Taylor & Francis
Taylor &Francis Group

Journal of Applied
Non-Classical Logics

Journal of Applied Non-Classical Logics

ot

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tncl20

Morphologic for knowledge dynamics: revision,
fusion and abduction

Isabelle Bloch, Jéréme Lang, Ramén Pino Pérez & Carlos Uzcategui

To cite this article: Isabelle Bloch, Jérdme Lang, Ramén Pino Pérez & Carlos Uzcategui (2023)
Morphologic for knowledge dynamics: revision, fusion and abduction, Journal of Applied Non-
Classical Logics, 33:3-4, 421-466, DOI: 10.1080/11663081.2023.2244360

To link to this article: https://doi.org/10.1080/11663081.2023.2244360

@ Published online: 10 Aug 2023.

\]
[:1/ Submit your article to this journal &'

||I| Article views: 67

A
& View related articles (&'

P
@ View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tncl20



JOURNAL OF APPLIED NON-CLASSICAL LOGICS .
2023, VOL. 33, NOS. 3-4, 421-466 Taylor & Francis

https://doi.org/10.1080/11663081.2023.2244360 Taylor & Francis Group

W) Check for updates

Morphologic for knowledge dynamics: revision, fusion and
abduction

Isabelle Bloch ©2, Jérdme Lang ©P, Ramon Pino Pérez @< and Carlos Uzcategui ©9

aSorbonne Université, CNRS, LIP6, Paris, France; P°CNRS, Université Paris-Dauphine, PSL, LAMSADE, Paris,
France; “CRIL-CNRS, Université d’Artois, Lens, France; 9Escuela de Matematicas, Facultad de Ciencias,
Universidad Industrial de Santander, Bucaramanga, Colombia

ABSTRACT ARTICLE HISTORY
Several tasks in artificial intelligence require the ability to find models Received 31 August 2022
about knowledge dynamics. They include belief revision, fusion and Accepted 23 June 2023
belief merging, and abduction. In this paper, we exploit the algebraic KEYWORDS
framework of mathematical morphology in the context of proposi- Mathematical morphology;
tional logic and define operations such as dilation or erosion of a morphologic; knowledge
set of formulas. We derive concrete operators, based on a semantic representation; knowledge
approach, that have an intuitive interpretation and that are formally dynamics; belief revision;
well behaved, to perform revision, fusion and abduction. Computa- fusion; abduction

tion and tractability are addressed, and simple examples illustrate

the main results.

1. Introduction

Several tasks in artificial intelligence require to be able to find models about knowl-
edge dynamics. In particular, how do beliefs change in the light of a new observation,
how can we extract a coherent source of information from many sources of information
(eventually contradictory) and how can a given observation be explained? All these
questions fall more precisely under the following topics: belief revision, belief merging
or fusion, and abduction, respectively.

Such tasks have been formalised and axiomatised in various logics. It is out of the
scope of this paper to review the huge amount of work done in this direction, and we
will rely on existing postulates, now rather widely accepted, such as AGM postulates for
revision (Katsuno & Mendelzon, 1991), integrity constraints postulates for merging and
fusion (Konieczny & Pino Pérez, 1998, 2002; Konieczny & Pino Pérez, 2011), rationality
postulates for abduction and explanatory relations (Pino Pérez & Uzcategui, 1999; Pino
Pérez & Uzcategui, 2003).

Here propositional logic is considered, and propositional formulas are used to
encode either pieces of knowledge (which may be generic, for instance integrity
constraints, or factual such as observations), or subjective items such as beliefs or
preferences. Such formulas are then used for complex reasoning or decision-making
tasks.

CONTACT Isabelle Bloch @ isabelle.bloch@sorbonne-universite.fr, isabelle.bloch@telecom-paris.fr
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422 (&) I.BLOCHETAL.

In this paper, we propose to build tools for modelling knowledge dynamics based
on mathematical morphology operators applied to propositional formulas. Mathe-
matical morphology is originally based on set theory. It was introduced in 1964 by
Matheron (1967, 1975), to study porous media. But this theory evolved rapidly to a
general theory of shape and its transformations, and was applied in particular in image
processing and pattern recognition (Serra, 1982). Additionally to its set-theoretical
foundations, it also relies on topology on sets, on random sets, on topological algebra,
on integral geometry, on lattice theory. In particular, the general algebraic frame-
work of lattices allows developing mathematical morphology in various domains of
information processing, beyond sets and functions, such as fuzzy sets, logics, graphs,
hypergraphs, formal concept analysis and so on (Bloch, 2011; Bloch & Bretto, 2013;
Bloch et al.,, 2007; Bloch & Lang, 2002; Ronse, 1990).

This paper aims to develop mathematical morphology in propositional logics, called
morphologic, and to show that it can capture many tasks or operators in revision,
fusion and abduction, some of which are already known in the literature, some others
are new. The ambition of our paper is, before all, to show the generality of our frame-
work and its ability to connect automated reasoning or decision tasks and to see them
under a generic umbrella.

We will make use of two important operations: dilations and erosions. Intuitively,
when applied to a set, the effect of dilation is to expand the set while the effect of
erosion is to shrink the set.

The following ideas explain intuitively why morphologic is an adequate tool for
knowledge dynamics:

e Beliefrevision: Let ¢ and v be two propositional formulas. The models of the revi-
sion ¢ o ¥ of ¢ by { are the models of s which are closest (with respect to a given
proximity notion) to a model of ¢. Intuitively, using the language of morphologic,
it means that ¢ has to be dilated enough to become consistent with .

e Belief merging: Finding the best compromise between a finite set of formulas
®1,...¢onp @amounts to selecting the models that minimise the aggregation (using
some given operator) of the distances to each of the ¢;. This amounts intuitively
to dilating simultaneously all the ¢; until they constitute a consistent set.

e Abductive reasoning: Preferred explanations of a formula are defined based on
a set of axioms, several of which being close to properties of morphological
operators, in particular erosion.

An important noticeable aspect is that the framework of morphologic gives us not
only natural and general notions to deal with many tasks of knowledge dynamics,
but this approach is also well behaved. Actually, the operators and relations obtained
via the morphological tools enjoy good rationality properties. Moreover, last but not
least, under certain assumptions there are interesting ways of computing some of our
proposed operators.

The main contribution of this work is to propose such models in the framework of
morphologic, based on a semantic approach. One interesting aspect is that the pro-
posed operators include some of the existing ones and also new ones. For each of
them, the properties will be analysed and discussed. Finally, the outcome is a toolbox
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of operational methods, among which a user can choose according to the required
properties.

We have to make it clear, however, that our primary goal is not to develop brand
new methods for revision, merging or abduction (even if we do, in Section 6, propose
new operators). Neither it is to design specific algorithms for each of these types of
reasoning or decision tasks that would perform better than existing algorithms. The
originality of our approach is its generality: we develop notions and tools that can be
applied to a variety of tasks; we focus on revision, merging and abduction mainly to
demonstrate that it can be successfully applied to various tasks, but it can be more gen-
erally applied to other subdomains of Al where distances play a major role (e.g. spatial
reasoning: Aiello & Ottens, 2007; Aiguier & Bloch, 2019; Bloch, 2002; Bloch et al., 2021).

This paper is organised as follows: Section 2 is devoted to the presentation of
concepts in mathematical morphology and to introduce logical morphology (morpho-
logic). Section 3 shows the general techniques of computation of the operators when
the metric over the space of valuations is given by the Hamming distance. Section 4
is devoted to showing how well-known revision operators can be interpreted in the
framework of morphologic. Section 5 proposes a similar analysis in the framework of
fusion. It shows how belief merging operators can be interpreted in the framework of
morphologic. Section 6 is devoted to abduction (explanatory relations) built on mor-
phological operations aiming to capture the notion of the most central part. Based on
a common notion of pre-order relation on models, derived from morphological opera-
tors, Section 6.3 presents a unified framework for revision and abduction. In Section 7,
we finish with some concluding remarks and perspectives for future work.

2. From mathematical morphology to logical morphology

In this section, we recall the main concepts and tools used in mathematical morphol-
ogy and their interpretation in mathematical logic. This interpretation is possible via
the identification between a logical formula and a set of interpretations (its models) in
the framework of finite propositional logic.

2.1. Algebraic framework: complete lattices

Mathematical morphology relies on concepts and tools from various branches of
mathematics: algebra (lattice theory), topology, discrete geometry, integral geom-
etry, geometrical probability, partial differential equations, etc. (Matheron, 1975;
Serra, 1982); in fact any mathematical theory that deals with shapes, their combina-
tions or their evolution, can be brought to contribute to morphological theory. When
adopting a logics point of view, the algebraic framework is particularly relevant, and
we will concentrate on it in the sequel.

The basic structure in this framework is a complete lattice (L, <)'. We denote the
supremum by \/, the infimum by /\, the smallest element by 0; and the greatest
elementby 1,.Wehave 0, = A\L=\/0Wand 1, =\/L = A . The framework of com-
plete lattices is fundamental in mathematical morphology, as explained by Heijmans
and Ronse (1990), Ronse and Heijmans (1991) and Ronse (1990).
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All the following definitions and results are detailed in textbooks on mathemati-
cal morphology (Heijmans, 1994; Najman & Talbot, 2010; Serra, 1988). We restrict the
presentation to operators from (L, <) into itself.

An algebraic dilation is defined as an operator § on L that commutes with the supre-
mum, and an algebraic erosion as an operator ¢ that commutes with the infimum, i.e.
for every family (x;);c; of elements of L (finite or not), where / is an index set, we have

) (\/X,') = \/8(X,'), (M

iel iel

e (/\x;) = N\ e(x. (2)

iel iel

These are the two main operators, from which a lot of others can be built.

Among the numerous examples of complete lattices, one will be particularly inter-
esting for the extension to logics: (P(E), ©), the set of subsets of a set E, endowed with
the set-theoretical inclusion. It is a Boolean lattice (i.e. complemented and distributive).
The smallest and greatest elements are 0, = ¥ and 1; = E, respectively.

Algebraic dilations and erosions in (L, <) satisfy the following properties:

e 5(0)) =0 ande(1)) = 1y,
e §and ¢ are increasing with respect to the partial ordering on L,
e in(P(E), S), 8(X) = Uxexd({x}).

Another important concept is the one of adjunction. A pair of operators (g,§)
defines an adjunction on (L, <) if

Yx,y) € L%, 8(x) <y < x <e(y). 3)

If a pair of operators (¢, ) defines an adjunction, the following important properties
hold:

e 5(0)) =0 ande(1y) =1y

e § is a dilation and ¢ is an erosion (in the algebraic sense expressed by Equa-
tions (1) and (2));

e §¢ < Id, where Id denotes the identity mapping on L (i.e. §¢ is anti-extensive);

e I/d < &6 (i.e. 6 is extensive);

e §cde = 8 and €8¢ = &6, i.e. the composition of a dilation and an erosion are
idempotent operators (5¢ is called a morphological opening and 6 a morpho-
logical closing).

The following representation theorem holds: an increasing operator § is an algebraic
dilation iff there is an operator ¢ such that (g, §) is an adjunction; the operator ¢ is then
an algebraic erosion and e(x) = \/{y € L, 8(y) < x}. Similarly, an increasing operator
¢ is an algebraic erosion iff there is an operator § such that (g, §) is an adjunction; the
operator § is then an algebraic dilationand §(x) = A\f{y € L, e(y) > x}.
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Finally, let § and ¢ be two increasing operators such that é¢ is anti-extensive and ¢4
is extensive. Then (g, §) is an adjunction.

Further properties and derived operators can be found in seminal works (Heij-
mans, 1994; Serra, 1982, 1988) or in more recent ones (Bloch et al., 2007; Najman
& Talbot, 2010).

In this paper, the fact that dilations and erosions are increasing operators that
commute with the supremum and the infimum, respectively, will play an important
role.

2.2, Structuring element and morphological dilations and erosions

Let us now consider the lattice (P(E), <) of the subsets of E. We have §(X) =
Uxexd ({x}). If E is a vectorial or metric space (e.g. R"), and if § and ¢ are additionally
supposed to be invariant under translation, then it can be proved that there exists a
subset B, called structuring element, such that

§X)={x € E|ByNX £} (4)
and
e(X) ={x € E|Bx C X}, (5)

where B, denotes the translation of B at point x (i.e. x + B), and B is the symmetrical
set of B with respect to the origin (i.e. y € By iff x € By). The operators are then called
morphological dilations and erosions. Details on these definitions and their properties
can be found, e.g. in Bloch et al. (2007), Heijmans (1994), Najman and Talbot (2010) and
Serra (1982).

The structuring element B defines a neighbourhood that is considered at each point.
This is typically the case in image processing and computer vision, where the underly-
ing lattice is built on sets or functions of the spatial domain. It is a subset of £ with fixed
shape and size, directly influencing the extent of the morphological operations. It is
generally assumed to be compact, so as to guarantee good properties. In the discrete
case (that will be considered throughout this paper), we assume that it is connected,
according to a discrete connectivity defined on E.

The general principle underlying morphological operators consists in translating
the structuring element at every position in space and checking if this translated struc-
turing element satisfies some relation with the original set (intersection for dilation,
Equation 4, inclusion for erosion, Equation 5) (Serra, 1982).

An example on a binary image is displayed in Figure 1.

The structuring element can also be seen as a binary relation between points (Bloch
et al., 2007), i.e. y € By iff R(x,y) where R denotes a relation on E x E. Dilation and
erosion are then expressed as follows:

(X)) ={xeE|Jy € X,R(y,x)},
eX)={xeE|Vy e ERXx Yy =yeX}

These formulas apply for any binary relation R. If and only if R is reflexive (i.e. R(x, x) for
all x), then § is extensive (X C §(X)) and ¢ is anti-extensive (¢(X) C X). These proper-
ties hold in the case illustrated in Figure 1. The objects in the original image are then
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Figure 1. (a) Structuring element B (ball of the Euclidean distance); (b) subset X in the Euclidean plane
(in white); (c) its dilation 8g(X); (d) its erosion gg(X).

expanded by dilation, to an extent that depends on the shape and the size of the struc-
turing element, and reduced by erosion. Similar interpretations hold for any relation R,
and these properties will also be important in the remainder of this paper.

2.3. Lattice of formulas and morphologic

The idea of using mathematical morphology in a logical framework was first intro-
duced by Bloch and Lang (2000) and Bloch and Lang (2002). Let PS be a finite set of
propositional symbols, with |PS| = N. The set of formulas (generated by PS and the
usual connectives) is denoted by ®. Well-formed formulas are denoted by Greek let-
ters ¢, ¥ ... The set of all interpretations for @ is denoted by 2 = 2/, interpretations
aredenoted by w, o’ . .., and [¢] = {®w € Q| w = ¢} is the set of all models of ¢ (i.e. all
interpretations for which ¢ is true).

The underlying idea for constructing morphological operations on logical formu-
las is to consider formulas and interpretations from a set-theoretical perspective. Since
® is isomorphic to 2% up to the syntactic equivalence, i.e. knowing a formula defines
completely the set of its models (and conversely, any set of models corresponds to a
subset of ® built of syntactic equivalent formulas), we can identify ¢ with the set of
its models [¢], and then apply set-theoretic morphological operations. We recall that
o vyl =10l UIlv], [e A vl = [el NIV, [¢l C [¥]iff o = ¥, and ¢ is consistent
iff [¢] # 9. Considering the inclusion relation on 2%, (2%, ©) is a Boolean complete lat-
tice. Similarly, a lattice (which is isomorphic to 2%) is defined on ®_, where ®_ denotes
the quotient space of ® by the equivalence relation between formulas (with the equiv-
alence defined as ¢ = ¥ iff [¢] = [y ]). In the following, this is implicitly assumed, and
we simply use the notation ®. Any subset {¢j,i € I} of ®, where | is an index set, has a
supremum \/;_, ¢;, and an infimum A\, ¢i (corresponding respectively to union and
intersection in 2%%). The greatest element is T and the smallest one is L (corresponding
respectively to 2 and ¢).

Based on this lattice structure, it is straightforward to define a dilation as an oper-
ation that commutes with the supremum and an erosion as an operation that com-
mutes with the infimum, as in Equations (1) and (2). They naturally inherit all general
properties of the algebraic framework.
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2.4. Morphological dilation and erosion of logical formulas

Using the previous equivalences, we propose to define morphological dilation and ero-
sion of a formula with a structuring element as follows, according to the preliminary
work by Bloch and Lang (2000) and Bloch and Lang (2002). The underlying lattice is
(®=, =), or equivalently (29, ©). Since these two lattices are isomorphic, we will use
the same notations for morphological operations on each of them.

Definition 2.1: A morphological dilation of a formula ¢ with a structuring element B
(B € 2%) is defined through its models as

[88(0)] = 85(Le]) = {w € | B, A @ consistent}. (6)
Similarly, a morphological erosion is defined as

Les(@)] = es(lpl) = {w € Q[B, = ¢} (7)

In these equations, the structuring element B represents a relationship between
worlds, i.e. o' € B, iff o satisfies some relationship with w. The condition in
Equation (6) expresses that the set of worlds in relation to w should be consistent with
@. The condition in Equation (7) is stronger and expresses that all worlds in relation
to w should be models of ¢. Note that in this paper, we only consider symmetrical
structuring elements.

There are several possible ways to define structuring elements in the context of for-
mulas. We suggest a few ones here. The relationship can be any relationship between
worlds and defines a ‘neighbourhood’ of worlds. If it is symmetrical, it leads to sym-
metrical structuring elements. If it is reflexive, it leads to structuring elements such
that w € B, which leads to interesting properties, as will be seen later. For instance,
this relationship can be an accessibility relation as in normal modal logics (Hughes
& Cresswell, 1968) (see Bloch, 2002 for its use to define modalities as morphological
operators).

An interesting way to choose the relationship is to base it on distances between
worlds. This allows defining sequences of increasing structuring elements defined
as the balls of a distance. From any distance d between worlds (d: 2 x @ — RY),
a distance from a world to a formula is derived as a distance from a point to a set:
d(w, ¢) = miny =, d(w, ). Of particular importance is the Hamming distance dy,
where dy(w, @) is the number of propositional symbols that are instantiated differ-
entlyin w and '. It is the most commonly used distance between worlds (or more gen-
erally members of a combinatorial domain), both in automated reasoning (especially
in belief revision, Dalal, 1988; belief update, Katsuno & Mendelzon, 1991; and merg-
ing, Konieczny & Pino Pérez, 1998) and in preference handling (especially in compact
preference representation, Lafage & Lang, 2005, and voting, Brams et al., 2007).

By default, we take d to be dy, and this is the distance we will use in most of the
examples developed in this paper. In this case, the distance takes values in N. The
extension of what follows to distances taking values in R is straightforward. Note
that all what follows applies for general dilations, not necessarily derived from dy.
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Then dilation and erosion of size n are defined from Equations (6) and (7) by using
the distance balls of radius n as structuring elements (i.e. B! = {' | d(w, @) < n}):

"] ={we I € Qo Epanddw, o) <n}={weQ|dw, ) <n}, (8
["(p)] = {w € Q| Vo' € Q,d(w,0) <n= 0 =g} ={weQ|dw-¢) >n} (9

Note that we have §°(¢p) = £%(¢) = ¢. By convention, when there is no ambiguity, we
will set §(p) = 8'(p) and e(¢) = &' (¢). More generally, whatever the operator f, we
define f' (¢) = f(¢) and f"(p) = f(f"~'(¢)) forn > 1.

From operations with the unit ball we define the external (respectively internal)
boundary of ¢ as §'(¢) A —¢ (respectively ¢ A —&'(¢)), corresponding to the worlds
that are exactly at distance 1 of ¢ (respectively of —g).

As an illustrative example, let us consider the case where we have three propo-
sitional symbols a, b and c. The set of worlds Q2 then has eight elements, which
can be represented as the vertices of a cube. In this example, we consider the unit
cube of R3 (for N propositional symbols, this generalises to the hypercube of RN).
For the sake of simplicity, we assimilate a formula formed by a simple conjunction
of symbols with its corresponding model. For instance, a A b A ¢ is assimilated to
the corresponding world in 2%, represented by the point (1,1,1) in the unit cube.
The edges link two worlds differing by one instantiation of a propositional symbol
(i.e. at a Hamming distance of 1). For instance, vertices representing a A b A ¢ and
—a A b A care linked by an edge (we haved(a A b A c,—a A b Ac)=1).Thisis a con-
venient representation for graphically illustrating the morphological operations, as
shown in Figures 2 and 3. The balls of the Hamming distance are used as structur-
ing elements. In Figure 2, we consider a formula ¢ = (@A b A )V (—ma A —b A ). Its
dilation (of size 1, i.e. by a ball of radius 1) isthen §(¢) = =((a A —=b A —=c) vV (ma A b A
—¢)) =(—avbvc)A (av —bvVc). The dilation of size one just amounts to adding
to the vertices representing ¢ the vertices linked by an edge to them. In Figure 3,
an example of erosion is illustrated, for ¢ = (@aAbAC)V (maAbAC)V (a@aA—-bA
OV (—an—-bAac)V(—an—-bA-—c)=cV (—aA —b). The erosion of size 1 is then
e(p) = —a A —b A c. It amounts to keeping in the result only the vertices having all
their neighbours (according to the graph defined by the cube) in [¢].

The main properties of dilation and erosion, which are satisfied in mathemati-
cal morphology on sets, hold also in the logical setting proposed here. They are

0,1, 1) (1,1, 1)

0,0, 1) (1,0, 1)

® v

0,1,0 1,1,0
0, 1,0) ( )Q 5(p)

(0,0,0) (1,0,0)

Figure 2. Example of a dilation of size 1: p = (aAbAC)V (maAn—-bACc)and §(¢) =(—avVv bV
¢) A (a Vv —b Vv ¢). Note that in all figures, the models of the formulas are represented. Note that this
figure and the next ones may be best seen in colours on the online version of this paper.
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0,1, 1) (1, 1, 1)

(0,0, 1) (1,0, 1)

{ J%

0, 1, 0) (1, 1,0) O €(<p)

(0,0,0) (1,0,0)

Figure 3. Example of an erosion of size : ¢ = (@AbAC) VvV (maAbAC)V(aA—bAC)V(—an
—“bAC)V (maA—-bA—C)=(cV(—aA-b))ande(p) =—aA—-bAc

summarised below. The proofs are not given here, but they are straightforward based
on set/logic equivalences.

The dilations and erosions defined in Equations (6), (7), (8), and (9) have the
following properties:

Adjunction relation: (¢, ) is an adjunction, i.e. 3g(¥) = ¢ iff ¥ = ep(p),
for any structuring element B. This shows that the proposed definitions are a
particular case of general algebraic dilations and erosions.

Commutativity with union or intersection: Dilation commutes with union or
disjunction (this is a fundamental property of dilation as mentioned in the gen-
eral algebraic framework, and is derived from the adjunction property): for any
family ¢, ... gm of formulas, we have: ég(ViL,¢j) = VI, 8g(¢;). Erosion on the
other hand commutes with intersection or conjunction. Note that this property
is taken as definition in case of a general algebraic dilation or erosion.

In general, dilation (respectively erosion) does not commute with intersec-
tion (respectively union), and only an inclusion relation holds: dg(¢ A V) =
38(p) A dg(¥r).

Monotonicity: Both operators are increasing with respect to ¢, i.e. if ¢ = ¥,
then 8g(¢) = 88(¥) and eg(p) = ep(¥), for any structuring element B. Dila-
tion is increasing with respect to the structuring element, while erosion is
decreasing, i.e.if Vo € ©,B,, € B, then 8g(¢) = 85 (¢) and ep (¢) = ep(e).
Extensivity and anti-extensivity: Dilation is extensive (¢ = §z(¢)) if and only
if B is derived from a reflexive relation (as is the case for distance based dila-
tion, since if w &= ¢, then d(w, ¢) = 0), and erosion is anti-extensive (eg(¢) = ¢)
under the same conditions. We will always assume extensive dilations and
anti-extensive erosions in the following.

Iteration: Dilation and erosion satisfy an iteration property:

VB,B', ¥ ¢, 88(8p)(¢) = 8581 (9),  €B(ep) (@) = €558 (@)

For instance, for distance based operations, for a distance satisfying the betwee-
ness property,? this property can be expressed as

8 (@) = 8" 18" ()] = 818" ()],

M (0) = " " ()] = £"[e" (9)].
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This means that the effect of these operations increases with the size of the
structuring element, and that the computation can be done either by succes-
sive applications of ‘small’ structuring elements or directly by the sum of the
structuring elements.

Duality: Dilation and erosion are dual operators with respect to the negation:
eg(p) = —8g(—¢) which allows deducing properties of an operator from those
of its dual operator.

Relations to distances: Equation (8) shows how to derive a dilation from
a distance. Conversely, from Equation (8) we have d(w,¢) = min{n € N|w
3" (¢)}, and similarly, we have d(w, —¢) = min{n e N|w = —&"(p)}.

Distances between formulas can also be derived from dilation, as mini-
mum distance and Hausdorff distance.® For instance, the minimum distance
is expressed as dmin(@, ¥) = MiNyy =y dH(w, ®’) = min{n € N|[5"(¢) A
¥l # 0 and [8"(Y) A ¢l # ¥}. This means that the minimum distance is
attained for the minimum size of dilation of both formulas such that
they become consistent. The Hausdorff distance is defined as dygus(@, V) =
max(mMaxyp, d(w, ¥),
max,, =y d(@’, ¢)). It can be computed from dilation by dhaus(¢, ¥) = min{n
N|g = 8"(y) and ¥ = 5"(¢)).

These properties will be used intensively in the applications of these operators for
knowledge representation and reasoning.

2.5. Some derived operators

2.5.1. Conditional dilation and erosion and reconstruction

In several problems and applications, we may want to restrict the result of an opera-
tion to stay within some domain or to satisfy a particular formula. This is typically the
case, for instance, if a result has to satisfy a theory, or a set of integrity constraints. This
idea calls for geodesic distances, from which structuring elements are derived, as the
balls of this distance. Using these structuring elements in the definitions of dilation and
erosion (Equations 6 and 7) leads to the notion of geodesic, or conditional, operators.
In the discrete case, that we consider here, the expression of these operators is very
simple:

8, (@) = [8" (9) A YT, (10)

where ¥ denotes the conditioning formula, n is the size of the structuring element, §'
denotes the dilation using a ball of radius 1 (not geodesic) and the superscript n means
that the succession of dilation of size 1 and conjunction has to be performed n times.
This equation is a short writing for the following sequence of operations:

begin
@0 =@ AY;
For i=1---n
@i = 8" (pi—1) AY;
end for
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O

@ v
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Figure 4. Reconstruction: only the connected component of y» which is ‘marked’ by ¢ is reconstructed.

Return ¢, = 81'2 ().
Similarly, the geodesic erosion of ¢ conditionally to ¥ can be computed as

el (@) =e' (@) v yI". (11)

If the conditional dilations are iterated until convergence, then the result is called
reconstruction, and is denoted by R(¢ | ¥/):

Rp | ¥) =18"(¢) A Y], (12)

Note that in practice this sequence converges in a finite number of steps, when we
consider a finite discrete space, as is the case in this paper. An example is illustrated in
Figure 4, with the same type of representation as in the previous figures. The recon-
struction results in the only connected component of i ‘marked’ by ¢. In this paper,
we consider the connectivity of a formula via the discrete connectivity of its mod-
els, induced by the distance (i.e. in the sense of the graph used for the illustrations).
More precisely, two worlds w, »’ are neighbours if d(w, ') < 1. A path is a sequence
of worlds where any two successive worlds in the sequence are neighbours. A con-
nected component of a formula is a set of models of this formula such that there exists
a path between any two models that is included in this set and that is maximal for this

property.

2.5.2. Searching for the most central models satisfying a formula

In some problems, it might be interesting to find the most relevant worlds that are
models of a formula. This problem is solved by Lafage and Lang (2000) by taking the
absolute maximum of the internal distance function (i.e. the function that associates to
each world its distance to —¢). Mathematical morphology offers other tools that could
also be interesting:

Ultimate erosion is one of them. It consists in eroding iteratively ¢ and, at each
step n, keeping the connected components of £ (¢) that disappear in ¢"1(¢).
It corresponds exactly to the regional maxima of the internal distance (i.e. the
function that assigns to each model of ¢ the distance to its closest model of
—¢). This approach may provide several components, which represent all parts
of ¢, belonging to different connected components, or connected by narrow
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sets of worlds. This notion can be formalised using the reconstruction operator
(Definition 2.2).

Last non-empty erosion only keeps track of the largest component. Erosions
are iterated and the last result before the erosion becomes empty is the final
result. The result is then more restrictive than with ultimate erosion, and some
components of ¢ may not be represented. Definition 2.3 formalises this idea.
Morphological skeleton is another approach to represent a formula in a com-
pact and ‘central’ way. It is defined as the union of the centres of maximal balls
included in the initial formula (see Serra, 1982 for definitions on sets and cor-
responding properties). This approach will not be further investigated in this

paper.
Definition 2.2: The ultimate erosion is expressed using the reconstruction operator as
UE() = Unen ("(9) \ R (" (9) 1 £"(9))) - (13)

Again in the finite discrete case, the iterative erosion process stops in a finite number
of steps.

Definition 2.3: The last erosion of a formula ¢, denoted by ¢/(¢), is the erosion of ¢
of the largest possible size such that the set of worlds where g¢(¢) is satisfied is not
empty or the smallest size of erosion leading to a fixed point:

o @) 7 L,
eelp) = (p) & {and Vm > n, e"(g) - Lors(g) = &"(p), (4

with n the smallest value for which this holds, and £°(¢) = ¢.

In the example of Figure 3, the first erosion is also the last non-empty erosion.

It is interesting to note that the idea of successive erosions is related to the notions
of supermodels (Ginsberg et al,, 1998) and of preferred explanations (Pino Pérez
& Uzcategui, 1999). For instance, it is easy to prove that w = eX(¢) iff w is a (k, 0)-
supermodel of ¢. The application to preferred explanations will be further investigated
in Section 6.

As a first illustration of the use of ultimate and last non-empty erosion, con-
sider a simple decision making problem, inspired from participatory budgeting (Aziz
& Shah, 2021): three projects a, b and ¢ can possibly be built by a city; the aggre-
gated goal of the citizens (perhaps obtained by a merging operator, cf. Section 5) is
p=(@Ab)yv(@nc Vv(bncVv(—an-bA —c).Now, exogenous events might ren-
der some assignments unfeasible: some projects may turn out to be unfeasible, but
also, some projects may be enforced by the region or the central state. If we want a
robust solution, we should target the last non-empty erosion, namely, a A b A c: even
in the case of one adverse event (one of the three project becoming unfeasible), we can
still change the initial solution into another one which is very close to it (for instance, if
aturns out to be unfeasible, then —a A b A c will be implemented instead of a A b A ©);
note that this is not the case with any of the other four models of ¢. On the other
hand, the ultimate erosion gives us a set of diverse, representative solutions: rather than
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giving all five solutions (which may be too much) to the user or the central authority,
one may give her a set of representative solutions, here a A b A cand —a A —b A —c.
Any solution is at distance at most one to any of these two solutions. Such a prin-
ciple is common in recommender systems; it has also been considered in constraint
satisfaction (Hebrard et al., 2005).

2.5.3. Opening and closing

Two other important operators are opening and closing. An algebraic opening is an
operator that is increasing, idempotent and anti-extensive, and an algebraic closing is
an operator that is increasing, idempotent and extensive. Typical examples are §¢ and
£6 where (g, §) is an adjunction, as seen in the general algebraic framework. An impor-
tant property is that any disjunction of openings is an opening, and any conjunction
of closings is a closing. Opening and closing of a formula ¢ by a structuring element B
are defined respectively as: Og(¢) = 8g(eg(¢)), and Cg(p) = e(d(p)).

These two basic morphological filters can be seen as approximation operators,
since they ‘simplify’ formulas by either suppressing some irregularities for opening,
or adding some parts of —¢ for closing. Families of filters can be built from these
two ones. For instance, granulometry (Serra, 1982) consists in applying successively
openings with structuring elements of increasing size, thereby decomposing a for-
mula in parts of different characteristic sizes. Another example is alternate sequential
filters (Serra, 1988), which consist in building sequences of opening/closing (or clos-
ing/opening), with structuring elements of increasing size. Such transformations are
increasing and idempotent, and allow filtering progressively parts of ¢ and —¢.

Note that &, is an anti-extensive and idempotent operator, but it is not increasing
(and hence not an opening). The same applies for ultimate erosion.

2.6. Morphological ordering

Given a formula, a natural ordering can be derived from the sequence of its succes-
sive erosions and dilations, for a given elementary structuring element (of size 1). This
idea is illustrated on sets in Figure 5. This will be particularly interesting in the fol-
lowing, when considering a theory, and for defining a partial order on the models

Figure 5. lllustration of a natural partial ordering derived from successive erosions (in blue) and dilations
(inred) of X. We have x <¢ y <r zin this example.
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satisfying this theory (by identifying a theory with an equivalent formula).* We call it
morphological ordering.

Definition 2.4: Let X be a theory (represented by a formula) or a formula. Let n be the
maximal size of dilation and m the size of the last non-empty erosion, i.e.:

e™(2) = er(),
3M(B) = 8,(),

where §; is defined in a similar way as the last erosion (and 6;(X) can be either T ora
fixed point). Then we define the fundamental sequence (T;) of subsets of 2 associated
with X, fromi = 0toi = n+ m, as follows:

o [e™ ()] ifi<m
T ifi > m.

The morphological total pre-order associated to ¥ is then defined by
w <f o g Vk (0" € Ty = w € Ty). (15)

The fact that this defines a pre-order is easy to check. Note that this ordering
depends on the choice of the elementary structuring element.

As an example, let us consider again three propositional symbols, with the same rep-
resentation as in Figures 2 and 3, and ¥ = {a — ¢,b — ¢} (represented by the same
formula ¢ as in the example of Figure 3). The models of ¥ are Q\ {a Ab A —¢c,a A
—=b A —=c,—a A b A—=cl.Wehave [§(2)] = @, [e(Z)] = {—a A =b A c},and [£2(2)] =
@, as illustrated in Figure 6.

This provides a stratification of the elements of €2, as given in Table 1.

Note that in case the last dilation yields a fixed point different from T, the rank of
the models in Q2 \ [§¢,(X)] is set to 400 by convention. This amounts to ordering only

[8¢(2)]1.
0,1, 1) 1,1,1)

(0,0, 1) F— (1,0,1)
@ X

e(¥)
©, 1,0 (1,1,0)
() s\ =

(0,0,0) (1,0,0)

Figure 6. lllustration of the morphological ordering (heren = 1,m = 1).

Table 1. Stratification of the elements of Q
according to the morphological ordering asso-
ciatedwith X = {a - ¢,b — ¢}.

0 —aAn—-bAcC
1 —aA—-bA—=CaN—bDAC-aANbDACANDAC
2 aANA—=bA—=C—aAnbA—=CanbA—C
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Proposition 2.5: The following properties hold:

ered dilations and erosions (with structuring elements such that w € B,).

e Therelation <y is reflexive and transitive, i.e. a pre-order, which is moreover total.

e Let R be the relation defined on 2% by Re(w, ') iff max{k € [0--- (n+ m)]|w €
TK) = max{k € [0--- (n+ m)]| &’ € TX}. This relation is an equivalence relation
and the ordering induced by <¢ on the quotient space 2% /R, is a total ordering.

e The subsets T; of 2 are nested, i.e.Vi € [0--- (n 4+ m — 1)],T; C Tiy4 for the consid-

Let us briefly comment on the choice of the structuring element used in the mor-
phological operations. When it is taken as a ball of the Hamming distance, as in all
examples in this section so far, then the neighbourhood it defines is isotropic and all
variables are taken into account in the same way. However, different structuring ele-
ments could be used, and their choice is a way to impose preferences, for instance,
on some variables over other ones. As an example, let us consider the following
structuring element, defining the neighbourhood of any world o € Q:

BY = {0 € B, |w(c) = o' (0)},

where B denotes the ball of radius 1 of the Hamming distance, and w (¢) = «’(c) means
that c is instantiated in the same way in @ and in «’. With this structuring element,
¢ is not handled in the same way as variables a and b. Note that when performing
successive erosions (respectively dilations) with such a structuring element, we may
not end up with L (respectively T), but we may converge towards a fixed point (a
subset of 2). Figure 7 illustrates the effect of this structuring element on the same
example as in Figure 6. The derived morphological ordering and the corresponding
stratification of 2 are now given in Table 2.

0,1,1) ’._—” (1,1, 1)
©.0.1 q—_.ﬁ
@ >
(%)
"5 ORI OFIIPH!

(0,0,0) (1,0,0)

Figure 7. lllustration of the morphological ordering (here n = 2, m = 1), using B as structuring
element.

Table 2. Stratification of the elements of Q2
according to the morphological ordering asso-
ciated with ¥ = {a — ¢,b — c}, using B as
structuring element.

0 —“aA-bACAAN-bDAC-AANbDACANDAC
1 —a A —bA—C

2 an—bA-—=c—anbA-—c

3 anbn-—c
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As another way to handle variables differently, let us note that 2 does not need to
be ‘isotropic’, i.e. the cube in our illustrations could be a parallelepiped, with different
lengths of the edges, representing the elementary distances between worlds. A dis-
tance between two worlds can then be defined as the length of a shortest path in this
weighted graph. Structuring elements can be defined as balls of this distance. How-
ever, in general this distance does not satisfy the betweenness property, which makes
is less interesting for our purpose.

It is important to note that the ordering of the elements of 2 depends on both &
and the definition of erosion and dilation, in particular, the choice of the structuring
element.

This morphological ordering will be used to unify several reasoning tasks, in partic-
ular, abduction and revision, in Section 6.

3. Computational issues

Unless stated otherwise, for all the operators considered here we assume that the
structuring element is the ball of radius 1 for the Hamming distance.

3.1. Dilation

The commutativity of dilation with disjunction, along with the iteration property,
allows us to recover the results of Lafage and Lang (2000). In particular, the following
result holds.

Proposition 3.1: Let ¢ be a consistent conjunction of literals, i.e. ¢ =11 Ala A -+ Ay,
then

' (p) = f’=1 (Nigjli).

Similarly, if ¢ is a disjunction of literals, i.e. ¢ =11V ---V Iy, then the erosion is
expressed as

'(p) = ALy (Viglh).

In these equations 8" (respectively s') denotes the dilation (erosion) using as structuring
element a ball of radius 1 of the Hamming distance.

This property, together with the commutation of dilation with disjunction, gives the
following result (Lafage & Lang, 2000): if k is a fixed integer, then the dilation of size k
8k(¢) of a DNF formula ¢ can be computed in time O(n¥) - thus in polynomial time.
Similarly, erosion commutes with intersection and can be computed in polynomial
time from a CNF formula.

When ¢ is not in DNF, computing 8%(¢) directly from ¢ (without rewriting ¢ in DNF
first) is a difficult problem.

However, we can prove a slightly general result:

Proposition 3.2: If ¢1,...,¢n are such that for all i, j, ¢; and ¢; do not share variables,

then8(¢1 A ... Adn) = /i1 (8(d) A Ny DK)-
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Proof: For every interpretation w let w; = w¥/@"#) be the projection of w on the
language of ¢; (Var(¢j)). We have w = 8(p1 A ... A @p) <—

(1) there exists o’ such that ' = @1 A ... Agpand d(w, ') < 1.

Now, d(w, ') = >, d(w;, ;) (since the g; have no variable in common). There-
fore, d(w, ') <1 <= there exists a j, j < n, such that: (a) d(wj, a)jf) <1, and (b) for
every k # j, wx = w).. From this we get that (1) is equivalent to:

(2) there exists aj, j < n, such that w; = 5(¢)) and for every k # j, wx = «.

Now, & (¢j) is equivalent to a formula on the language Var(¢;), therefore o = §(g)) iff
wj = 8(gj), Moreover, w = ¢y iff i = ¢k. Therefore, w = 8(p1 A ... Agp) < there
exists aj,j < n,such that w |= 6(¢)) A /\k# @k, from which the result follows. |

In particular:

o ifVar(p) NVar(y) =¥, thend(p AY) = (9 AS(Y)) V (8(@) A Y);
e if ¢1,..., 90y are literals whose associated variables are all different, then we

recover the identity §(I1 A ... A lp) = \/j’-’=1 Akt -

Now, how hard is it to compute dilations (respectively erosions) when ¢ is not in
DNF (respectively CNF)? First of all we have the following complexity results.

Proposition 3.3: (1) Given an interpretation w and a formula ¢, deciding whether
w = 8(p) is NP-complete.
(2) Given an interpretation w and a formula ¢, deciding whether w = €(¢) is cONP-
complete.

Proof: In both cases, membership is straightforward. For hardness for point 1, we
consider the following reduction from SAT: we map every formula « to (¢, w) where
¢ = p A a with p # Var(a), and w being any interpretation satisfying p. Using Proposi-
tion 3.2, we have §(p A @) = (p A §(a)) V (8§(p) A ), which is equivalent to o VvV (p A
3()). Now, if « is satisfiable, then so is §(«). Therefore, w =a Vv (p A S()). If « is
unsatisfiable, then so are §(«) and o Vv (p A §(a)). Therefore w = @ v (p A §()). The
reduction from UNSAT for point 2 is similar. |

This shows that, a fortiori, computing erosion or dilation in the general case is hard.
Moreover, the size of (¢) and §(¢) is not polysize, except if P = NP. It is not sure that
there is a way of computing erosion (dilation) being more efficient than first rewriting
@ in CNF (DNF).

Note that inference from the dilation of a formula is (theoretically) not harder than
inference from the formula itself. Namely, given any two formulas ¢ and ¥ and any
integer k, determining whether §X(¢) = ¥ is coNP-complete. A similar result holds for
inference from erosion.

However, interesting results can be obtained for erosion by decomposing a formula
into its connected components. Based on the graph interpretation used throughout
this paper, a connected component is classically defined as a connected component
in the graph: we say that ¢ is a connected component of ¢ if [/] is a connected com-
ponent of the graph associated with ¢ (whose set of vertices is [¢]) and whose set of
edges is defined by (w, @) whenever d(w, »’) < 1).
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Proposition 3.4: If d(¢, V) > 2, for d being the minimum distance between formulas,
thene(p vV ¥r) = e(p) vV e(Y).

Proof: Assume d(g, ) > 2. We already know that e(p) vV e(¥) = e(p vV ¥), so it
remains to be proven that e(p vV V) = e(p) vV e(¥). Let w = (¢ Vv ¥). This implies
w = ¢ Vv ¢ if the erosion is anti-extensive (which is the case in this paper). Without loss
of generality, assume w = ¢. Because d(¢, ¥) > 2, we have d(w, ) > 2. Now, assume
that o [~ ¢(p), i.e. d(w, —¢) < 1; this means that there exists a @’ such that o’ =
=@ and d(w, ®’) = 1 (d(w, ®’) = 0 is impossible because w = ¢ and o’ = —¢). Now,
we must have o’ = v; otherwise we would have o' = —¢ A =y, hence d(w, —¢ A
=) < 1, which contradicts w = ¢(¢ Vv ). Therefore, d(¢, ¥) < d(w,®’) < 1, which

contradicts the assumption that d(¢, ) > 2. |
Proposition 3.5: Let ¢1, ..., ¢p be the connected components of ¢. Then we have
p
(@) =\/ e(o).

i=1

Proof: For any two distinct connected components ¢;, ¢; of ¢ we have d(g;, ¢j) > 2,
therefore, e(\/%_; vp) = \/7_, (¢i); the fact that ¢ = \/2_, ¢ enables us to conclude
that e(p) = /o, (@) n

Now, we have to find a way of (a) computing the connected components of ¢ and
(b) computing e(¢). The first step is easy when ¢ is in DNF. We first note the following
fact:

Proposition 3.6: Let ¢ = 1 V...V Y4 be a DNF formula. For any i,j € {1,...,q)},
d(ri, ¥j) is equal to the number of disagreeing literals between ; and ;.

For instance, we have d(aAn —-bAcbA—-cAd)=2,dlan—-bArcbArcAnd) =1,
andd(an —-bAaccnd)=0.

Proposition 3.7: Let ¢ = Y1 V...V ¥q be a DNF formula. Let G, be the undirected
graph defined by its set of vertices [¢l, which can be grouped into subsets {ay, ..., dq}
where a; = [y, and containing an edge {a;, a;} iff d(\;, ;) < 1. Then the connected
components of G, correspond to the connected components of ¢, and {a;i el C
{1,...,q}}is a connected component of G, iff \/;_; Vi is a connected component of ¢.

Example 3.8: Letusconsiderp = (@Ab)VvV (@A) V(bAC)V(—an—-bA—-cA—d)
(Figure 8). The graph G, has 8 vertices, grouped into 4 subsets a;, and its edges are
{a1, a3}, {a1, a3}, {a2, a3}, plus the reflexive edges {a1, a1}, {a2, a2}, {a3, as}, {aa, as}. G,
has two connected components: {aq,a»,as} = {(0,1,1),(1,1,1),(1,0,1),(1,1,0)} and
{as} = {(0,0,0)} (the valuation of d is not represented here), therefore ¢ has two con-
nected components: g1 = (@Ab)v(a@anc)Vv(bArc) and g =—aA—-bA—-CA—d,
from which we have e(p) = e(p1) Ve(p) = (@nbArc)v L =arbArc
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0, 1,1) 1,1,1)

0,0, 1) (1,0, 1)
® v
O ¢2
0.1,0 L0 () o
)
0,0,0) (1,0, 0)

Figure 8. Decomposition of ¢ into two connected components ¢ and ¢;, and its erosion (only a, b and
¢ are considered in this representation).

3.2. About last erosion and ultimate erosion

Let us consider the last erosion (Definition 2.3). Denote by £(¢) the number of
iterations to reach the last non-empty erosion of ¢.

Proposition 3.9: If = ¢ and ¢ # T, then £(p) < N — 1, where N is the number of
propositional symbols in the language.

Proof: Let k = £(p). We have w = eX(¢) if for all o = —¢ we have d(w, o) > k.
Therefore, k < N, because it can never be the case that d(w, ') > N. [ |

Actually, we can find a better bound for £(¢):

Proposition 3.10: If }= ¢ and ¢ # T then £(p) is less than the length of the shortest
prime implicate of ¢ (the set of prime implicates being denoted by Pl(¢)).

Proof: The result follows easily from ¢ = /\ Pl(¢), from the fact that erosion com-
mutes with conjunction, and from the following expression of the erosion of a
disjunction of literals:

e(h v - Vim) = AL (Vigl),

This result is obtained by duality from Proposition 3.1 (or directly by induction on m).
|

For instance, let us consider ¢ = (a <> b). We have Pl(¢p) = {a Vv —b,—a Vv b}, i.e.
every prime implicate of ¢ is of length 2; ¢! (¢) = L, therefore £(¢) = 0. This example
shows that £(¢) can be strictly lower than the bound expressed in Proposition 3.10.

Proposition 3.9 enables us to say that deciding whether w = ¢/(¢) is in BH; in the
Boolean hierarchy of NP sets.

Let us now consider ultimate erosion (Definition 2.2). The following result directly
follows from Proposition 3.5.

Proposition 3.11: Let ¢1,..., ¢, be the connected components of ¢. Then we have:
UE(¢) = /7_, UE(g).

Using Proposition 3.11, the following algorithm computes the ultimate erosion of ¢.
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UE(e):
begin
decompose ¢ into its connected components @1, . . ., @p;
ifp=1
thenife(p)=_L1
thenreturne
elsereturn UE(e(p))
endif
elsereturn UE(¢q) V...V UE(pn)
endif

3.3. About opening and skeleton

A morphological opening is the composition of an erosion followed by a dilation:
O(p) = 8(e(¢)). Computing O(p) is not an easy task. If ¢ is in CNF, then §(¢) is com-
putable in polynomial time, and expressible as a polysize CNF, but then §(e(¢)) is
not (and can be exponentially long). If ¢ is in DNF, then &(¢) is not polynomially
computable (and can be exponentially long). Proposition 3.4 gives a hint on how to
compute O(¢), when ¢ is in DNF.

Proposition 3.12: Let ¢1,. .., ¢, the connected components of ¢. Then we have O(¢p) =
71 O(¢)
i=1 ¥i)-

This result directly follows from Proposition 3.5.

Let us now consider the skeleton Sk(¢). It is defined as the centres of maximal balls
of the Hamming distance included in ¢. In the finite discrete case, it can be computed
by the following algorithm:

begin
Sk(p) == A=0(p); ¥ = ¢
Whiley # 1L do
Sk(p) = Sk(p) Vv (e(¥) A =O(e(¥)));
v i=e(y)
end while
Return Sk(p)

We note that the number of iterations performed by this algorithm is equal to
min{i, e'(¢) = 1} and therefore is no larger than N.

Example 3.13: Let us consider again ¢ = (@aAb)V (@A) V(bAC V (—an—bA
—(), as in Figure 8. We have

e Olp)=(@rnb)v(@ancovbnaec and ¢ A —=0(p) = (—a A —=b A —¢) which is
the centre of a maximal ball of radius 0;

e c(p)=anbnacg O((p) =1, and g(p) A =0(e(p)) = a A b A ¢, which is the
centre of a maximal ball of radius 1;
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©, 1, 1) (1,1, 1)

0,0,1) (1,0, 1)
@ v

center of maximal ball of radius 0

0, 1,0)

(,1.0) O center of maximal ball of radius 1

(0.0, 0) (1,0,0) UO Sk(p)

Figure 9. Sk(¢p): itis composed of the centers of maximal balls of radius 0 and 1.

e the next erosion provides 1, so we stop here and return Sk(¢) = (—a A —=b A
=)V (aAbAnao.

This is illustrated in Figure 9.

We see that computing Sk(¢) heavily relies on computing O(¢). Using the previous
results on erosions and openings, we have:

Proposition 3.14: Let ¢, ..., ¢, the connected components of ¢. Then we have: Sk(¢) =
\/,‘p:1 Sk((ﬂ,)

4, Belief revision

In this section, we briefly survey some existing revision operators and show that they
can be equivalently expressed using morphological dilations. This establishes a first
link between the proposed morphologic formalism and some reasoning tools devel-
oped for addressing aspects of knowledge dynamics. The morphological expressions
will prove useful in Section 6.3 when proposing a unified framework for several reason-
ing tasks, using both erosions and dilations, and exploiting the morphological ordering
introduced in Section 2.6.

We start with some basics about belief revision. The aim of belief revision is to model
how to incorporate coherently a piece of information to a corpus of beliefs. In the most
studied model, the AGM model (Alchourrén et al., 1985), the corpus of beliefs is rep-
resented by a logical (consistent) theory K and the (new) piece of information by a
formula . The result of incorporating ¢ to K, i.e. the revision of K by v, is denoted
by K x /. We give here a very simple presentation of this model in finite propositional
logic due to Katsuno and Mendelzon (1991) in which the (old) beliefs K are indeed
represented by a consistent formula ¢ (that is, K = Cn(¢)) and the revision of ¢ by ¥ is
denoted ¢ o ¥. Note that ° is a function mapping an ordered pair of formulas into a for-
mula. This kind of function is called a revision operator> when it satisfies the following
rationality postulates:

(RT1) ¢ oy = ¢ (Success)

(R2) Ifo Ay ¥ L, theng oy = ¢ A ¢ (Minimality)

(R3) Ifyr ¥ L, then ¢ o v ¥ 1 (Coherence)

(R4) If o1 = ¢y and Y1 = ¥y, then ¢ o Y1 = @2 o ¥ (Syntax independence)



442 (&) I.BLOCHETAL.

(R5) (oY) AOF @o (Y AB) (Superexpansion)
(R6) If (poy)yAOF L, thengpo (¥ AB) I (¢ o) AO (Subexpansion).

A very powerful tool to construct revision operators is the representation theorem
(Katsuno & Mendelzon, 1991), based on the notion of faithful assignment. A faithful
assignment is a mapping which associates to each formula ¢ a total pre-order <, on Q
such that the following conditions hold:

(1) ifo Epand o’ E ¢, thenw ~, o;
(2) ifo Epandw’ = —¢, thenw <, o;
(3) if = @1 < @2, then <, =<,,.

The representation theorem proven by Katsuno and Mendelzon (1991) is the
following one:

Theorem 4.1: An operator ° is a revision operator °, i.e. that satisfies (R1)-(R6), iff there
exists a faithful assignment that maps each formula ¢ to a total pre-order <, such that for
every propositional formula v we have®

[y o Y1 = min([y], <y)

Intuitively, the pre-order <, is a qualitative way to express the distance of a world w
to g, ie w <, ' meansthatwis closer to ¢ than «’. Actually, a faithful assignment can
be defined from a distance d from a world to a formula in the following way: v <, '
iff d(w, ¢) < d(’, @), where d(w, ) is defined as min{d(w, ®”) | " = ¢}. In particu-
lar, the revision operator induced by the choice of the distance dy is known as Dalal’s
revision operator.

In all what follows, we assume that v is consistent.

Let us consider the morphological dilation § defined using as structuring element
the ball of radius one of the distance d. It can be seen that we have

oy =38"(p) A,

with n = min{k € N | 8¥(¢) A ¥ is consistent}.
This approach is very natural since it corresponds to a principle of minimal change.
The following example illustrates in a precise manner the behaviour of this operator.

Example 4.2 (Revision): John knew Linda’ when both of them were PhD students in
Philosophy in a very prestigious university. He remembers Linda’s activism in feminism,
her brilliant record and her great beauty. Both obtained their PhD degree at the same
time. Since then, 5 years after, John has no news from Linda. However, he thinks that
Linda is for sure an activist in feminism, that she occupies an excellent position in a
Philosophy Department of some prestigious university and she maintains her beauty.
John meets Peter, a common classmate, who tells him that, surprisingly, Linda is now
a bank teller. With this new piece of information, John revises his beliefs and he thinks
now that Linda is a bank teller who keeps her feminist activism and keeps her beauty.
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0,1, 1) (1,1, 1)
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(0,0,0) (1,0,0)

Figure 10. Example of revision ¢ o yr, obtained here for a dilation of sizen = 1.

In this problem, we code by the atoms g, b and ¢ the facts Linda is a feminist activist,
Linda is beautiful and Linda is a Professor respectively, and by —c the fact that Linda
is not a Professor (for instance the fact that Linda is a bank teller). The formula ¢ :=
a A b A c codes the beliefs of the agent (John) and the formula ¥ := —c codes the new
information. Then, following the previous definition of the revision operator °, we have
¢ oy = 8" (¢) A —=c. That is because ¢ A ¥ is inconsistent and 8' () A ¥ is consistent.
We have §' (¢) A —c = a A b A —¢, that is Linda keeps her feminist activism, her beauty
and she is a bank teller.

This example is illustrated in Figure 10, using the same conventions as in Section 2.

It is important to point out that within the previous approach, using as structur-
ing element the standard ball of radius 1 (with respect to the Hamming distance in
the example), there always exists n such that 8" (¢) = T (when ¢ is consistent). This is
essentially the reason why ¢ o i is consistent when ¢ and i are consistent. Also it is
the reason why the so-called success postulate in belief revision (¢ o ¢ F ) holds.

We have also remarked that there are some cases (with special structuring elements)
in which we have a fixed point for the dilation, which is not necessarily T. For instance,
we can have ¢ and n such that 8" (¢) = 8"t (¢) and §"(¢) # T.What is interesting is
that even in such a case we can define interesting and more general revision operators,
namely credibility-limited revision operators (Booth et al., 2012; Hansson et al., 2001).
The precise way to do that is as follows:

8"(@) Ay where n = min{k € N|8X(¢) A ¥ is consistent}

poy = {§0 if there is no k such that 8%(p) A ¥ £ L.

What is interesting to note is that in this general case, we can encode the credible
worlds (see Booth et al., 2012) as [8" ()], where n is the least integer such that §" (¢) =
3" ().

Let us now consider the more general case, where § is not necessarily a dilation
defined from a distance. We only assume that § is extensive (i.e. Vg, ¢ &= §(¢), as
defined earlier), and that it is exhaustive. Exhaustive means that § satisfies the follow-
ing fillingness property: Vo, ¢ ¥ 1L = 3In € N,§"(¢) = T. We then have the following
result (still assuming that 1 is consistent).

Proposition 4.3: Let § be an extensive and exhaustive operator on the lattice of proposi-
tional formulas. Then the operator ° defined by

V‘Prl/fﬂﬂolﬂ = Sn((p) A W
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withn = min{k € N | 8k(<p) A Y is consistent} (the existence of n is guaranteed by the fill-
ingness property), 8°(¢) = ¢ and 8¥(¢) = 8(8¥=1(¢)) for k > 1, is a revision operator
satisfying the postulates (R1)-(R6).

The proof of the previous proposition is based on Theorem 4.1. Actually, the
mapping which associates ¢ to <, defined by

Vo,0 0 <, o' & VneN, o € [§"(@)] = o e [8"(p)]

is a faithful assignment and it is not hard to see that for all , [¢ o 1 = min([y'], <,),
which by Theorem 4.1 says that ° is a revision operator.

Typically, § can be any extensive and exhaustive dilation, but this proposition is
slightly more general since it does not require § to commute with the supremum, nor
to be increasing.

The minimality property of revision operators has been widely discussed in the liter-
ature (see, e.g. Konieczny et al., 2010; Ribeiro & Wassermann, 2014; Ribeiro et al., 2013).
Although it is not easy to define in any context in a general way, let us note that, in
the particular case of propositional logic, the proposed morphological definition of
revision provides a natural way to achieve this minimality in the sense that the set of
models is minimally enlarged, which corresponds to the meaning of minimal change
in Katsuno and Mendelzon (1991). The proposed approach also provides sound and
precise tools to compute minimal revisions.

5. Belief merging

In this section, we briefly survey some existing belief merging operators and show the
link with morphological dilations.

We now recall some basics about belief merging.2 Belief merging (Konieczny & Pino
Pérez, 1998, 2002; Konieczny & Pino Pérez, 2011) aims at combining several pieces of
information when there is no strict precedence between them. The agent faces several
conflicting pieces of information coming from several sources of equal reliability,” and
he has to build a coherent description of the world from them.

More precisely the input of a merging problem is a profile ® = {¢s, ..., ¢y}, defined
as a multi-set of propositional formulas encoding the different sources of informa-
tion, and the integrity constraints encoded by a propositional formula y. The result of
merging ® under the constraint y is a propositional formula which will be denoted by
A, (@) (when = T, we will write simply A(®) instead of At(®)). Thus the merging
model is based on the study and construction of well-behaved functions A mapping
a couple (®, u) into a formula A, (®). Such functions are called merging operators.
More precisely, an integrity constraint merging operator (an IC merging operator for
short) is a function A satisfying the following rationality postulates:

(IC0) A, (D) F p

(IC1) If pis consistent, then A, () is consistent

(IC2) If A @ is consistent with y,then A, (®) = AP A
(IC3) If @1 = ®yand w1 = up, then Ay (Pq) = A, (D)
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(IC4) If o1+ p and @ -, then A, ({e1,92}) A @ is consistent if and only if
AL ({@1,92}) A @y is consistent

(IC5) AL(P1) AAL(DP2) F AP L D))

(IC6) If A, (P1) A Au(Py)is consistent, then A, (P71 L D) = A, (P1) AAL(D2)
(IC7) Ap (@) A pa = Apyaps (P)

(IC8) If Ay, (P) Ay is consistent, then A 7, (P) H A (D),

where A @ denotes the conjunction of all the formulas of ®; ®; = &, means that
there is a bijection f from @ into ®, such that for any formula ¢ € ®1, we have ¢ =
f(p) (in particular, ®; and ®; have the same cardinality as multisets); the symbol U
stands for the multiset union.

For a detailed explanation of these postulates, see Konieczny and Pino Pérez (2002).
However, let us make a comment about Postulate (IC4), known as the fairness postu-
late. As a matter of fact, this is a very restrictive postulate. Indeed, the only operators
satisfying all the postulates are the operators built from distance and aggregation func-
tions (see Konieczny & Pino Pérez, 2011). Very natural operators fail to satisfy (IC4). In
Section 5.2 of Konieczny and Pino Pérez (2002), there are interesting results around this
problem.

An operator A is called an IC quasi-merging operator if it satisfies all the previous
postulates except (IC6), but instead of this postulate it satisfies the following one:

(IC6") If A, (1) A AL (D) is consistent, then A, (D1 L D) E AL (DP1) vV AL(D))

To establish a representation theorem, we need to introduce the notion of syncretic
assignment. This is a function mapping each profile ® to a total pre-order <¢ over
interpretations such that for any profiles ®, ®;, ®, and for any belief bases ¢, ¢’ the
following conditions hold:

1) fokE®ando = ®,thenw ~¢ o

If w = ®and o’ = ®,thenw <o

If &1 = ®,, then <o,==0,

Yo = ¢do' =o' o <4y o

Ifw <¢, ® and w <¢, &', then w <¢, 0, @
Ifw <¢, o and w <¢, o', then ® <10, @'

N

ul
D= —

A~~~ A~~~
IS

)

When the condition (6) is replaced by the following condition:
6) fw <¢, @ and w <g¢, o/, then w <0, @’

the assignment is called a quasi-syncretic assignment, that is a function mapping each
profile ® to a total pre-order <¢ over interpretations satisfying (1)-(5) and (6).
Now we can state the following representation theorem for merging operators:

Theorem 5.1 (Konieczny & Pino Pérez, 2002): Anoperator A is anIC merging operator
(or IC quasi-merging operator respectively) if and only if there exists a syncretic assignment
(or quasi-syncretic assignment respectively) that maps each profile ® to a total pre-order
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<o such that
[A(D)] = min([ul, <o)

A very useful technique to build such operators is based on a distance (actually a
pseudo-distance) between interpretations and a numerical aggregation function. We
describe how this works more precisely in what follows.

A pseudo-distance'® between interpretations is a function d : Q x Q — R such
that forany w, o’ € Q: d(w, ') = d(o/, ), and d(w, ') = 0iffw = &'.

An aggregation function f is a function mapping, for any positive integer n, each

n-tuple of non-negative reals into a positive real such that forany xi, ..., xn,x,y € RT:
o ifx <y thenf(x1,...,x,...,xp) <f(xq,...,¥,...,Xn) (MoONOtony)
o f(x1,...,xp) =0iffx; = ... = x, = 0 (minimality)

e f(x) = x (identity).

With the help of d and f, a distance between interpretations and an aggrega-
tion function respectively, we can construct a total pre-order <¢ on interpretations
associated with ® = {¢4,..., ¢n} in the following way. First, remember that d(w, ¢) is
Miny/ =, d(w, ®"). Then, define d(w, ®) = f(d(w, ¢1) ..., d(w, ¢p)). Finally, v <¢ " iff
d(w, ®) < d(«’, ®). This process is, actually, an assignment which is in fact a syncretic
(or a quasi-syncretic) assignment when the aggregation function has good additional
properties such as symmetry, composition and decomposition (see Konieczny & Pino
Pérez, 2011). For instance when f is the function sum or leximin, we obtain a syn-
cretic assignment by the previous process. When f is the function max, we obtain a
quasi-syncretic assignment. Thus, in virtue of Theorem 5.1, the operator defined by
the equation [A ,(®)] = min([1], <¢) is an IC merging operator when the aggrega-
tion function used is the sum or leximin (Gmax) and is an IC quasi-merging operator
when the aggregation function used is the max. They are called in the literature A%,
AC®MX and AM3X respectively'’.

Let us now establish the links with dilations. Again we consider a dilation § defined
using the balls of the distance d as structuring elements. Then it is not hard to see the
following:

AT (P1, o om) = 8"(p1) A8 (@2) A -+ A 8" (9m) A (16)
where n = min{k € N|85(p1) A -+ A 8K(gm) A w is consistent}.
AXpn . om= "\ 8" (@) A8 A A (@m) A, (17)
(n,...nm)
where the values ny, . . ., ny, are such that ZL n; is minimal with 6" (¢1) A 8"2(¢2) A

<o« A 8™ (@m) A consistent.

An example illustrating the behaviour of A™# is displayed in Figure 11, with the
same conventions as in Section 2 and the Hamming distance. Let us consider ¢ = —a A
—bA—=c,y =aAbA-cand u = T.While ¢ A ¥ is not consistent, §' () A 81 () is,
and A™(p, ) = 8" (@) AST(Y) = (@A —bA—C)V (—aAbA—C) (i.e. the merging
provides either a or b, exclusively, and —c).

Next we give a less abstract example.



JOURNAL OF APPLIED NON-CLASSICAL LOGICS 447
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Figure 11. Example of merging A™# (¢, 1), obtained for a dilation of sizen = 1.

Example 5.2 (Merging): Let us consider two agents who want to travel together but
have inconsistent preferences. The set of propositional symbols is the set of all coun-
tries in the world. Preferences are denoted by formulas ¢. In this example, we show
how dilation can help reaching an agreement between agents. Let us assume that
Agent 1 prefers to travel in Spain: ¢1 = Spain. On the other hand, Agent 2 prefers to
travel in Morocco: ¢ = Morocco. Hence the two agents have conflicting preferences.
However, each agent is now ready to extend his preferences so that the two agents can
travel together. This can be simply modelled by a dilation §, such that some neighbour
countries are included in the preferences:

8(¢1) = Spain v France v Portugal v Morocco

8(¢2) = Morocco V Algeria v Portugal v Spain

Now the preferences are no more conflicting. The merging of the agents’ preferences,
denoted A(¢1, ¢2), can be expressed as the conjunction of the dilated preferences:

A(p1,92) = 8(p1) A S8(92) = Spain Vv Portugal v Morocco.

A solution for travelling can then be found in the set of models of these formulas.

To go one step further, we can add constraints the agents have to satisfy. For
instance if Agent 1 has to stay in Europe and Agent 2 has to stay in a Mediterranean
country, these constraints can be taken into account by conditional dilations, thus
modifying preferences as

@7 = 8(¢1) A Y1 = Spain Vv France v Portugal,
@y = 8(92) A2 = 8(2),

where i1 and ¥, encode the constraints. Then the new set of consistent preferences
is given by ¢" = ¢} A @5 = Spain Vv Portugal.

Now suppose that the integrity constraints are encoded by a formula y, which estab-
lishes the fact that one and only one country can be visited except Spain and Morocco.
In this case, the merging of ¢1 and ¢, under the constraint y, denoted A, (@1, ¢2) is
exactly §(¢1) A 8(92) A i, i.e.

A, (¢1,92) = Portugal

Equations (16) and (17) allow defining more general merging operators when § is an
extensive and exhaustive operator congruent with logical equivalence, i.e. if 1 = ¢2
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then 8(¢1) = 8(¢2). We are going also to consider the following symmetry property for
3, related to the fairness postulate: (IC4):

(1) (sym) 8"(p) A’ IF Liff8"(@) A lF L
In particular, we have the following results:

Proposition 5.3: Let & be an extensive and exhaustive operator which is congruent with
logical equivalence on the lattice of propositional formulas. Then A7'®* defined by

AT (1, om) = 8"(91) A" (@2) A+ A S (0m) A L,

where n = min{k € N | 8K(¢1) A -+ A 85(pm) A w is consistent} (the existence of n being
guaranteed by the fillingness property), is a merging operator satisfying (IC1)-(IC3), (IC5),
(IC6°) and (IC7) —(IC8). Moreover it satisfies (IC4) iff 5 satisfies (sym). Thus if § is an extensive
and exhaustive operator which is congruent with logical equivalence and satisfies (sym),
the operator A™®* is an IC quasi-merging operator.

Proof: Define d(w,¢) =n where n = min{k|w € [§X(¢]}. This function d is well
defined because of exhaustivity of §. Define d(w, ®) = max(d(w, ¢1),...,d(w,¢pn)))
where ® = {¢1,...,¢n}. Now let w <¢ o' iff d(w, ) < d(e/, ®). Finally let A, (D)
be a formula satisfying the following equation: [A,(®)] = min([ul, <¢). This is
well defined because § is congruent with logical equivalence. It is easy to see that
AR(P) = Ay (). By the hypothesis about § and the fact that the aggregation func-
tion taken is the max function, it is also easy to check that the assignment ® > <g isa
quasi-syncretic assignment (property (4) is indeed equivalent to property (sym)). Thus,
by virtue of Theorem 5.1, A™® is an IC quasi-merging operator. |

Proposition 5.4: Let § be an extensive and exhaustive operator which is congruent with
logical equivalence on the lattice of propositional formulas. Then A* defined by

AY@naom)=\/ 8™ (@) A8 (@) A A (om) A,

(n1 :m/nm)

where the numbers ny, . .., nm, are such that ZL n; is minimal with 8™ (1) A 8" (¢2) A
-+ AN 8" (pm) A consistent, is a merging operator satisfying (IC1)-(IC3), (IC5)-(IC8).
Moreover, it satisfies (IC4) iff § satisfies (sym). Thus if § is an extensive and exhaustive oper-
ator which is congruent with logical equivalence and satisfies (sym), the operator A* is an
IC merging operator.

Proof: Similar to the proof of the previous proposition but using the sum (X) function
instead of the max function. |

This approach has been extended by Gorogiannis and Hunter (2008) to first-order
logic, by combining dilation and comparison ordering operators. The merging postu-
lates are then adapted, and conditions on these two operators are established to satisfy
these postulates. An implementation using binary decision diagrams has furthermore
been proposed by Gorogiannis and Hunter (2008).
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6. Abduction

In this section, we show that morphologic can also be used to model abductive
reasoning.

The process of inferring the best explanation of an observation is usually known as
abduction. In the logic-based approach to abduction, the background theory is given
by a consistent set of formulas'? X. The notion of a possible explanation is defined by
saying that a formula y that is consistent with X is an explanation of ¢ if ¥ U {y} F «
(this will be written y Fyx «). Since explanations have different degrees of plausibility,
a characteristic feature of explanatory reasoning is the search for the most plausible
(simple, rational, preferred) explanations.

Despite the absence of a general definition of explanation, there have been
several attempts to develop a logical account of explanatory reasoning (Aiguier
et al, 2018; Bochman, 2007; Boutilier & Becher, 1995; Diaz & Uzcategui, 2008;
Flach, 1996, 2000, 2000?; Pino Pérez & Uzcategui, 1999; Pino Pérez & Uzcategui, 2003).
The model for explanatory reasoning we use is based on the notion of an explana-
tory relation, i.e. binary relations on formulas, denoted by >, where the intended
meaning of @ I> y is 'y is a preferred explanation of «'. Similarly to what has been done
for belief revision and merging, a set of rationality postulates for explanatory reason-
ing was proposed and discussed by Pino Pérez and Uzcategui (1999) and Pino Pérez
and Uzcategui (2003). The basic rationality postulates for explanatory relations are the
following:

LLE;: Ifl-y @ <> «’anda >y, thena’ > y.

RLEs: Ift-y y <y’ anda >y, thena > y'.

E-CM: lfa >y andy k5 B,then (@ A B) > y.

E-C-Cut: f@ApB)D>yandVs[a>§ =5y B 1 thena > y.
RS: far>y,y Fyyandy /s L, thena >y,

ROR: Ifoa >y anda > §, thena > (y Vv 93).

LOR: Ifa >y and B >y, then (o Vv B) > y.

E-DR: lfa>yand B> 6, then (Vv B) > yor(avV p)>4.
E-R-Cut: If (@ A B)>yand3S [a>8&5 Fyx B, thena > y.
E-Reflexivity: Ifa > y,theny > y.

E-Cony: Hs —a iff there is y such that o > y.

The intended meaning and motivation for these postulates can be found in
Diaz and Uzcategui (2008), Pino Pérez and Uzcategui (1999) and Pino Pérez
and Uzcétegui (2003). For the convenience of the reader, we briefly recall the heuristic
behind them. Suppose > is an explanatory relation. We associate to it a consequence
relation g as follows: a p~gp B if y 5 B forall y such that o > y. We read o g B
as saying that when « is observed, g is normally also observed. The relation g is
a nonmonotonic consequence relation in the KLM sense (Kraus et al., 1990; Makin-
son, 1994). The properties for > listed above are in tight correspondence with some
well-known postulates for nonmonotonic consequence relation (applied to |~g). For
instance, E-R-Cut is the counterpart of rational monotony: if @ g § and o f~qp—8,
thena A B ap 6.
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It was shown by Diaz and Uzcategui (2008), Pino Pérez and Uzcategui (1999),
and Pino Pérez and Uzcategui (2003) that our postulates capture well some natu-
ral explanatory processes and also share with nonmonotonic logic, belief revision
and merging the feature of having nice representation theorems. To illustrate this
claim, let us say that an explanatory relation > is causal E-rational (Pino Pérez
& Uzcatequi, 1999) if it satisfies LLEy, E-Cony, E-CM, E-R-Cut and RS. Then we have the
following.

Theorem 6.1 (Pino Pérez & Uzcategui, 1999): An explanatory relation is causal E-
rational if, and only if, there is a total pre-order < of the models of ¥ such that for all «
and y the following holds:

a>y < [ZU{y} < min(la], <).

The total pre-order < given in the previous theorem induces a plausibility order
among the possible explanations. Thus the preferred explanations with respect to a
causal E-rational explanatory relation are the most plausible ones according to this
ordering (see Pino Pérez & Uzcategui, 2003 for a complete development of these ideas).

The aim of this section is threefold: first, to propose very natural explanatory rela-
tions using morphologic that in some cases are computationally tractable; second, to
examine the adequacy of logical postulates presented above, and third, to illustrate
the role that the structuring element plays in the proposed models as discussed in
Section 2.6.

6.1. Explanatory relations based on erosion

Morphologic allows us to define the most central part of a formula, according to the
fundamental principles of this theory (see e.g. Serra, 1982, 1988, and Section 2). Using
this notion, we define two explanatory relations.

Recall that in Section 2.6 (Definition 2.4 and Equation 15), we have defined a total
pre-order <¢ of all models in such a way that the models of ¥ occupy the first m levels
where mis the size of the last non empty erosion of X. This pre-order is approximating
the most central part of X. Given an observation «, we can select the preferred expla-
nations of o using the minimal models of « (so, the closest to the most central part of
¥) with respect to <y.

A second method to select the preferred explanations uses a similar idea. Now we
successively erode ¥ U {«} instead of X alone, in other words, we are going to use the
last non empty erosion of X U {«} (see Definition 2.3). The results are quite different.
The second method depends more heavily on the observation at hand and this has the
effect that the corresponding explanatory relation might not satisfy some very basic
structural properties.

For an explanatory relation > and an observation «, we denote its associated set
of preferred explanations as follows:

PE-(a) = {y |a > y}.
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Figure 12. An example of last consistent erosion.

6.1.1. Using the last consistent erosion

The first approach for defining a notion of preferred explanation consists in eroding X
as much as possible but under the constraint that it remains consistent with «. More
precisely, consider the following formula:

gec(Z,0) = (%) (18)
where
n=sup{k e N|ek(Z) At L} if n < +o00
n=min{k € N|VK' > k k() = eX(2),eK(Z) Aa tf L} otherwise.

From this operator, we define the following explanatory relation.

Definition 6.2: An explanatory relation derived from the notion of last consistent
erosion is defined as

a >y %f Y Fs gc(Z, ) Aa. (19)

This definition has the following interpretation. We consider erosion of X, which
means that we are looking at the formulas that satisfy « while being the most in the
theory, i.e. that can be changed while remaining in the theory.

Let us see an illustrative example (see Figure 12). Take ¥ =avbvc and o =
(an—bAc)Vv(@anbn—c)Vv(an-—bA—c), and balls of the Hamming distance as
structuring elements.We havee' (Z) = (avb) A(@vo) A (bVve),e?2(Z)=arbAc,
and finally ¢3() L. Therefore:

e'X)Aa=@A=bAC)V(@AbA=C)

and £2(£) A a L. The value of n in Equation (18) is then equal to 1.
For Definition 6.2, the following formulas belong to PE «c (a):

(an—bAac),@nbn—c),(a@an—-bArc)Vv(anbn—o).

There is an alternative way of looking at > which will be particularly useful in the
next section. Considering the morphological ordering < restricted to the models of
%, itis not difficult to verify that the following holds:

a >y ffIS A 1 € min([T A al, <f). (20)

In particular, by Theorem 6.1, we have the following proposition:
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Figure 13. An example of ¢ and its last erosion, equal to (¢) in this case.

Proposition 6.3: ¢ satisfies LLEs., E-Cony, E-CM, E-R-Cut and RS.

6.1.2. Using the last non-empty erosion
We now introduce another explanatory relation which uses the last erosion ;(¢) of a
formula ¢.

Let us take (see Figure 13) ¢ = (a v =b Vv —¢) A (a Vv b Vv ¢), and an erosion defined
using the balls of the Hamming distance as structuring elements. Using the properties
of erosion, and in particular the fact that it commutes with the conjunction, it is easy
to derive that

81(§0)=(GV—'b)/\(GV—'C)/\(—'bV—'C)/\(a\/b)/\(GVC)/\(bVC)

=(@A—-bArc)V(anbna=o).

Since e2(¢) - L, we have ' (¢) = £¢(¢) (its models are in red in Figure 13).
A preferred explanation of « is then defined from this operator applied on X A «,
more precisely:

Definition 6.4: An explanatory relation derived from the last non-empty erosion is
defined as follows:

a >y g Y Fs e(Z Aa). (21)

The idea of taking the last erosion of X A « can be interpreted in terms of robust-
ness. An erosion of size n of a formula is a formula that can be changed while still
proving the initial formula. If at most n symbols are changed in ¢"(¢) then ¢ is always
satisfied. Here, considering ¢,(X A @) means that we are looking at the most reduced
formula that satisfies £ A «, i.e. the one that can be changed the most while satisfying
Y Aa.

Erosion does not take into account all ‘parts’ of a formula. Let us take for
instance: X Aa=(@Vvb)Ar@vcAnbve and TAB=((avb)Ar(@vcA(bv
0)) V (—a A —=b A —c¢) (Figure 14). Then we have (X Aa) = g(XAB)=aAbAcC
and thus o and g8 have the same preferred explanations. The set of worlds satisfying
3 A B is disconnected, and the connected component containing only (—a A =b A
—¢) is not represented in the explanations of g. This should not be surprising, since
any explanatory relation will select some part of an observation as the most relevant
one. However, if this is considered to be a problem, it can be avoided by considering
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Figure 14. Anexample of ¥ A @ and X A B that have the same last erosion. X A 8 has two connected
components (blue models on the one hand and the cyan one on the other hand), the second one being
not represented in the final result.

the ultimate erosion instead of the last erosion, which will select at least one element
of each connected component of an observation (see Section 2.5).

An important difference between > and >‘"¢ is that the latter is more obser-
vation dependent than the former. In fact, for a given «, let <% be the morphological
ordering associated with ¥ U {«}. Then the preferred explanations of « according to
>¢" are obtained using <{ instead of <r as it was done with £ As a consequence
of this, >"¢ does not satisfies neither E-CM nor E-C-Cut. However, it does satisfy the
following weaker form of E-CM:

E-W-CM: Ifa > y and >y B then >y (a A B).

It is important to note that >/ is the first natural non-trivial example we know
of that satisfies E-W-CM but does not satisfy neither E-CM nor E-C-Cut '3(for a proof
of this claim see Appendix). The next proposition collects all the facts we know

about >¢e .

Proposition 6.5: The explanatory relation > satisfies LLEy, RLEs, ROR, E-W-CM,
RS and E-Conys.

The proof of this result can be found in Appendix. Table 3 summarises the results we
obtained so far.

Table 3. Properties of the proposed relations.

ch I>Zne
Property (Equation 19) (Equation 21)
LLE; v v
RLEx W W
E-CM Vv X
E-W-CM 4 4
E-C-Cut A X
E-R-Cut VA X
E-Reflexivity i X
ROR W W
RS J J
LOR i X
E-DR v X
E-Cong i i
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6.2. Therole of the structuring element: an example

In this section, we explore some ways of defining structuring elements which are more
appropriate for the task of finding explanations. We will analyse the following example
through different structuring elements.

Example 6.6: Let us consider the very simple theory ¥ = {a — ¢,b — ¢} (repre-
sented by the same formula ¢ as the one in Figure 3), and suppose that the observation
is c. What are the ‘good’ explanations of c? We present three different interpretations
where the most natural answers would be different.

We usually expect that the causes of c are among g, b. Let us consider the following
three interpretations, where different explanations may be expected:

(1)

a = rained_last_night
b = sprinkle_was_on

c = grass_is_wet

The ‘common sense cautious explanation’ of cis a v b.

(2)

a = drug
b = another drug

¢ = adverse reaction

An explanation that an adverse reaction occurs is that one has taken drug a
and drug b, the combination of which is not recommended. Hence the ‘eager’
explanation a A b would be preferred.

Note that in this case, it could be argued that the background theory would
beanb— c

a = book_was_left_somewhere else
b = somebody_took_the book

¢ = book_is_not_in_the shelf

An explanation based on the principle of the ‘Ockham’s razor’ will select either
aor b but not both, that is to say, (a A —=b) v (—a A b).

In the example above, the expected explanations of ¢ are built only using the
atoms a or b. We can introduce this constraint using a distinguished set of atoms
Ab (sometimes are called abducibles); in our example, Ab = {a, b}. We can modify the
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background theory as follows:
Yo =3%1U{avV b}

Note that X5 is logically equivalent to {(a A ¢) v (b A ©)}. It models explicitly thata v b
is part of the theory, and then, the causes of c can be found among a and b. We can also
modify the structuring element to include this new constraint. As before, B,, denotes
the ball of radius 1 centred at w (with respect to the Hamming distance for instance).
Let

BY = {0 € B, | w(x) = &' (x) forallx & Ab}.

B4 contains those valuations in B,, which agree with w outside Ab.

Example 6.7: Let X, and Ab be as above. We will work with the notion of explanation
given by >,

(1) With the standard ball B,,, we get ¢! (X,) = L. Thus g¢c(X>, ¢) = =,. In particu-
lar,
c>t (av b).

(2) Now we use B, Thene'(Z;) = aA b Acande?(Xy) = L. Thus
c>(anb).

Note that ¢ /> (a Vv b).
(3) Consider the following structuring element:

B, = {w} U {0 € Q|d(w,0) = 2and w(x) = ' (x) forall x ¢ Ab},

where d denotes the Hamming distance. Then &' (2;) = ¢2(Z;) = (—a A b A
)V (aA—-bnac).Thus

c > (a A —=b)V (—a Ab).

Note that ¢ % (a A b).

In Example 6.7, we get the ‘expected’ solutions, as described in Example 6.6. One
way to understand it is as follows. Given X and a set of atoms Ab, let AbForm be the set
of formulas that use only atoms from Ab. Given an observation formula «, the cautious
explanation of o (with respect to (X, Ab)) is defined by

ce(e) = \/{y € Abform| £ I/ =y and £ U {y} - a}.

Since the language is finite, restricting the formulas y appearing in the definition of
ce(x) to be a conjunction of literals from Ab, we get that ce(«) is well defined. For
instance, in Example 6.6 we have ce(c) = a Vv b. By adding to X the cautious expla-
nation of the observation, we are imposing an extra constraint that helps to find some
of its ‘natural’ explanations. The expanded theory seems to be a useful tool for the task
of finding ‘correct’ explanations. All this is illustrated by Example 6.7, where the choice
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O
® X ® B.
@ 2 @ 5y

@ B,

Figure 15. lllustration of X1 and X; (left) and of three different structuring elements centred at w
(right).

Table 4. Explanations of observation ¢
for two background theories and three
different structuring elements.

21 2;2
B, —aAn—-bAcC avb
B c anb
B, c (@A =b) Vv (=aAb)

of an appropriate structuring element allows us to find the expected explanations in
the three situations presented in Example 6.6.

Table 4 summarises the results for the last two examples, for X7 and X, and the
three considered structuring elements (Figure 15).

These examples illustrate how different explanations can be obtained using appro-
priate structuring elements. Roughly speaking, if a and b are incompatible, then the
exclusive disjunction is appropriate, and it is obtained using Bffz- If they are com-
patible, a parsimonious explanation is the disjunction (as required for instance in
model-based diagnosis), obtained for B,,, while a more sure or constrained explanation
is the conjunction, obtained for B,

6.3. Unified view using the fundamental pre-order <¢

We present in this section a unified treatment of abduction and revision. In particu-
lar, we propose to put in the same framework some of the results of Sections 4 and 6
(and Bloch & Lang, 2000; Bloch et al., 2001), using the fundamental morphological
pre-order relation <y.

In the following, we still assume anti-extensive erosions and extensive dilations.

There is an alternative way of looking at > which will be particularly useful in
what follows. The iteration of the erosion operator provides a method of linearly pre-
ordering the models of 2. We have already noted that, when « is consistent with X, we
have a representation of the relation > in terms of the morphological order given
by the equivalence (20).

Actually, if we take the following pre-order over the models of X:

w<ro & Vi kS - wekx), (22)
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itis clear that < and <¢ coincide over [X]. Thus equivalence (20) can be rewritten as
a >y iffly A =1 C min([T A l, <g). (23)

Let us now come back to the revision based on dilation. As described in Section 4 (see
also Bloch & Lang, 2000), the idea is to dilate ¥ (which is not necessarily consistent
with &) until it becomes consistent with «. Note that X is then no more considered as a
fixed theory but rather as a background knowledge, which can evolve. More precisely,
we define ° as

8"(Z) A where n = min{k € N|8%(Z) A « is consistent}

)I if there is no k such that §(p) A ¥ # L (24)

You = {
The iteration of the dilation operator provides a method of linearly pre-ordering the
models of [6;(X)]. Consider the following relation among models:

w<po L Vk@ esE) > wesD)). (25)

Indeed, it is clear that <p is a total pre-order over [§,(X)]; we will call it the total pre-
order associated with ¥ using successive dilations. It is not difficult to verify that the
following holds:

min(lal, <p). ifa A8(Z)H L

[=1 ifa AS(Z)F L (26)

[Xoal = :
Indeed, it is easy to check that over the set [3,(X)] \ [X] the relations <p and <¢
coincide.

By the representation theorem for credibility-limited revision operators (see Booth
et al, 2012), i.e. operators that generalise the classical AGM-revision opera-
tors (Alchourrén et al., 1985; Katsuno & Mendelzon, 1991), it follows from Equation (26)
that ° is a credibility-limited revision operator (Booth et al., 2012; Hansson et al., 2001).

The pre-order defined by Equations (22) and (25) can be merged in the mor-
phological ordering <f introduced in Section 2. By the previous observations, the
morphological order <¢ is <g over [X] and <p over the set [5,(Z)] \ [Z].

Based on the morphological ordering, we can associate with each observation « the
following set of valuations:

_ [min(led, =p) ifa AS(D) K L
M(@) = {[[2]] if o A S () F L.

Note that the criterion used to define M(«) is based on the morphology operators §
and ¢. The interpretation we give to M(«) is that it contains those worlds that are (mor-
phologically) more relevant given the observation «. Therefore for the task of revising
3 or explaining @ we only look at M(«). This will be made precise in the result that
follows. We will denote by C(«) the formula whose models are exactly M(«).

Theorem 6.8: Let X, o and y consistent formulas.

(1) Ifais consistent with X, then o € y iffy + C(c).
(2) Ifaisinconsistent with X, then ¥ o a = C().
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The previous result suggests the following definitions:

ey B oy Co (27)
and
Y ofa = C(a) (28)

where « and y are consistent formulas.

As an example, let us consider the example in Figure 6 for ¥ = X4. Fora = (—a A
—bA—C)V(maAn—-bAC)V(—aAnbA—C),aisconsistent with ¥ and its explanation
is y =y —a A —b A ¢, which corresponds to the rank 0 in Table 1. Now if « is reduced
toa = —a A b A —¢, then itis no more consistent with X and the revision applies.

Some comments about these definitions should be made. First of all, even when an
observation is inconsistent with the background theory X there is a formula y such
that o ¢ y. That is to say, we can ‘explain’ more observations with [>¢ than with >,
This is related to the idea of abduction as belief revision (Boutilier & Becher, 1995). The
interpretation we give to this fact is that for explaining an observation it is allowed
(if necessary) to ‘change’ the background theory. Thus in the explanatory process
described by >¢ the observation is absolutely reliable. Note also that > makes it
explicit that some explanations might not be consistent with X.

The operator of is not an AGM revision operator for X (even not a credibility-limited
revision operator), since when the observation « to be incorporated is consistent with
3 we have only X of @ = £ A @, not the equivalence (the equivalence in the case
where o and X are consistent is just the vacuity postulate, usually denoted by K«4,
which is equivalent to the minimality (R2)). The reason for this is that of is based on
preferences on models of ¥, so even when ¥ A « is consistent, some sort of cen-
tral reason for accepting « has to be found. Note that the previous remark says that
or does not satisfy the postulate (R2) (alias Kx4), which has been criticised by some
authors in particular by Ryan (1994). Unlike Ryan’s operators, which are based on
ordered theory presentations, (R2) and success (R1) are the only postulates which are
not satisfied by or. However, note that of satisfies the modified version of success of
credibility-limited revision operators, thatis: X ca FaxorX oa = %.

7. Final remarks and perspectives

We have given the fundamental concepts and techniques in mathematical morphol-
ogy, and have shown how to interpret these techniques in terms of mathematical logic,
namely in propositional logic. This connection has originated a new domain called
morphologic. We have used dilation operators to define belief revision operators and
belief merging operators.

We have shown that we can find some operators defined in the literature when
the dilation operators come from a distance function. Moreover, we have extended
the class of belief revision operators and the class of belief merging operators by
using a larger class of operators, in particular having the extensivity and exhaustivity
properties.

A similar work has been done using erosion operators. These operators are used
in two ways to define explanatory relations. It is interesting to note that the use of
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different structuring elements is determinant in the way the information is structured.
The examples in Section 6.2 point out clearly this phenomenon.

Under the assumption that the geometry comes from the Hamming distance
between interpretations, we have shown how to compute dilation, erosion, last
erosion, ultimate erosion, opening and skeleton operators over formulas. These cal-
culations constitute the basis of our applications to different tasks in knowledge
representation.

We have proven that our general operators of revision and fusion are well behaved,
in particular they satisfy the AGM postulates and the postulates of integrity constraint
belief merging. We have also proven that the explanatory relations defined using
morphologic satisfied suitable structural properties.

Potential extensions would be to analyse how minimality criteria could be expressed
in the proposed framework, as the ones proposed for abduction (Bienvenu, 2008;
Eiter & Gottlob, 1995; Halland & Britz, 2012), revision for Horn clauses (Delgrande
& Peppas, 2011, 2015; Zhuang et al., 2013) or for description logics (Qi et al., 2006; Qi
& Yang, 2008; Ribeiro & Wassermann, 2009, 2010; Wang et al., 2010). More generally
mathematical morphology can be used for revision or abduction in institutions and
satisfaction systems (Aiguier et al., 2018, 2018?; Aiguier & Bloch, 2019).

One interesting feature that is worth to remark is the fact that morphologic allows us
to give an ordered structure to the pieces of information. That is, it allows having pref-
erences over the formulas. It is exploited by the morphological total pre-order defined
by Equation (15). Note that these preferences depend on the structuring element used
for defining dilations and erosions.

Finally, our approach provides a reusable framework for performing numerous oper-
ations on formulas and includes computational and axiomatic building blocks, to be
applied in different reasoning problems.

Future work will aim to apply the tools of morphologic to explain multiple obser-
vations and for putting dynamics in the explanatory process. We also expect to treat
mediation process using the tools developed in this work.

Notes

1. Although mathematical morphology has also been extended to complete semi-lattices
and general posets (Keshet, 2000), based on the notion of adjunction, in this paper we
only consider the case of complete lattices.

2. Letd be adiscrete metric on a set M. We say that d has the betweenness property if for all
x,y € Mandallk € {0,1,...,d(x,y)} there exists z € M such that§(x,z) = kand §(z,y) =
d(x,y) — k. The Hamming distance has this property.

3. Note that, in contrast to the Hausdorff distance, the minimum distance is improperly
called distance since it does not satisfy all the properties of a true metric.

4. In this paper, we do not assume any closure constraint on the theory, which is simply a
set of formulas ¥ = {¢;,i € I}, where | is an index set. To identify a theory with a formula,
we will also use X to denote Ajc¢;.

5. Itis easy to see that we can define an AGM operator * starting from °, by letting K x ¥ =
Cn(p o ¥) where ¢ satisfies K = Cn(g).

6. The notation min(A, <) where < isatotal pre-order, standsfor{w € A| Vo' € A, v < &'}.

7. This story is inspired by a famous example in Cognitive Psychology of an experiment by
Tversky and Kahneman (1983).
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8. In knowledge dynamics the fusion of pieces of information having a logical represen-
tation is usually called belief merging (Konieczny & Pino Pérez, 1998, 2002; Konieczny
& Pino Pérez, 2011).

9. Actually the sources can have different reliabilities, but we will focus on the case where
all the sources have the same reliability; there is already a lot to say in this case.

10. The triangle inequality is not required.

11, Strictly, they are called A%>, A%CMax 3nd A9MaX respectively, to emphasise the chosen
distance d.

12.  Often in this work we will identify a finite set of formulas X with the conjunction of all its
formulas and, by abuse of language, we continue to call this formula X. Thus, for instance,
we denote the conjunction of formulas of ¥ U {«} by ¥ A «.

13. E— W — CM in fact was already considered by Flach (1996) but he did not provide any
example for it not satisfying already the stronger version E-CM.
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Appendix. Proofs

In this appendix, we provide proofs of certain technical claims.

A.1. A counter example of E-CM for ‘"¢

In this example X will be {T}, so we will remove it altogether. Let us consider the following
formulas:

a=—-avbve B=(—av-bv-c)A(—aVvbv-c)
aAB=(—av-bv-c)A(—avbVv-c)A(—aVvbvo).
Using the computation formulas for erosion of a formula under CNF (Proposition 3.1), we get
e'(@)=(=avb)A(=avc)A(bVo,
%) = —aAbAc=ga).

A unique world satisfies this formula, and therefore no further erosion can be performed
(e3(a) F L). Similarly, we have

eWaAB)=—aAbA—c=cgiaAp),

which is the last non-empty erosion. It follows that o "€ (—=a A b A ¢); moreover (—a A b A
¢) F B, but clearly the formula (—a A b A ¢) is not a preferred explanation of o A 8.
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A.2. A counterexample of E — C — Cut for >‘"¢
Again X will be {T}. Consider
a=avbvc and B=av-bv-c
We have then
gl@=(@vbyA@voAbVo,
@) =arbac=ea),
e'(B) = (av —b) A (aV —c) A (=bV —0),
e2(B) =an—bn—c=s/p),
aAB=(@vbvc)A(av—bv o),
c@AB)=@AbA—-C)V(aAn—-bAc)=c¢gi(aAB).

Let us now set y = (@A b A —c) V (a A =b A ¢), then (o A B) > . On the other hand, we
have that o >%"€ § iff § = a A b A ¢ (in this case there is no noise because ¥ = T). Thus if o >¢"€
8,then § -5 B.Butitis clearthata />ty .

A.3. A counterexample of LOR for ‘"¢

Again in this counterexample X will be {T}. Consider, for >¢¢ :
a=(@vbvoan(@av-bv-—o

and

B=(—av-bvonan(@av-bvecA(avbvo.
We have

e'@)=(@AbA=C)V(aA—bACc)=e(a),
e'(B) =an—bac=eup),
avpB=avbveg,
eavp)=@vbyA@veabvo),
EaVvp)=arbarc=ei(aVh).

lety =aA—-bAc.Thena >y and B >y, but (a v B) ey,

A.4. Proof of Proposition 6.5

In what follows, we detail E-W-CM and E-W-C-Cut for > . The other properties are straight-
forward. In particular, it is clear that >"¢ satisfies RS.

(i) E-W-CM.

Let us assume that y Fy g/(X A ) with g/(Z Aa) ="(Z Aa), ¥ Fx (2 A B) with
ee(X A B) =e™(X A B), and that the next erosions are empty. Let us assume that the last non-
empty erosion of ¥ A @ A B is obtained for k. Since the erosion commutes with the conjunction,
wehave s (S AaAB) =K AanB) = Aa) Aek(E AB).

We necessarily have k < n and k < m since otherwise either k(= A @) or ek(= A B) would
be inconsistent. This implies, due to the monotonicity property of erosion thatx ¢"(Z A o) —
KT Aa)andtx e™(Z A B) — X(= A B) from which we derive

Free(ZAa)Ag(ZAB) = ge(EAaAP).

This interesting general result proves that y 5 /(X A a A B). The proof for the other two
cases are shown similarly.



JOURNAL OF APPLIED NON-CLASSICAL LOGICS 465

(ii) E-W-C-Cut.

Assume y Fx ef(Z Aa A B) =e"(Z Aa A B).Forall 8 such that o > §,i.e.8 Fx (Z A
o) = eM™(T Aa), we have B> 8, ie. 5y e0(Z A B) = eX(Z A B). Let us detail in which
situations we have y Fyx ¢ (2 A @).

First we consider the case where the erosion of the last non-empty erosion is empty. Since
YAaABFEy EAawehave

"EAaAB) sy L="(T Aa) by L.

Therefore n < m. For the same reason, we necessarily have n < k.
Let us first assume that n < m. Since the set of preferred explanations of « is included in one
of B, we have ¢™(T A @) b5 eX(Z A B). Since m > n, we have

EMEAaAB) =" A)AET(EZAB) Fx L.
Let us now assume n < k. Then similarly, we have
fEranB) = Aa) A AB) Fy L.

If k > m, we have ¢ (2 A B) /s L, and, since the erosion is decreasing with respect to the size
of the structuring element: eK(Z A B) b5 €™(Z A B). Therefore: e™(E A ) Fx eK(Z A B) Fy
e™(Z A B), which implies: (X A o A B) s L which leads to a contradiction.

Similarly, if kK < m, we have: f(ZAa) s L and e™(E A ) by eX(Z A «). Therefore, since
we had e™(Z A @) Fx eK(Z A B), we have

KEAarB) = E ra) AN (EAB) s L

which also leads to a contradiction. From these two contradictions, we can conclude that neces-
sarily k = m. Then e™(Z A @) by eK(E A B) becomes e™(Z A ) Fx €™ (E A B) and therefore
we have

M AaAB) =" (Z Aa) by L

which is in contradiction with n < m. Therefore the case n < m and n < k is not possible.
If n = m. In this case, we have

E"EAAABFs e"EADAZAB) =MET A)AET(ZAB) Fy e™(E Aa),
and therefore
yEs"EAaAB) =y sy e"(Z A),
i.e. o " y. This shows that in this particular case, the property holds.

Finally, in the last possibility where n < m and k = n, the property does not hold, as shown by
the following counterexample, illustrated in Figure A: T =T, ZEAaAB=Z AL =¢e(Z A
a A B) =e(X A B),thislast erosion being obtainedforn = k = 0.Fora, g¢(X A @) is obtained
form = 1 and has only one model. It is easy to check that for all § such that§ Fx /(X A o), we
have § -y g¢(Z A B).Butthereisay suchthaty by e/(Z Aa A B)and y Hy (2 A ).

Now consider the case where last erosions can be fixed points. Actually, several cases can
occur. But before to explore the possible cases, we establish a useful claim:

Claim: Under the assumption that the premises of E-W-C-Cut hold, if sX(Z A B) is a fixed
point, then e™( A ) by eK(Z A B) Fx ¥ (Z A B) forall k.

The reason is that we have ¢ (X A «) Fx ¢K(Z A B) by the hypothesis. And we have eX (= A
B) Fx K (T A B) for k' < k because of the decreasingness of erosion with respect to k. Also we

have k(= A B) Fx eK (Z A B) for k < k' because of the fixed point property.
Now we examine the possible cases:

(1) If the last erosion of ¥ Aa A B is a fixed point, i.e. eg(ZAaAB)=e"(TAaAB)=
e"(Z Aa A B) for all n’ > n. This implies that ¢” (X A a) A " (T A B) can never be
inconsistent (for all n’). Hence the last erosions of ¥ A« and £ A B8 have to be fixed
points too. Let us denote by m and k the first size of erosions where these fixed points
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YA

@ XAB=XANaAp

C)e@AM
O~

Figure A1. Counter-example for E-W-C-Cut for >,

are reached. By the Claim, e™(Z A ) by eX(Z A B) Fx K (A B) for all K. If n>
m we have ¢"(ZTAaAB) =" Aa)Ae"(ZAB)="(X Aa)=eM(Z Aa), and
y Fx e™(Z Aa).lifn<m,thensimilarlye"(T AaAB)=e™(ZAaAB) =T Aa)
andy Fyx e™(Z A ).

(2) If the last erosion of £ A « is a fixed point. Then, e™( A ) 3 eK(= A B) implies that
the last erosion of £ A B is a fixed point too. By the Claim, ¢"(X A o) by sk/(E A B)
for all k’. This means that "' (X Aa A B) = " (Z Aa) A" (E A B) can never be
inconsistent, and the last erosion of X A a A B is a fixed point too. Hence this case is
equivalent to the first one.

(3) If the last erosion of X A B is a fixed point, and ¢ (Z A ) = L. Then ™ (T A
a A B) = L, which implies n <m and ¢"T' (S Aa A B) = L. If n<m, then, by the
Claim, e™(Z Aa) Fx " (Z Aa) Ae"T(Z AB) =e"(Z Aa A B) which can there-
fore not be inconsistent. Hence n = m. Then we have ¢"(X Aa A B) = e™(Z Aa) A
gMEAB) =T Aa),andy Fx e™(Z A ).

(iii) E-Reflexivity fails for >¢¢ .

Let us for instance consider erosions performed with B%, as in Example 6.7, and let us assume
that eg(X Aa) =c. Letustake y = (maAnbAc)V(aAn—-bAac)V(anbAc) as an explana-
tion of o« (We have y Fx (2 Aa)).Thene (T Ay) =aAbAc=e(Z Ay) (still with B as
structuring element). However y s a A b A c and therefore y is not an explanation of y in this
case.



