kind of necessity function 10 (see for 
instance [7]), which is expressed by the following proposition: 

Proposition 4 (i) Rad(x, T, H) = 0 
(iV nad(~, J_, X-X) > 0 
(iii) Rad(z, ~o A r H) = maz(RadCz, ~o, H), RadCz, r H)) 

The proof is immediate. Note that (it) comes from the consistency of H(r ) .  

Definition 11 ( r a d i a l  inference relations) 11 

RADr iff [- r or Rad(z, r H) < Rad(z, _L, H), thus r is nonmono- For ~o = T we get ~ H,= 
tonically inferred at z iff the smMlest sphere around z proving r is contained in the smallest 
inconsistent sphere around z. 

P r o p o s i t i o n  5 ~ RAD is a comparative inference relation 1~. H,= 

The proof just  consists in proving that the relation <=,H defined on F. x s by ~ _<~,g fl iff 
Rad(x, ~) >_ Rad(z,~) is an expectation ordering ([11]) 13. Then, since the definition given 
for ~ RAD coincides with G~rdenfors and Makinson's definition, hence the result. H~z 

Note that ~ R_AD also preserves H too: 

RADr P r o p o s i t i o n  6 if r E H(x) then ~ lt,x 

Previous results on connections between comparative inference relations and condi- 
tional logics [2][8][4 ] imply that the conditional operator ::~R associated to ~ RAD is the 
=~ of Lewis' conditional logic VA (whose semantics is expressed with systems of nested 
spheres), or alternatively, expressed with ranked clusters of worlds, of the logic CO [2]. 
The underlying complete preordering relation R on the set of worlds is defined by: vRw iff 
Min{p, v ~ Th(z,  p, g ) }  < Min{p, w ~= Th(z,  p, H)}. 

10 A necessity function is a mapping from t:_ to [0,1] such that N(T) ---- 1, N(.L) < N(T) and 
N(~o A r = min(N(~), N(r The only difference betwen N and Rad is that the scale ([0, 1], <) 
has been replaced by ([0, +oo], ~) or any other complete ordered scale. 

11 equivalently, ~ ~ H,xRAD'YJ 1,~ ~ F" r o r ' ~ r  Rad(x, ~ --* r H) < Rad(z, ",~o, H). 
~2 A comparative inference relation [11] is a rational inference relation [15] which satisfies moreover 

Consistency Preservation). 
la this is intuitively obvious knowing the links between expectation orderings and necessity functions 

[7], and Rad being a necessity-like function. 
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T h e  E x a m p l e  o f  F i g u r e  1 a n d  R A D :  

- Consider the label (1,1). Nothing other than the constraint "~(rA s) is known for sure, 
so p = 0 does not give anything interesting. The labels at the distance p = 1 are (0, 1), (2, 1), 
(1,0) and (2, 0). Thus we have Th((1, 1), 1, H )  = Cn({ -~s ,  r V s}). As to Th((1, 1), 2, g ) ,  it 
is inconsistent. Thus we have ~ RAD ~ ̂  -~s. ~v,(1,0"" 

- Consider the label (1, 2). We have Th((1, 2), 1, H) -- On({r V s,-~r,-~s}) which is in- 
consistent, therefore radial accumlation does not enable any non-trivial inference at (1, 2). 
Remember that at this label the projection inference relation was less cautious. The results 
of the application of radial accumulation to the example is depicted on Figure 2. 

x Y [ I  0 1 1 1 2 [ 3 1 
0 r r r V s  s 

I -~s  r -~r  

2 - . r /~  '18 r r 

3 -~r/~ -~s -~s r r 

Figure 2: radial accumulation applied to the spatial example (of Fig.l) 

A generalisation of R A D  to the general (non-complete) case would define a preferential 
inference relation. We omit a discussion of this for lack of space. 

5 E x t r a p o l a t i o n  b y  s y n t a x - b a s e d  e n t a i l m e n t  

Syntax-based approaches to nonmonotonic reasoning (see [17]) consider each formula of the 
knowledge base as an independent piece of information; they often make use of priorities ([3], 
[17], [1], [16]) without specifying where these priorities come from. Our methods for defining 
priorities based on distances can be combined with the usual methods for defining a syntax- 
based inference relation, especially the definition proposed in [17], [3], and lexicographic 
en ta i lment ,  proposed in [1] and [16]. As argued in [1], these inference relations avoid the 
drowning effect, in contrast to radial accumulation. In order to apply distance based priorities 
in this case, however, we have to assume that the number of possible distance values is finite, 
due to the fact that there must be a finite number of priority levels. 

6 S e l e c t e d  a p p l i c a t i o n s  

6.1 T e m p o r a l  r eason ing  

Although our first motivation was directed towards applications in spatial reasoning, our 
approach also has some relevance to temporal reasoning, in particular the persistence prob- 
lem. Roughly, the persistence problem consists in extrapolating the truth value of fluents at 
some time points where it is unknown. The intuitive idea of our approach in the temporal 
domain is that our belief in the persistence of properties gradually grows weaker and weaker 
as time continues. Traditional approaches to persistence (see [19] for a critical survey) do not 
use this gradual notion; thus in the case where a fluent ta is known to be true at to and false 
at a later time point t l  (nothing else being known), skeptical approaches do not conclude 
anything about fP within (to, t 1), which is too cautious, and chronological approches such as 
[20] conclude that ~ changes its truth value at ihe last possible time point (i.e. at t l ) .  In con- 
trast, our approach extrapolates the truth value of to to TRUE(resp. FALSE) at time-points 
close to to (resp. t l) .  Now, it is clear that our basic approach, used alone, cannot handle 
examples with laws about explicit changes (updates, actions, ...) such as the Yale Shooting 
Problem. The latter cannot be even represented in our language; our approach applies only 



315 

to problems of pure persistence without causality. The next step toward a treatment of "re- 
alistic" temporal (whose technical details are beyond the scope of this paper) would consist 
in integrating distance-based persistence in the minimization criterion to select the preferred 
models in a given framework for handling changes with preferential entailment (for instance 
Sandewall's approach [19]). 

Besides traditional approaches, we know two gradual approaches to persistence. Dean 
and Kanazawa's [5] probabilistic projection extrapolate a probabilistic persistence function, 
and it may be considered as the probabilistie counterpart of the application of our work to 
temporal reasoning. It is discussed in [6], where a more qualitative, possibilistic approach 
is proposed. Such approaches have the advantage of potentially solving another problem 
that affects the application of our distance based inference relations to temporal reasoning 
(as well as that of many others) All of the latter treat the persistence of all fluents in the 
same way. While we could separate totally persistent fluents such as dead from usual fluents 
(simply in the closure phase of the labelled knowledge base: the labelled theory must be such 
that if we know dead at to, then we know dead at any later time point), we cannot express 
the fact that fluents persist in different ways: for instance, married usually persists longer 
than asleep; some fiuents are periodic, for instance r e d -  t ra f f i c  - li#ht; some fiuents may 
even be chaotic, i.e. they do not tend at all to persist. 

6.2 Spat ia l  reasoning  (reasoning by prox imi ty)  

Our original motivation was to treat the persistence of properties over spatial regions. In 
the persistence of properties over spatial boundaries without known boundaries, agronomists 
and others have used, though not formally defined or studied, pseudo-metric based systems 
of inference. They have not attempted a formal study of persistence principles of the kind we 
have pursued here. The only work we know on this subject is [13]: the authors point out that 
some notions used in temporal reasoning transfer to spatial reasoning and they define then 
spatial persistence; they use distances for relaxing a spatial constraint satisfaction problem 
(using a fuzzy model). But their framework is not oriented towards deduction; it is oriented 
towards finding a solution. Nevertheless, the underlying ideas are related to ours. 

For us, spatial reasoning corresponds to nonmonotonic reasoning by prozimily: we ex- 
trapolate by taking account of the closest points of the space. Here is a plausible example 
of such reasoning having to do with weather. For example, if a pilot is making a trip from A 
to B and he asks for weather at three stations along his route and the weather briefer tells 
him: Station 1 rain, Station 2 no report, Station 3 rain, the pilot and the weather briefer 
will extrapolate concerning station 2's weather from the reports given at stations 1 and 3. 
If station 2 is between stations 1 and 3, then both RAD and PROJ will allow us to infer 
I:tAIN at station 2. To be sure this is not the only sort of information that the pilot might 
consider; he might have special knowledge of the terrain at station 2 that would override or 
defeat this inference--for example, the fact that station 2 is in a deep desert valley where 
the weather is usually much better than at stations 1 and 3). 

In spatial reasoning as in temporal reasoning, we should not treat the peristence of 
spatial propositions completely uniformly; some tend to "persist through space" more than 
others. Further, in addition to our relations PROJ and RAD, we would like to investigate 
more empirical, more quantitative but perhaps more realistic inference relations for space. 
Finally, we should exploit geometrical reasoning in performing the logical closure giving 
H within our distance based account of persistence; for instance, if we want to delimit an 
object which we know to be, say, convex, we can deduce many facts from a few punctual 
observations. Object boundaries will obviously affect persistence of spatial propositions. 
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6.3 Taxonomic  reason ing  

Distance based nonmonotonic inference relations also have a natural application in taxo- 
nomic reasoning, though we know of no work in AI other than our own in this area. Fields 
like classification theory, however, have used distance based reasoning, though again the 
formal study of inference relations based on distances have not been studied. One simple 
application of PROJ and RAD in taxonomic domain concerns a classification task. Consider, 
for instance, the problem of classifying a particular mushroom as being of a given type. Our 
"space" is in this case a space of features rather than physical distances. We propose two 
different ways to define such distances. 

Feature distances 
The label set X is now a conceptual net with nodes labelled by concepts C1, ..., Cn or by 

individuals al, ..., am. With each node is also associated a list of features. The labelled theory 
consists in specifying which features are associated to which nodes. The features give rise 
to a number of natural distance metrics between nodes. One, for instance, comes from the 

]{Fi:FieH(z)nH(y)}] Jaccard Index (let FI, ...Fp denote the different features): d(z, y) --- HFi:F~6H(z)ulI(v)} j -- 1 
With these preliminaries in mind, we return to the categorization example. We are in- 

terested in categorizing a particular object a0 with features F1, ..., F,.  In our example, a0 
might be a particular mushroom whose type we are trying to identify. Types of mushrooms 
(cepes, girolles, amanitas, etc.) also are nodes in our feature space. We will suppose that 
each type node is exclusive so (so for instance -,(cspe A girolle) holds at all nodes. Suppose 
now using the Jaccard measure that the closest nodes to a0 at which cepe is either true or 

P R O J  c e d e  false make cepe true. Then by the projection inference relation, we conclude ~ /tao e , 
i.e. cepe is true at a0. Another way to employ the distance based inference relations in tax- 
onomic reasoning is to extrapolate particular properties about a0 that are not known from 
the original inspection. Continuing our example above, if eepe is the closest node to a0 at 
which the property "edible" is determined, then ~ ~~ 

Distances based on counting individuals 
Taxonomic reasoning is usually thought to verify a specificity property like the following. 

If A strictly implies B and A's by default are not C's and B's are by default C'% then given 
that we know that something is an A and a B, then we by default infer that it is not C. To 
capture inheritance, we need a different kind of distance metric than the one constructed 
using the Jaccard Index. We fix a model M, captueing the" real world" extensional (i.e. 
cardinality and membership) relations between individuals and types in our conceptual 
space. Then a metric appropriate to the verification of the specificity property with both 
the projective and the radial methods is familiar from conditional probability: 

I{zlM ~ C'(z)}l - 1 = 1 
d(C. Cj) = I{zlM ~ C~(z) ̂ Cy(z)}l Prob(Oj[Ci) 1 

Note that we have d(Ci, Cj) is minimal (and equals 0) iff Ci C_ Cj and maximal (and 
equals = oo) iff Ci N Cj -- ~. 

As an example of specificity reasoning, consider the network of nodes in which we have 
Penguin (p), Bird (b), Flying-animals (fa) and Non-flying-animals (nfa) as nodes, with an 
assignment of extensions to these types in a model as one would expect (i.e. that model the 
real world or at least our expectations about the real world). As all penguins are birds, we 
have d(p, b) = 0. If the model is as we expect, then d(p, nfa) < d(p, fa) (or equivalently 
Prob(nfalp ) > Prob(fa[p)), and d(b, fa) < d(b, nfa). Now we would like to reason about 
what happens if we know that something is a penguin. Using any of the proposed inference 
relations and the previous distance, we get that ~,, g,p-,fly since the closest node to p where 
f ly is determined is nfa where fly is false. 
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It  may be that  nonmonotonic reasoning in general and taxonomic reasoning in particular 
uses a variety of measures are used; we select the appropriate measure because it  is suited 
to a particular task. Hence, the distances based on the Jaccard index and on conditional 
probability might be suited to different taxonomic reasoning tasks. 

7 Conc lus ion  

We have proposed a general principle for defining several nonmonotonic inference relations 
from distances with applications to temporal, spatial and taxonomic reasoning. This  method- 
ology is an alternative way to define already known nonmonotonic inference relations (e.g., 
the comparative inference relation): here our premises do not include a set of  conditional 
assertions or default rules as in most approaches, but a set of temporal ly  or spatially in- 
dexed data  (among other possibilities). It should be possible to use our approach to show 
how many formalisms already studied from a theoretical point of view apply in this way to 
spatially and temporally indexed data. As to complexity results for our nonmonotonic  infer- 
ence relations, some results can be directly taken from [12] and [17], and for the projection 
inference relation, the associated decision problem is obviously in A~).  

References  

1. Salem Benferhat, Claudette Cayrol, Didier Dubois, J~r6me Lang and Henri Prade, Inconsistency 
management and prioritized syntax-based entailment, Proceedings of IJCAI'93,640-645. 

2. Craig Boutilier, Conditional logics for default reasoning, PhD thesis, University of Toronto, 
1992. 

3. Gerd Brewka, Preferred subtheories: an extended logical framework for default reasoning, Pro- 
ceedings of IJCAI'89, 1043-1048. 

4. Gabriella Crocco and Philippe Lamarre, On the connection between nonmonotonic inference 
relations and conditional logics, Proceedings of KR'92, 565-571. 

5. Thomas Dean and Keiji Kanasawa, A model for reasoning about persistence and causation, 
Computational Intelligence, 5(3): 142-150. 

6. Dimiter Driankov and J~r6me Lang, Possibilistic decreasing persistence, Proceedings of Uncer- 
tainty in AI'93, 469-476. 

7. Didler Dub0is and Henri Prade, Epistemic entrenchment and possibilistic logic, Artificial Intel- 
ligence 50:223-239, 1991. 

8. Luis Farifias del Cerro, Andreas Herzig and J~r6me Lang, From ordering-based nonmonotonic 
reasoning to conditional logics, Artificial Intelligence 66, 375-303, 1994. 

9. Doe Gabbay, Labelled Deductive Systems, Technical Report, Centrum /fir Informations und 
Sprachverarbeitung, Universits Mfinchen. 

10. Peter Gs and David Makinson, Revision o/knowledge systems using epistemic entrench. 
ment, Proceedings of TARK'88. 

11. Peter G~rdenfors and David Makinson, Nonmonotonic reasoning based on expectations, Artifi- 
cial Intelligence. 

12. Georg Gottlob, Complexity results for nonmonotonic logics, Journal of Logic and Computation 
2 (3), 397-425, 1992. 

13. Hans Werner Guesguen and Joachim Hertzberg, Spatial persistence, Proceedings of the Ijca~ 
Workshop on Temporal and Spatial Reasoning (Chamb~ry, 1993), 11-34. 

14. Sarit Kraus, Daniel Lehmann and Menahem Magidor, Nonmonotonic reasoning, preferential 
models and cumulative logics. Artificial Intelligence 44 (1990), 167-207. 

15. Daniel Lehmann and Menahem Magidor, What does a conditional knowledge base entail/, Ar- 
tificial Intelligence 55 (1992), 1-60. 

16. Daniel Lehmann, Another perspective on default reasoning, Technical Report 92-12, Hebrew 
University of Jerusalem, 1992. 



318 

17. Bernhard Nebel, Belief revision and default reasoning: syntax-based approaches, Proceedings of 
KR'91,417-428. 

18. Judea Pearl, System Z: a natural ordering of defaults with tractable applications to default 
reasoning, Proceedings of TARK'90, 121-135. 

19. Erik Sandewall, Features and fluents: a systematic approach to the representation of knowl- 
edge about dynamical systems, Technical Report LiTH-IDA-R-92-30, Dept of Computer and 
Information Science, Linkfping University, 1992. 

20. Yoav Shoham, Chronological ignorance: experiments in nonmonotonic temporal reasoning, Ar- 
tificial Intelligence 36 (1988), pp. 279-331. 


