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This article proposes a framework for planning under uncertainty given a partially known
Ž .initial state and a set of actions having nondeterministic disjunctive effects, some being

Ž .more possible normal than the others. The problem, henceforth called possibilistic
planning problem, is represented in an extension of the STRIPS formalism in which the
initial state of the world and the graded nondeterministic effects of actions are described
by possibility distributions. Two notions of solution plans are introduced: g-acceptable
plans that lead to a goal state with a certainty greater than a given threshold g , and
optimally safe plans that lead to a goal state with maximal certainty. It is shown that the
search of a g-acceptable plan amounts to solve a derived planning problem that has only

Ž .pure nongraded nondeterministic actions. A sound and complete partial order planning
algorithm, called NDP, has been developed for such classical nondeterministic planning
problems. The generation of g-acceptable and optimally safe plans is achieved by two
sound and complete planning algorithms: POSPLAN that relies on NDP, and POS-
PLANU that can be seen as a hierarchical version of POSPLAN. The possibilistic
planning framework is illustrated throughout the article by an example in the agronomic
domain. Q 1997 John Wiley & Sons, Inc.

I. INTRODUCTION

In a ‘‘classical’’ planning problem, it is assumed that actions are determinis-
tic, the initial state is known and the goal is defined by a set of final states; a
solution plan is then a sequence of actions that leads from the initial state to a
goal state. However, most practical problems do not satisfy these conditions of
complete and deterministic information. In order to relax them, some authors
have proposed approaches of planning under uncertainty in which the effects of
actions are described by probabilities over possible resulting states. More
particularly, Kushmerick et al.1 have developed an extension of the STRIPS2

formalism that enables to represent actions having conditional and probabilistic
effects and to cope with partial observability of the initial state. They have

Žconstructed a planning algorithm that generates a totally ordered plan if any
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.exists such that the probability to reach a goal state is greater than a user-sup-
plied threshold. The implementation of this algorithm based on nonlinear
planning primitives drawn from the SNLP3 approach gave rise to the BURI-
DAN1 system.

This article considers the class of planning problems in which, firstly, the
Ženvironment is static which means that all changes that take place result from

.actions specified in the plan , and, secondly, the environment is assumed to be
unobser̈ able during plan execution, thus requiring the search of nonconditional
plans that must be robust to uncertainty. It proposes a possibilistic counterpart
of the Kushmerick et al.’s1 approach in which possibility distributions are used
to represent the uncertainty both on the initial and subsequent states and on the
outcomes of the execution of an action in a particular context. Two notions of
solution plans for such a possibilistic planning problem are introduced: g-accep-
table plans that lead to a goal state with a certainty greater than a given
threshold g , and optimally safe plans that lead to a goal state with maximal
certainty.

The main benefit expected from the possibility theory 4 framework concerns
the ability to represent more qualitatively and, thus more faithfully, what is
known about the initial state and the possible effects of actions; the possibilistic
approach is likely to be less sensitive to a lack of precision in the assessment of
uncertainty. Using a model in which actions have possibilistic effects is particu-
larly well suited for cases in which the probabilities of the resulting effects of
actions are not available, not very reliable, or hard to obtain, that is, in
situations of partial or total ignorance about the immediate consequence of
applying an action. Moreover, the notion of action with possibilistic effects
properly generalizes the notion of nondeterministic actions by enabling the
representation of ordinal grading in the uncertainty that characterizes the
uncontrollable choice process through which the real effect of an action will be
determined. What is represented is simply that one or several effects are normal

Ž .in essence nothing prevents them from occurring and that some are more
Ž .normal less exceptional than others, that is, some may be considered more

plausible than others in the absence of any further information.
One of the most important results of this article states that the search of a

g-acceptable plan amounts to solve a planning problem straight-forwardly de-
Žrived from the original possibilistic one and constituted only of pure non-

.graded nondeterministic actions. A partial order planning algorithm, called
NDP, has been developed for such classical nondeterministic planning problems.
The generation of g-acceptable and optimally safe plans is accomplished by the
algorithms POSPLAN that relies on NDP, and POSPLANU that can be seen as
a hierarchical version of POSPLAN applied iteratively to increasing levels of
acceptability until the highest one is reached. Thus our approach has interesting
computational properties and naturally embeds a form of anytime planning
method.

Section II gives some recalls on possibility theory and further develops
arguments in favor of using possibility theory in planning. Section III describes a
representation framework for possibilistic planning problems and formally de-
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fines the two notions of solution plans. Section IV presents the partial order
planning algorithms NDP, POSPLAN, and POSPLANU and proves their sound-
ness and completeness. Lastly, we conclude by summarizing our contribution
and by pointing out some limitations and future works concerning several
possible extensions of our framework. The main concepts are illustrated
throughout the article by a simple example in the agronomic domain.

II. POSSIBILITY THEORY AND PLANNING: MOTIVATIONS

A. Issues in Flexible Planning

The classical planning paradigm usually refers to ‘‘searching for a sequence
of actions leading from the initial state to a goal state.’’ There are several
directions in which these strict assumptions can be relaxed so as to enable more
flexibility in the representation of a planning problem. Some of the works done
in this purpose make a significant use of decision theory, and are thus referred

Ž .as ‘‘decision-theoretic planning.’’ We give here a nonexhaustive list of issues in
flexible planning and locate our work with respect to these issues.

v Enabling the representation of states, action effects and goals in a concise,
structured language, thus avoiding a heavy, explicit representation of all states. The
first seminal work in this direction was STRIPS2 where states and goals are
represented by conjunctions of literals and where action effects only mention the
atoms that are modified by the action. This kind of representation was extended
to deductive models,5] 8 or revision models9 in order to deal with context-depen-
dent effects, i.e., effects that depend on the state of the world at execution time.
Some other approaches make use of logical languages for designing planning
problems.10 ] 12

v Enabling the representation of uncertainty about the initial state and r or the
possible effects of actions. This issue has lead to several approaches to probabilistic
planning,1, 13] 15 of which one of the most important is Kushmerick et al.’s
BURIDAN planner1 where the effects of actions as well as the initial state
description are represented by means of probabilistic state operators that are a
probabilistic extension of STRIPS’ operators. A solution plan is a sequence of
actions leading to a goal state with a probability not less than a given threshold.
See also Section III.

v Enabling the flexible representation of goals, replacing the set of goal states of
classical planning by a preference ordering on goal states16, 17 or a utility function18

thus embedding the representation of the planning problem into decision theory.
v Taking account of different assumptions concerning obser̈ ability. In a fully

obser̈ able decision process, the current state is always known before the agent
has to act so that an adequate solution consists in a conditional plan mapping
each possible state at each time point to an actual decision. Such an assumption
leads naturally to conditional planning, and in a decision-theoretic perspective to

Ž . 19, 20fully observable Markov decision processes FOMDP . A qualitative, possi-
bilistic variant of FOMDP was proposed in Ref. 17. The other extreme case is
nonobser̈ ability, where the agent never gets any feedback from the process, which
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entails that one looks for an unconditional plan. Between these two extreme
cases, partially obser̈ able decision processes enable the agent to gather some

Žfurther information about the current state by performing tests see for instance
.Refs. 21 and 22 .

v Enabling the agent to interrupt the planner at any time after it has been launched
Ž .‘‘anytime planning’’ , assuming thus that at any step of the planning process, the
planner maintains a solution whose quality increases with execution time, eventu-
ally leading to an optimal solution.

In this article we propose an approach to planning under uncertainty which has
the following main features:

v Actions are expressed in an extended version of the STRIPS representation that
supports context-dependent as well as graded nondeterministic effects.

v Uncertainty about the initial state and effects of actions is modeled by possibility
Ž .distributions and any solution is qualified by a necessity or certainty degree.

v Goals are assumed to be nonflexible, i.e., a set of goals states is specified.
v The decision process is nonobser̈ able.
v The framework lends itself to the implementation of an anytime planning method

Ž .see Section IV that yields an optimally safe solution plan if run until natural
Žquiescence or a less safe plan if interrupted sooner provided one exists and

.enough time has been allocated to its generation .

B. Possibility Theory

The basic representation tool of possibility theory 23 is the possibility distri-
bution:

Ž .DEFINITION 1. Let S a finite set of states. A normalized possibility distribution
w x Ž . Uon U is a mapping from S to 0, 1 such that Sup p u s 1.ugU

In the rest of the article, possibility distributions will be used both for:

v Ž .Representing uncertainty about the initial state: p s represents the possibilityinit
Ž .that the initial state may actually be s. In particular, p s s 0 means that it isinit
Ž .fully impossible that s be the actual initial state, while p s s 1 means that thisinit

is completely possible.
v Representing uncertainty about the effects of actions. For this purpose, to each

w < xaction a and each state s we associate a possibility distribution p . s, a . For each
X w X < xstate s , p s s, a represents the possibility that executing action a in state s

actually leads to state sX.

A possibility distribution p induces a possibility measure P and a necessity
S w xmeasure N, which are both mappings from 2 to 0, 1 , defined, respectively, by:

U Ž .The normalization condition Sup p u s 1 is not always required in possibilityugU
theory. The reason why we require it in this article will be clear when defining

Ž .possibilistic actions see Section III-B .



GRADED NONDETERMINISTIC ACTIONS 939

;A : S,

P A s Sup p sŽ . Ž .sg A

and

N A s 1 y P A s Inf 1 y p sŽ . Ž . Ž .sg A

Ž .P A measures to what extent it is consistent with the knowledge expressed by
Ž .p to assume that the actual state is in A. N A measures to what extent the

knowledge expressed by p implies that the actual state is in A.
Lastly, let us mention that possibility theory can be viewed as a graded

Ž .generalization of nondeterminism for more discussion see Section II-D . Non-
determinism, or qualitative uncertainty, is the restriction of possibility theory

Ž . � 4obtained by enforcing p s g 0, 1 , ;s; for instance, a nondeterministic action
Ž .a whose set of possible resulting states when performed in state s is Res s, a : S

w X < x X Ž . w X < xis encoded by p s s, a s 1 if s g Res s, a and p s s, a s 0 otherwise. Thus,
requiring that all possibility values are equal to 0 or 1 comes down exactly to the
definition of classical subsets of S. Note that, contrarily to possibility theory,
probability is not a generalization of nondeterminism: indeed, there is no way of
recovering classical subsets from probability distributions.† This is due to the
fact that possibility theory is well suited to representing states of partial or total
ignorance, and probability to representing randomness, which appears to be very

Ž .different see Ref. 4 .

C. Possibility Theory and Decision Making

Possibility theory and closely related formalisms have been used as a basis
for a qualitative version of decision theory. We first recall that a decision-theo-

Žretic model needs two scales, one for uncertainty and one for ‘‘goalness’’ i.e.,
. w x Ž .satisfaction }in Bayesian decision theory these are 0, 1 probability scale and

Ž .the real line utility scale , the optimal decisions being those maximizing the
Ž . Ž . Ž .expected utility Ý pr s .u s, a , where u s, a is the utility resulting in perform-s

ing action a in state s y . Dubois and Prade24 have proposed a qualitative
counterpart to Bayesian decision theory, where uncertainty is modeled by a

w xpossibility distribution p : S ª 0, 1 and goalness by a qualitative utility function
w x Ž . Žq: S = A ª 0, 1 , the optimal decision s being these maximizing min max 1 ys

Ž . Ž ..p s , q s, a which is a pessimistic qualitative counterpart to expected utility. In
Ref. 24, normative approaches to qualitative decision theory are proposed. On
the other hand, Yager 25 proposed to maximize the optimistic criterion

< <†One may think of doing it by specifying equiprobability, i.e., if S s n, then
Ž .;s g S, pr s s 1rn; however, this would be wrong, since equiprobability is much more

informative than the specification of a classical subset}or equivalently, equipossibility;
Ž� 4. Ž� 4.for instance, notice than from equipossibility we get P s , s s P s s 1, hence the1 2 3

� 4 � 4 Žsubsets s , s and s have the same possibility degree and more generally all1 2 3
.nonempty subsets have the same possibility, i.e., 1 }while from equiprobability we get

Ž� 4. Ž� 4.Pr s , s s 2rn and Pr s s 1rn.1 2 3
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Ž Ž . Ž .. 27max min p s , q s, a .‡ Boutilier gives a logical approach to qualitative deci-s
Žsion theory which can be equivalently expressed in possibility theory although it

differs from Dubois and Prade’s model because his pessimistic utility function
.takes account only on the most plausible worlds .

Now, some possibilistic approaches to sequential decision making have been
Žproposed, assuming full obser̈ ability the agent always knows the actual state of

. Žthe world before acting , among them Refs. 28 and 17. These approaches see
.Ref. 17 for a discussion and further details propose various possibilistic versions

of Markov decision processes and dynamic programming, and can thus be
considered as a first step to possibilistic decision-theoretic planning. Yet these
approaches assume the set of states is represented explicitly and thus they may
be inefficient for real planning applications. Our approach is much more in the

Žspirit of AI planning, with a STRIPS-like representation of actions and an
.assumption of nonobservability, contrarily to the abovementioned approaches .

The planning algorithm implementing our approach can be seen as genuine
extension of classical AI planners such as SNLP.3

D. Possibility Theory and Planning: Meaning and Benefits

Apart of the aforementioned uses of possibility theory in decision making it
Ž .seems to our knowledge at least that there are up to now few significant

applications of possibility theory and fuzzy sets to planning. One noticeable
exception is Saffiotti et al.’s multivalued logic for planning and control, used in
the robot Flakey;29 they use fuzzy rules to represent conditional plans, and
standard goal regression to generate them. Note that the use of fuzzy sets in
their approach differs from ours mainly in the fact that while we use possibility
degrees for representing uncertain effects of actions, they use truth degrees for
representing the desirability of a plan}thus their interpretation of fuzzy sets is
in terms of graded preference.

Our approach makes the following uses of possibility theory:

v w < x ŽAction effects are described by possibility distributions p . s, a where s is a state
.and a an action .

v The initial state is described by a possibility distribution.
v In the computational process, the current state is modeled by a possibility

distribution over possible states.

This means that possibility theory is here interpreted in terms of uncertainty. Let
us now focus on the benefits of using possibility theory in planning, especially in
comparison with probabilistic planning:

v Possibility theory is an ordinal model: only the order induced by possibility
distributions is important, not the precise values of the degrees. Indeed, the only

w xoperations on 0, 1 needed in our framework are min, max, and order reversal

‡Note that Yager’s proposal can be recast in Dubois and Prade’s axiomatic frame-
work by modifying one of their postulates}see Ref. 26.



GRADED NONDETERMINISTIC ACTIONS 941

Ž . Ž1 y . . This ordinal aspect of a possibilistic representation contrarily to proba-
.bilistic representations which are intrinsically quantitative gives the model more

robustness to imprecision on the degrees and is thus particularly suited to cases
where there is a lack of statistical data.

v w < xActions with possibilistic transitions functions p . s, a are a graded generalization
of nondeterministic actions, so that possibilistic planning encompasses nondeter-

Žministic planning as a particular case obtained by allowing only 0 and 1 as
.possibility degrees . This is not the case with probability theory, at least if we work

with a single probability distribution as in Bayesian approaches: there is no mean
Žof encoding graded nondeterminism by a probability distribution see Section II-B

.and the corresponding footnote§ . This is a particularly interesting point, more so
because planning with nondeterministic actions has only received little attention
in the literature.

v A possibilistic representation of uncertain effects of actions and uncertain states
is consistent with the usual nonmonotonic encoding of action effects and default
knowledge. The knowledge representation community often represents effects of
actions, or more generally evolution of the world, by complete preorders, or
equivalently by possibility distributions, on states. As a consequence, these
approaches can be used upstream of ours, since they provide us with models for
representing andror generating possibilistic actions which can then be used in
our planning framework.

III. REPRESENTATION OF A POSSIBILISTIC
PLANNING PROBLEM

In this section we define the basic components of a possibilistic planning
problem, and two different notions for a solution plan.

A. Expressions and States

The facts or properties that need to be talked about in the application
domain are represented in a finite propositional language by expressions that

Ž .are conjunctions of atomic sentences symbols in either positive or negative
form, i.e., conjunctions of literals. For convenience, we shall also occasionally
represent an expression as the set of literals involved in the conjunction, an
empty set representing no specification at all. A state is a complete description
of the world at a time point, that is, a particular expression in which all atomic
sentences of the language appear exactly once in a positive or negative form. A

Ž .state is said to be satisfied by an expression e denoted s * e if and only if each
literal of e is in s. We define the set of states satisfied by an expression e as
Ž . � 4SS e s s g Srs * e .

§Note, however, that a planning problem that involves only pure nondeterministic
effects can be encoded correctly, though without any probabilistic meaning, with a
probability distribution since all what matters then is to distinguish feasible effects from
impossible ones. Any probability distribution that assigns a nonzero probability to each
feasible effect will do the job}but this use of probability here is weird and artificial!. For
such a problem, a planner of the BURIDAN type, queried to return a solution plan
having probability 1 of success, is able to find the kind of secure plan that lead certainly

Ž .to a goal state provided any such plan exists .
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Agronomic example: In the simple illustrative planning problem considered
throughout the rest of this article, the state of the world is described via five
atomic sentences: fa¨orable-spring, sown, good-potential, pest, good-yield. They
express, respectively, that the spring climate offers favorable sowing and growing
conditions, the field has been sown, the early stages of growth create good
potential conditions toward the production goal, a pest problem occurs, and the
final crop yield is good. For short, we shall express these atomic sentences by f ,
s, g, p, and y, respectively. The state corresponding to a favorable spring, a field
sown, a good potential of production with respect to early growth stages, the
occurrence of a pest problem and a yield that is not good is represented by
f n s n g n p n y The SS function maps an expression to the set of compatible

Ž . � 4states. For instance, SS f n s n g n p s f n s n g n p n y, f n s n g n p n y .

Ž .DEFINITION 2 uncertain states . Let S denotes the set of all conceï able states.
Ž .The uncertainty about the current state of the world at time t is represented by a

Ž .possibility distribution p o¨er the set S of states such that max p s s 1. Thet sg S t
initial state is described by the possibility distribution p .ini t

Ž .p s conveys what is known at time t about the actual state of the world.t
Ž .p s expresses to what extent it is possible that the real-world state is s; int

Ž .particular, p s s 0 means that s is surely not the real-world state, andt
Ž .p s s 1 means that nothing prevents s from being the real state. Note thatt

Ž .there may be several states s with p s s 1.t

B. Possibilistic Actions

The actions considered here can be executed in any world state and their
Ž .effect depends both on the execution-time state context-dependent effect and

Ž .on chance nondeterministic effect . The feasible nondeterministic results of the
application of an action can be specified by a possibility distribution that enables

Ža ranking of the possible outcomes on the scale of normality i.e., nonexception-
.ality . More formally a possibilistic action is defined as follows.

Ž .DEFINITION 3 possibilistic actions . A possibilistic action, denoted a, is a set of
� 4possibilistic effects, i.e., a s ep , i s 1, . . . , m , in which ep is the ith possiblei i

effect defined by:

ep s t , p , e , . . . , p , e² :Ž . Ž .i i i1 i1 in ini i

x xwhere ; i, j, t , and e are expressions, p g 0, 1 , such thati i j i j

v For all state s, there is a single i such that s * t .i
v For all i, max p s 1.1F jF n i ji
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The ep ’s, the t ’s and the e ’s are called possibilistic effects, discriminants,i i i j
and elementary consequences, respectively. The e ’s play the role of AddrDeletei j
lists of the STRIPS action model.

If the context defined by t is verified before the execution of a, then it isi
possible at degree p that effect e is verified after the execution. If p isi j i j i j

Ž .equal to 1, then e is a normal effect i.e., nothing prevents it from occurring ,i j
else the smaller p the more exceptional e . For a given discriminant, thei j i j
elementary consequences together with their associated degrees of possibility
constitute a possibility distribution over the changes to the world.

The first condition in the definition means that the discriminants are
5 Ž . Ž . Ž . Ž .exhaustive: D SS t s S and mutually exclusive: ; i, j, i / j SS t l SS t s B.i i i j

The second one means that any action must have at least one normal elemen-
tary consequence. An empty elementary consequence expresses the case where
the execution of the action results in no change of the state it was applied in.

Agronomic example: We consider a simple crop management problem that
consists in planning a coherent combination of sowing, pest treating, and
harvesting operations in order to obtain a satisfactory crop production. As
presented in Section III-A the state of the world and the actions are described
via five atomic sentences: fa¨orable-spring, sown, good-potential, pest, good-yield
represented by f , s, g, p, and y, respectively. Four actions are available:
sow-normal, sow-better, treat, and har̈ est.

� �sow-normal s sow-better s
² : ² :f n s, 1, s n g , 0.2, s n g , f n s, 1, s n g , 0.3, s n g ,Ž . Ž . Ž . Ž .

f n s, 1, s n g , 0.7, s n g , f n s, 1, s n g n p , 0.4, s n g ,² : ² :Ž . Ž . Ž . Ž .
² : ² :� 4 � 4s, 1, s, 1,4 4Ž . Ž .

�har̈ est s
² :�treat s s n p , 1, y ,Ž .
² :² :� 4p , 1, p , 0.1, , s n g n p , 1, y , 0.2, y ,Ž . Ž . Ž .Ž .

² : ² :� 4p , 1, s n g n p , 1, y , 0.8, y ,4 Ž . Ž .Ž .
² :� 4s, 1, 4Ž .

The first two are sowing actions that correspond to two different choices of
Ž .seeds. The first one tells that: i in the context of a field not sown and a

favorable spring, the normal effect is to have a good potential and a field sown
Ž .and very exceptionally possibility s 0.2 to have a not-so-good potential and the

5If in practice the original formulation of an action does not naturally verify the
exhaustiveness property, one can always modify that formulation by adding complemen-
tary discriminants associated to null effects. Actually this property is only useful for a
clear presentation of our formalism and is not required by the planning algorithms
presented in the next section.
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Ž .field sown, ii in the context of a field not sown and an unfavorable spring, the
normal effect is to have a good potential and a field sown but it is much less

Ž .exceptional possibility s 0.7 to have a not-so-good potential and the field sown,
Ž .iii in the context of a field already sown, this action does not make any change.
The sow-better action has the same discriminants but differs from sow-normal

Ž .on the first possibilistic effects since the exceptional outcome i.e., s n g is
Ž .slightly less exceptional possibility s 0.3 instead of 0.2 and on the second

possibilistic effect since the normal outcome is to have p in addition to s and g
Žand the exceptional outcome is significantly more exceptional possibility s 0.4

.instead of 0.7 . The treat action has the normal effect of eradicating the pest
Ž .problem if any and very exceptionally possibility s 0.1 fails to do so. It does

not change the world in case no pest problem occurs. The har̈ est action is
effective when the field has been sown. If there is a pest problem, then the yield
is definitely not good. Otherwise, if the potential is good, then normally the yield
should be good but may be bad very exceptionally and if the potential is not
good, the normal outcome is still a good yield but it is not very exceptional
Ž .possibility s 0.8 to end up with the opposite effect.

Ž .DEFINITION 4 effect of a possibilistic action . Let s a state, a an action and e an
elementary consequence of a, the state resulting from the change on s caused by e is
defined by:

<Res e, s s e j l g s l f e� 4Ž .

The result of executing action a on s is gï en by a possibility distribution on S
defined by:

max p if s g S t and sX s Res e , sŽ . Ž .X k ik i ik<w xp s s, a s ½ 0 otherwise

If the initial state is described by a possibility distribution p o¨er S, then theinit
effect of executing a is defined by the following possibility distribution:

X X< <p s p , a s max min p s s , a , p sŽ .Ž .init 0 init 0
s0

For instance, considering the treat action, we have:

<w xp f n s n g n p n y f n s n g n p n y , treat s 0.1

<p f n s n g n p n y f n s n g n p n y , treat s 0



GRADED NONDETERMINISTIC ACTIONS 945

Figure 1. Different families of possibilistic actions.

ŽSome interesting families of possibilistic actions or, equivalently, graded
. w < xnondeterministic actions are worth identifying; let a an action and p . s, a the

possibility distribution induced by the action a applied on state s:

v
X Xw < x � 4action a is nondeterministic if and only if ;s, s g S, p s s, a g 0, 1 ;

v
Xaction a is pseudo-deterministic if and only if ;s there is a single s such that

w X < xp s s, a s 1;
v action a is deterministic if and only if a is both nondeterministic and pseudo-

X w X < x Y X w Y < xdeterministic, i.e., ;s, 's such that p s s, a s 1 and ;s / s , p s s, a s 0.

The set relations among these families are summarized in Figure 1. In our
example, all actions are pseudo-deterministic.

The set AA of actions available in the planning problem under consideration
Ž .will be said nondeterministic pseudo-deterministic or deterministic, respectively

Žif all the actions that it contains are nondeterministic pseudo-deterministic or
.deterministic, respectively . Finally, we will say that AA is a k-le¨el action set if the

� w X < x < X 4set of distinct possibility degrees p s s, a s, s g S; a g AA has k elements.¶ In
� 4our example, AA s sow-normal, sow-better, treat, har̈ est is an 8-le¨el action set.

� 4Thus, given a pseudo-deterministic 3-le¨el action set 0, a , 1 and a state s,
Ž X w X < x .every action a yields a normal resulting state s such that p s s, a s 1 and at

¶We impose that 0 is always in this set; thus, AA has 2 levels if and only if AA is
nondeterministic.
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Ž Y w Y < x .most one exceptional resulting state: s such that p s s, a s a . A set AA with
more than 3 levels allows to take account of different degrees of exception.

C. Plans and Possibilistic Planning

We classically define a plan of actions as a set of ordered actions.

Ž .DEFINITION 5 plans of actions . A sequential plan is a totally ordered set of
² :Ny1 Ž .actions a . A partially ordered plan is a pair PP s A, O where A is a setis0i

of actions and O is a set of ordering constraints between these actions. A completion
² :Ny1 � 4of PP is a sequential plan CC PP s a such that A s a , . . . , a and theis0i 0 Ny1

total ordering a - ??? - a is consistent with O. A consistent partially ordered0 Ny1
Ž .plan is a plan PP s A, O with a consistent set O of ordering constraints.

To execute a plan PP is to execute in sequence a , a , . . . , a where0 1 Ny1
² :Ny1a is a completion of PP. The strong assumption of nonobservabilityis0i
underlies the way the execution is monitored. Indeed we suppose that despite
the uncertainty concerning the effects of the actions, a plan is executed blindly,
without any information gathering between steps. The following proposition
relies on this assumption.

Ž .PROPOSITION 1 effect of a sequential plan on a state . Let s be a state of S.0
The possibility to reach a gï en state s by executing a sequential plan of possibilisticN

² :Ny1actions a starting in s , is gï en by:is0i 0

Ny1 Ny1< ² : < < ² :p s s , a s max min p s s , a , p s s , ais0 is1ž /N 0 i 1 0 0 N 1 i
s1

<s max min p s s , aiq1 i i
² : is0 ??? Ny1s ??? s1 Ny1

² :where s ??? s represents a sequence of states ¨isited from s to s .1 Ny1 1 Ny1

² :Ny1 ² :Ny1Proof. Executing a from s is equivalent to execute a from theis0 is1i 0 i
w < xpossibilistic distribution p . s , a . Thus:0 0

Ny1 Ny1< ² : < < ² :p s s , a s p s p . s , a , ais0 is1N 0 i N 0 0 i

Ny1< ² : <s max min p s s , a , p s s , ais1ž /N 1 i 1 0 0
s1
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Then,

Ny1< < ² :max min p s s , a , p s s , a is1ž /1 0 0 N 1 i
s1

Ny1< < < ² :s max min p s s , a , max min p s s , a , p s s , a is2ž /1 0 0 2 1 1 N 2 iž /s s1 2

Ny1< < < ² :s max max min p s s , a , min p s s , a , p s s , a is2ž /ž /1 0 0 2 1 1 N 2 i
s s1 2

Ny1< < < ² :s max max min p s s , a , p s s , a , p s s , a is2ž /1 0 0 2 1 1 N 2 i
s s1 2

< <s max max ??? max min p s s , a , . . . , p s s , aŽ .1 0 0 N Ny1 Ny1
s s s1 2 Ny1

<s max min p s s , a Biq1 i i
² : is0, . . . , Ny1s ??? s1 Ny1

Let Goals : S the set of the goal states, and p a possibility distributioninit
over S that describes the initial state s . The possibility and necessity measures0

² :Ny1to reach a goal state after the execution from s of the sequential plan a is00 i
are given by:

Ny1 Ny1< ² : < ² :P Goals p , a s max min P Goals s , a , p sŽ .is0 is0ž /init i 0 i init 0
s gS0

Ny1< ² :s max min p s s , a , p sŽ .is0ž /N 0 i init 0
s gS , s gGoals0 N

Ny1 Ny1< ² : < ² :N Goals p , a s 1 y P Goalsp , ais0 is0init i init i

s min max 1 y p s ,Ž .ž init 0
s gS , s gGoals0 N

Ny1< ² :1 y p s s , a is0 /N 0 i

�Ž .4 Ž .In our example, if p s 1, f n g n s n p n y and Goals s SS y then:init

< ² :P Goals p , sow-better , treat , har̈ est s 1init

< ² :N Goals p , sow-better , treat , har̈ est s 0.6init

Ž .DEFINITION 6 possibilistic planning problem . A possibilistic planning problem
² :D is a triplet p , e , AA where p is the possibility distribution associated toinit Goals init

the initial state, e is an expression defining the set of goal states Goals, and AA isGoals
the set of a¨ailable possibilistic actions.
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Given a possibilistic planning problem, two criteria may be considered to
define a solution plan:

Ž .DEFINITION 7 solution plans . Let D be a possibilistic planning problem and PP
be a sequential plan:

v w < xPP is a g-acceptable plan if N Goals s , PP G g .0
v w < xPP is an optimally safe plan, or simply, optimal plan if N Goals s , PP is maximal0

among all possible sequential plans.

This definition can be extended to partially ordered sets of actions. Let PP be a
consistent partially ordered plan:

v w < xPP is a g-acceptable plan if N Goals s , CC PP G g for all totally ordered completion0
CC PP of PP.

v w < xPP is an optimal plan if N Goals s , CC PP is maximal among all possible sequential0
plans for all totally ordered completion CC PP of PP.

IV. GENERATION OF SOLUTION PLANS

The two planning algorithms that we present in this section for solving a
possibilistic planning problem are based on the equivalence between the search
of g-acceptable plans and the resolution of a derived planning problem that has
only pure nondeterministic actions. Before presenting these general planning
algorithms we first recall the characteristics of nondeterministic planning.

A. Nondeterministic Planning and g-Acceptability

We have seen that a nondeterministic action a is a special case of a
X w X < x � 4possibilistic action where ;s, s g S, p s s, a g 0, 1 . It is equivalent to impose

on this action the condition ; i, j p s 1. Thus we can simplify its definition asi j
follows.

Ž .DEFINITION 8 nondeterministic actions . A nondeterministic action is a set of
� 4nondeterministic effects a s ef , i s 1, . . . , m , in which ef is the ith nondeter-i i
² :ministic effect defined by ef s t , e , . . . , e where ; i, j, t , and e are expres-i i i1 in i i ji

sions, and the discriminants t are exhaustï e and mutually exclusï e.i

Since possibility distributions are no longer necessary to describe nondeter-
ministic actions, we can also simplify the description of the effect of an action on
a state: let s be a state and a a nondeterministic action; the result of executing
action a on s is given by a subset of S defined by:

X < XRes a, s s s s g SS t and s s Res e , s� 4Ž . Ž . Ž .i i k
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Let I ; S be a set of states. The result of executing nondeterministic action a
on I is given by:

Res a, I s Res a, sŽ . Ž .D
sgI

We can also define the effect of a sequential plan on a set of states: let
² :Ny1a be a sequence of nondeterministic actions; the result of executingis0i
² :Ny1a on I is recursively defined by:is0i

² :Ny1 ² :Ny1Res a , I s Res a , Res a , IŽ .Ž . Ž .is0 is1i i 0

We can now define a planning problem with nondeterministic actions, and a
solution of that problem:

Ž .DEFINITION 9 planning with nondeterministic actions . A nondeterministic
² :planning problem D is a triplet I , e , AA where I is the set of possibleini t G o al s ini t

initial states, e is an expression defining the set of goal states Goals and AA is theG o al s
set of a¨ailable nondeterministic actions.

² :Ny1A sequential plan a is a safe plan for D ifis0i

² :Ny1Res a , I ; GoalsŽ .is0i init

A partially ordered plan PP is a safe plan for D if each totally ordered
completion CC PP of PP is a safe plan for D.

We finally present how, given a possibilistic planning problem, the search of
a plan having a necessity greater than g can be transformed equivalently into
the problem of finding a safe plan for a particular nondeterministic planning
problem derived from the original possibilistic one.

Ž .DEFINITION 10 from possibilistic to nondeterministic planning . Let D s
² : x xp , e , AA a possibilistic planning problem and g g 0, 1 . The nondeterminis-ini t G o al s
tic planning problem D constructed from D is defined by:1yg

² :D s I , e , AA where1yg init 1yg Goals 1yg

v � < Ž . 4I s s g S p s ) 1 y ginit 1yg init
v � < 4AA s a a g AA such that1yg 1yg

² : <if a s t , . . . p , e ??? then a s t , . . . e . . . p ) 1 y g .² :Ž . � 4� 4i i j i j 1yg i i j i j

I is the set of initial states that have a possibility greater than 1 y g .init 1yg

The nondeterministic action a g AA is the result of transforming the1yg 1yg

action a in AA by retaining only the effects having a possibility greater than
1 y g .
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� 4In our example AA s sow-normal , sow-better , treat , har̈ est , where0.5 0.5 0.5 0.5 0.5

� � � �sow-normal s sow-better s treat s har̈ est s0.5 0.5 0.5 0.5

² : ² : ² : ² :f n s, s n g , f n s, s n g , p , p , s n p , y ,

² : ² : ² : ² :� 4f n s, s n g , s n g , f n s, s n g n p , p , s n g n p , y ,4
² : ² : ² :� 4 � 4s, s, s n g n p , y , y ,4 4

² :� 4s, 4

The following key result shows that it is equivalent to search the safe plans
of D and to search the g-acceptable plans that solve D.1yg

Ž .PROPOSITION 2 equivalence . A partial plan PP is g-acceptable for D if and only
if it is safe for D .1yg

² :Ny1Proof. We prove it for a sequential plan a .is0i

Ny1< ² :N Goals p , a Ggis0init i

Ny1< ² :m min min max 1 y p s , 1 y p s s , a G gŽ . is0ž /init 0 N 0 i
ss gGoals 0N

Ny1< ² :m ;s gGoals max min p s , p s s , a F 1 y gŽ . is0ž /N init 0 N 0 i
s0

<m ;s gGoals, ;s p s ) 1 y g ,Ž .N 0 init 0

Ny1< ² :p s s , a F 1 y gis0N 0 i

<m ;s gGoals, ;s p s ) 1 y g ,Ž .N 0 init 0

<max min p s s , a F 1 y giq1 i i
² : is0 ??? Ny1s ??? s1 Ny1

<m ;s gGoals, ;s p s ) 1 y g ,Ž .N 0 init 0

² : < <; s ??? s , ' i p s s , a F 1 y g1 Ny1 iq1 i i

< ² :m ;s p s ) 1 y g , ; s ??? s ,Ž .0 init 0 1 N

<; i p s s , a ) 1 y g « s g Goalsiq1 i i N

² :Ny1m Res a , I ; GoalsŽ .is0i init

The proposition extends to partial plans by the way they are defined:

PP is g-acceptable for D m each completion CC PP of PP is g-acceptable for D

m each completion CC PP of PP is safe for D1yg

m PP is safe for D B1yg
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� 4In particular, for pseudo-deterministic actions with 3 levels 0, a , 1 we
have:

v
Ny1² : Žg s 1: a is 1-acceptable if and only if for every effect of action a normalis1i i

. ² :Ny1or exceptional , the plan a leads to a goal state.is1i
v

Ny1² : Ž .g s 1 y a : a is 1 y a -acceptable if and only if it leads to a goal stateis1i
whenever the effects of all actions are normal. In addition, the problem Da

Ž .contains only deterministic actions. So, a 1 y a -acceptable plan can be com-
puted with a classical planning method.

B. A Planning Algorithm for g-Acceptability

Given a possibilistic planning problem D we have seen how to transform it
into a nondeterministic planning problem D . This transformation is the core1yg

Ž .of our possibilistic planning system entitled POSPLAN Fig. 2 . The nondeter-
ministic planning algorithm NDP, described in the rest of this section, takes a

² :nondeterministic planning problem D s I , e , AA as input, and gener-1yg init Goals
ates a partially ordered safe plan, which is g-acceptable for D.

1. NDP: A Planning Algorithm for Nondeterministic Actions

Like most of the classical planning algorithms, NDP first transforms a
nondeterministic planning problem D into a null plan containing the two

�² 1 n:4 � 1 n4pseudo-operators a s B, s , . . . , s , with I s s , . . . , s , and a sbegin 0 0 init 0 0 end
�² :4e , B with the ordering constraint a - a . Then NDP planningGoals begin end
algorithm explores a search tree of partial plans whose root is the null plan and
the branches represent refinements of the current plan in order to establish

Ž .subgoals or to confront threats on some already established causal links Fig. 3 .

2. Refinement of a Partial Plan

The main function of a planning algorithm like NDP is the refinement
which transforms a partial plan PP into a new partial plan PPX, by eliminating
flaws. A flaw in PP can be a subgoal not yet established, or a threat on a subgoal

Ž .already established, that prevents PP from being a solution plan Fig. 4 .
Like in SNLP,3 UCPOP,8 or BURIDAN1 NDP establishes a subgoal

proposition p by adding a causal link between the effect of an operator that add

Figure 2. POSPLAN: General algorithm.
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Figure 3. NDP planning algorithm.

p and the action of which p is a precondition. More formally, if a : t : p is aj k
subgoal of PP where p g t and t a discriminant of a in PP, and if p g ek k j lm
where e is an elementary consequence of a nondeterministic effect of thelm p
action a , then NDP can add the causal link a : e ª a : t . Consequently, eachi i lm j k
proposition q g t becomes a new subgoal to establish. To each partial plan inl

Figure 4. Refinement function.
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the search graph is associated a set of subgoals SS GG and a set of causal links
� 4CC LL . They are initialized with SS GG s end : e : q;q g e and CC LL s B.Goals Goals
Ž . ² :A threat in a partial plan PP s A, O is a pair a; l where l is a causal

p
X Ylink a : e ª a : t in CC LL establishing a proposition p, and a is an action in A

that potentially can delete p, i.e., one of its elementary consequences contains
! p. In a classical propositional planner like SNLP, there are two ways to

Y Ž .confront such a threat: you can add the constraint a - a promotion or add
X Ž .the constraint a - a demotion . NDP naturally keeps these two techniques.

Due to the specificity of the problem of planning actions with context-
dependent effects, the refinement function of NDP must use another trick to
protect a causal link as it is done in the two planners UCPOP and BURIDAN.
Consider the example in Figure 5 that contains two deterministic actions A and

² :B. The plan A is not safe since the effect associated to the third discriminant
of A threatens the goal proposition p. If we only use demotion and promotion,
² :A leads to failure. However, there exists a solution that consists in adding an
action B to prevent the occurrence of effect ! p, even though B does not
directly establish a subgoal of PP.

In UCPOP, the following particular form of separation is used: if a : e is a
threatening effect for a causal link l of CC LL , and if t is the trigger of this effect
a : e, then a subgoal a : ! q is added to SS GG where q is any proposition of t, to
prevent the trigger t to be active and the effect e to threaten the causal link l.
BURIDAN uses a similar approach, called confrontation. If a : e is a threatening
effect for a causal link l of CC LL , BURIDAN will try to make another nonthreat-
ening effect a : eX occur. Thus, instead of planning for ! t where t is the trigger
of a : e, BURIDAN will try to reinforce the possibility to realize a : eX. This is
done by adding to the discriminant of the causal link consumer a safety
proposition sp unique to this threat, which becomes a new subgoal to achieve,
and by adding to each nonthreatening elementary consequence a : eX the propo-
sition sp.

These confrontation techniques are necessary in UCPOP and BURIDAN
planning algorithms to prove their completeness. Actually they are very similar

Figure 5. Demotion and promotion are not enough.
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since the discriminants t ’s induce a partition of S and thus to make false onei
discriminant t is equivalent to make true one of the discriminant t , with j / i.i j
In the NDP planner, we retain the confrontation form of BURIDAN.

3. Assessment of a Partial Plan

In classical planning with STRIPS-like operators, a polynomial truth crite-
rion can be used to check whether or not a partial plan is a solution plan.30, 31 In
that case the causal link structure is a way to simplify the management of this
truth criterion. The problem of planning actions with context-dependent effects
like in UCPOP is not so simple. It has been shown that the assessment problem
for actions with context-dependent effect was NP-hard.30, 32 This result is still
valid in our nondeterministic action representation since we are not in the
favorable situation in which a subgoal proposition in PP can be established by
the same action whatever the completions CC PP and the uncertainty outcomes
might be. Hence, like in BURIDAN, a subgoal is not necessary achieved by a
unique operator in NDP, and it is possible to add several different causal links
to establish it.a A consequence is that we cannot produce a general assessment
algorithm that runs efficiently on every problem. Like in BURIDAN, we
propose to check if a partial plan PP is a safe plan by directly executing each of
its totally ordered completions from each possible initial state belonging to Iinit
Ž .Fig. 6 . In that case, the causal link structure attached to a partial plan is not
used to establish whether it is a safe plan or not, but instead to implement
efficiently the threat management.

4. Soundness and Completeness of POSPLAN

Given the assessment procedure we have retained, the soundness property
of NDP is evident. From Proposition 2 we directly show the following result:

Ž . ² :PROPOSITION 3 soundness of POSPLAN . Let D s p , e , AA be aini t G o al s
x x Ž .possibilistic planning problem and g g 0, 1 . If POSPLAN D, g returns a partial

Figure 6. Assessment algorithm.

aSee also Ref. 33 for an analysis of the multicontributors causal link structure in
planning.
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solution plan PP, then PP is a g-acceptable plan for D: each totally ordered
² :Ny1completion a of PP has a necessity measure greater than g .is0i

The completeness of the nondeterministic planning algorithm NDP can also
be established. The demonstration of this property is very similar to the ones for
SNLP, UCPOP or BURIDAN. In the following, an essential solution plan is a

² :Ny1 ² : py1totally ordered solution plan a such that no subplan a , p - N, canis0 js0i i j

be a solution plan.

Ž . ² :PROPOSITION 4 completeness of NDP . Let D s I , e , AA be a nonde-ini t G o al s
² :Ny1terministic planning problem. If there exists an essential solution plan a thatis0i

Ž .is safe for D, then NDP D will generate a partial solution plan PP such that
² :Ny1a is one of its completions.is0i

Proof. Based on the following lemma.

Ž . ² :Ny1LEMMA 1. Let PP be a plan generated by NDP D , and a a completion ofis0i
² :My 1 ² :Ny1PP. If a , M G N, is an essential safe plan for D such that a is ajs0 is0i ij

² :My 1 Ž .subplan of a , then NDP D will generate a path between PP and an essentialjs0i jX ² :My 1 Xsafe PP , such that a is a completion of PP .js0i j

Ž . � 4 � 4 �Proof sketch . Let Bs a , j s 0, . . . , M y 1 y a , i s 0, . . . , N y 1 s b , i si i ij
4 X0, . . . , l y 1 . By induction on l s M y N: If l s 0, we just have PP s PP. If l ) 0,

we show that it is possible to add the last action b of B. Indeed, sincely1
² :My 1a is essential, either b adds a new trajectory to the goal, or bjs0i ly1 ly1j

eliminates an existing trajectory that prevents the achievement of the goal. In
the first case, b necessarily establishes a discriminant proposition of anly1
operator directly or indirectly implied in the establishment of e , and thenGoals

Ž .can be added by NDP with the line 2 a in Figure 4; In the second case, the
effect of b is to establish a noninterfering discriminant proposition of anly1
operator that could otherwise make e false. Thus b can be added byGoals ly1

Ž . Ž .NDP, with the lines 3 c and 2 a in Figure 4. Then it is also possible to show
that the necessary constraints can be added with b , to define a partial planly1

1 ² : 1PP such that a ??? b ??? a is a completion of PP . Then the inductive0 ly1 Ny1
assumption insures that from PP1 NDP can generate a path leading to PPX, with
² :My 1 Xa a completion of PP . Ijs0i j

From this lemma, we set PP s PP , and N s 0. We deduce Proposition 4. B0
Note that as any planning algorithm NDP is only semidecidable.
Then from the completeness of NDP and the equivalence Proposition 2, we

easily derive the completeness of POSPLAN:

Ž . ² :PROPOSITION 5 completeness of POSPLAN . Let D s p , e , AA be ainit G o al s
x xpossibilistic planning problem and g g 0, 1 . If there exists an essential solution plan

² :Ny1 w < ² :Ny1 x Ž .a such that N Goals p , a G g then POSPLAN D, g will gener-is0 is0i ini t i
² :Ny1ate a partial solution plan PP such that a is one of its completions.is0i
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²�Ž .4 :Example. for g s 0.5, and D s 1, f n g n s n p n y , y, AA ,
Ž . ²�POSPLAN D, g considers the nondeterministic planning problem D s f n0.5

4 : ²g n s n p n y , y, AA . Then NDP generates the safe plan sow-better ,0.5 0.5
: ² :treat , har̈ est and thus sow-better, treat, har̈ est is a 0.5-acceptable solu-0.5 0.5

w < ² :xtion plan. Note, however, that N Goals p , sow-better, treat, har̈ est s 0.6.init

C. A Planning Algorithm for Generating Optimal Plans

1. Optimizing Acceptability

² :Ny1The link between g-acceptable plans and optimal plans is clear: a isis1i
optimal if and only if it is g-acceptable and ;g X ) g , there is no g X-acceptable
plan. Therefore a meta-algorithm for computing an optimal plan might consist
in searching g-acceptable plans with well-chosen successive values of g . Several
strategies can be thought of; they all require that the state transition degrees
Ž .i.e., the possibility degrees involved in the actions and the initial state be

� 4ordered beforehand. Assume that a , i s 0, n is the set of possibility degreesi
named such that 0 s a - a - a - ??? - a - 1 or, equivalently, 1 s g )0 1 2 n 0
g ) ??? ) g ) g ) 0 with g s 1 y a .1 ny1 n i i

One can then search iteratively a g-acceptable plan by letting g decrease
from 1 until a plan is found or, conversely, by letting g increase from 0 till no
plan can be found. Alternatively, another strategy, called dichotomic search,
would be to start with g somewhere in the middle of the scale and iterate the
process with a scale truncated from the above in case of absence of solution and
truncated from the below in the opposite case.

The search by increasing acceptability has some worth-mentioning compu-
tational properties:

v The algorithm is ‘‘anytime’’ in the sense that it can supply a solution at any time
Ž .provided at least one exists and the supplied solution is all the better as the
algorithm runs longer.

v The planning problems generated at each iteration are more and more difficult;
consequently, the first iteration should be faster and, in particular, if the actions
are pseudo-deterministic, the planning problem solved at the first iteration is a

Ž .classical deterministic one.
v At each g-iteration, it is possible to reuse the search tree developed so far and

only realize the updating of the current plan that is required to cope with the
newly added elementary effects. Thus it is not necessary to replan from scratch at
each iteration.

2. POSPLANU : A Hierarchical Planning Algorithm

The planning algorithm POSPLANU is an implementation of the increasing
acceptability method. It can be considered as a hierarchical version of POS-
PLAN, where the different hierarchy levels correspond successively to each
g-acceptability threshold from g s g to g s g s g .n i max
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Figure 7. POSPLANU: General algorithm.

Since the planning algorithm NDP is only semidecidable, the POSPLANU

algorithm does not necessarily stop. In that case we retain the current g atmax
the interruption time. In practice, we classically use a depth limit of the search,
within the planning function.

In Figure 7UU we denote by PP the plan obtained from the plan PP byg i

transforming each of its actions so as to incorporate the elementary conse-
quences that have a possibility p ) 1 y g .i

It is interesting to compare this acceptability hierarchy with the principles
of abstraction hierarchies that have been developed recently.34 ] 36 The main
results are summarized in Figure 8.

3. Completeness of POSPLANU

In abstraction hierarchies, the completeness of the method is trivial since
the abstraction levels are only used to express preferences concerning the
subgoal order. In POSPLANU , the completeness result is more subtle, as we
have to show that not considering potential establishers at a given node will not
prevent a solution plan from being present in the search tree. The following
result establishes the completeness of POSPLANU.

Ž U . ² :PROPOSITION 6 completeness of POSPLAN . Let D s p , e , AA be ainit G o al s
possibilistic planning problem, and g be the greater g such that there exists anmax i

² :Ny1 w < ² :Ny1 xessential solution plan a with N Goals p , a s g . Then POS-is0 is0i init i i
U w < xPLAN will generate a partial solution plan PP with N Goals p , PP s g .init max

UUIn the version presented here, g is locally changed into g when the currenti iy1
plan is a solution for D . Another alternative would consist in changing globally from1yg i
g to g all partial plans of the search tree whenever a solution plan for D hasi iy1 1yg i
been found.
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Figure 8. Comparison of hierarchy principles.

Proof. The following lemma insures that for each i, if there exists a safe plan
for D , then POSPLANU will find a solution at the g level. Then from the1yg ii

equivalence Proposition 2, Proposition 6 is proved. B

² :Ny1 ULEMMA 2. ; i, if a is an essential safe plan for D , then POSPLANis0i 1yg i
² :Ny1will generate a partial plan PP essential and safe for D , such that a is ais01yg ii

completion of PP.

Proof. By induction on i. For i s n and g s g , this is a consequence ofi n
Ž .POSPLAN algorithm’s completeness Proposition 5 . Assume the proposition

² :Ny1true until i q 1. If a is an essential safe plan for D , it is also a safeis0i 1yg i
² : py1plan for D , but not necessarily essential. Let a , p F N be a subplanjs01yg iiq1 j

² :Ny1of a , essential and safe for D . By induction we know that thereis0i 1yg iq1
² : py1exists a partial solution plan PP essential and safe for D , such that a js01yg iiq1 j

is a completion of PP. Then from Lemma 1 we deduce that POSPLANU can
X ² :Ny1generate a partial safe plan PP for D , such that a is a completionis01yg ii

of PP. B

²�ŽExample. We still consider the possibilistic planning problem D s 1, f
.4 : � 4n g n s n p n y , y, AA . AA s sow-normal, sow-better, treat, har̈ est is an 8-le¨el

� 4action set, with g g 0.2, 0.3, 0.6, 0.7, 0.8, 0.9, 1.0 . At g s 0.2, AA is determinis-i 6 0.8
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U Ž . ² :tic and POSPLAN D generates the safe plan sow-normal, har̈ est . At g s5
² :0.3, sow-normal, har̈ est is still a safe plan but at g s 0.6, due to the fact that4

sow-normal has two possible effects for its second discriminant POSPLANU
0.4

² :must generate a new safe plan which is sow-better, treat, har̈ est . This plan
remains safe for g and g but does not for g s 0.7 because the second6 5 3
discriminant of sow-better is then associated with two possible effects. Since0.3

²no other plan can be generated, g s 0.6 and the returned plan is sow-max
:better, treat, har̈ est .

V. CONCLUSIONS

A. Contributions

The main goal of this article was to formalize a possibilistic approach of
planning under uncertainty in domain models characterized by incomplete
knowledge of the initial state and by actions having both context-dependent and
graded nondeterministic effects. It was inspired by the work done on the
BURIDAN1 planner that relies on a probabilistic representation of uncertainty.
In practice, it seems more natural and easier to see actions in terms of normal
and more or less exceptional effects rather than probable ones. Thus, the
ordinal nature of a possibilistic representation of uncertainty is quite appealing
for this purpose. Besides, its representational adequacy, the possibilistic ap-
proach has interesting computational properties since the search for g-accepta-
ble or optimally safe plans amounts to solve induced planning problems that

Žhave only crisp nondeterministic actions i.e., each action having then only
.normal effects . Moreover, in the case of optimal plan generation, the proposed

sound and complete POSPLANU algorithm is an anytime least-commitment
planner; it possesses the additional feature of iteratively solving derived plan-
ning problems that are progressively more complex and exploits at each iteration
the partial plans developed in the previous ones. The POSPLANU planner and,
consequently, the NDP and POSPLAN algorithms have been implemented in

Ž .Common Lisp reusing part of BURIDAN’s code in particular its SNLP basis .
The generation of g-acceptable and optimally safe plans relies on the NDP

algorithm which is a planner operating on pure nondeterministic actions. Thus,
our approach gives practical usefulness to such a kind of planner that so far
were only of theoretical interest.5, 6

Several recent planning approaches are based on Bayesian decision theory
Ž . 20probabilistic uncertainty and additive utility functions . Now, possibility the-
ory offers a well-suited base for a more qualitative version of decision theory;24

thus, our approach can be seen as a preliminary step toward a more qualitative
approach to decision-theoretic planning.

B. Limitations and Future Work

Although our approach enables an extension of the STRIPS representation
by supporting graded nondeterministic actions and partially known initial state,
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it is still far from being able to cope with the complexity of most practical
problems. One of the main limitations comes from the synthactic restrictions
that the propositional nature of the action representation language imposes.

ŽThe other limitations concern the capabilities of hierarchical planning the
.possibility to specify and search plans at various levels of detail , of dealing with

Ž .time constraints duration , and of handling constraints on resources. Important
progresses have been accomplished on these last two issues over the past 10
years. It would be interesting to reconsider them in the context of graded
nondeterministic actions examined in this article. Especially appealing is the
development within the framework of possibility theory of an homogeneous
treatment of uncertainty on initial state and effects of actions together with
imprecision and uncertainty on durations and resource consumptions and pro-
ductions.

As pointed out in Section II-D, the possibilistic transition functions repre-
senting the uncertain effects of actions may be generated automatically from an
initial set of hard and default rules. This is left for further research.

Our approach of planning under uncertainty assumes a complete nonob-
servability of states during execution. In the opposite case of complete observ-
ability, one may switch to dynamic programming approaches that have been

Ž .extended to possibilistic transition functions see, for instance, Ref. 17 . For the
intermediate case of partial observability, we hope to extend our system so that
information-gathering actions can also be incorporated in the planning process
as has been done with C-Buridan37 for probabilistic planning.

In this article, a goal is simply a conjunction of literals that defines a set of
Ž .equally good goal states i.e., reaching any of them would be fine . We are

thinking of extending our framework so as to take account of preferences over
the goal states, using a qualitative utility function or equivalently a fuzzy set of
goal states.†† More generally, the approach could be reconsidered to cope with
a more elaborate notion of goals in the spirit of utility functions in decision-
theoretic planning approaches such that a preference would be associated to
each state that might be gone through in the execution of a sequence of actions.
The objective would then be to find the best sequence with respect to a criteria
embedding a compromise between uncertainty and preference. This notion of
compromise has been formalized in the setting of a qualitative possibilistic
decision theory by Dubois and Prade24 and requires a commensurateness
assumption. Another extension would consist in using additive utility instead of
the abovementioned preferences that correspond to a notion of qualitative
utility. Planning would then require comparing fuzzy numbers representing fuzzy
utilities.

It is our belief that, although much work remains to be done towards
practical systems of planning under uncertainty, our approach provides an
original and profitable basis for future developments.

†† Possibility distributions would then be used to represent both uncertainty as
explained in this article and preference.
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We are indebted to Henri Prade and Alessandro Saffiotti for helpful comments on a
previous version of this article.
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