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Abstract. In this paper, both the uncertainty and the origin of
pieces of information is handled in an extended possibilistic logic
framework. Each formula is associated with a set (a fuzzy set
more generally) which gathers labels of sources according to
which the formula is (more or less) certainly true. In case of a
single source of information, possibilistic logic is recovered.
Soundness and completeness results of possibilistic logic are
extended. Besides, the combination of the information provided
by different sources (fusion), taking possibly into account the
relative reliability of the sources, is discussed.

1 Motivations
Often, the available information comes from several
sources rather than from a unique source. The
information provided by each source may be incomplete
and pervaded with uncertainty. The global information
given by the different sources may be partially
inconsistent due to the presence of conflicting pieces of
information coming from various sources, even if each
source provides a consistent information. In a given
framework for modelling uncertainty, there exist rules
for combining conflicting pieces of information, but it
is not kept track of the origin of the information. No
difference is made between a piece provided by one
source only and a piece of information asserted by all
the sources (if we except a possible reinforcement effect
of the certainty). Thus it may be useful to keep the
sources of information distinct in the reasoning
process. While the ideas of attaching to a logical
formula, a set of justifications, an hypothetical context,
or a time interval have been investigated at length in
truth maintenance systems (TMS), in assumption-based
TMS, and in reified temporal logic respectively, it
seems that the explicit handling of the origin of the
information in reasoning has retained little attention.

2 Possibilistic Logic: background
Let Ω be the set of interpretations of a propositional or
first-order logical language L . A p o s s i b i l i t y
d i s t r i b u t i o n  on Ω is a function π from Ω to
[0,1] which reflects the available knowledge; π(ω )
estimates to what extent it is possible that the
interpretation ω corresponds to the one underlying the
real world; π encodes a preferential ordering among

interpretations [5]. π is normalized iff ∃ω∈Ω such that

π(ω) = 1. It expresses that at least one interpretation is
fully possible when Ω is exhaustive.

From π, a possibility ∏ and a dual necessity measure
N, from L  to [0,1], are defined [8,3] :

(∀ ϕ ∈ L ) Π(ϕ) = sup{π(ω) | ω . ϕ}

N(ϕ) = 1 – Π(¬ϕ) = inf{1 – π(ω) | ω.¬ϕ}.

Π (ϕ ) estimates the compatibility of ϕ  with the

available knowledge, N(ϕ) the extent to which ϕ  is
entailed by this knowledge. The characteristic axioms
of a possibility measure Π are, in the finite case :

(i) Π(⊥) = 0   (⊥:  contradiction)

(ii) ∀ϕ, ∀ψ, Π(ϕ ∨ ψ) = max(Π(ϕ),Π(ψ)).

Note that we only have Π(ϕ∧ψ) ≤ min(Π(ϕ),Π(ψ)) in
general; (ii) is equivalent to

∀ϕ, ∀ψ, N(ϕ ∧ ψ) = min(N(ϕ), N(ψ))

When π is normalized, N(ϕ) > 0 ⇒ Π(ϕ) = 1. Besides,

N(ϕ ∨ ψ) ≥ max(N(ϕ), N(ψ)) only. Practically,  given

the available knowledge, N(ϕ ) = 1 (⇔  ∏(¬ϕ ) = 0)

means that ϕ  is certainly true; 1 > N(ϕ) > 0 (⇔  0 <

∏(¬p) < 1) that ϕ  is somewhat certain and ¬ϕ  not

certain at all; N(ϕ) = N(¬ϕ) = 0 (⇔ Π(ϕ) = Π(¬ϕ) = 1)
means total ignorance.

A necessity-valued formula (nvf) is a pair (ϕ  α),

where ϕ is a  formula of L , and α  ∈  [0,1] is a lower
bound of a necessity measure. Such formulae are
interpreted by means of possibility distributions. The
satisfaction of a nvf by a possibility distribution is
defined by :

π . (ϕ α)   iff   N(ϕ) ≥ α
where N is induced by π. Let F = {(ϕ1 α1), …, (ϕn αn)}

a set of nvf's, consituting a knowledge base, then  the
notion of logical consequence is defined by

F . (ϕ α)   iff   ∀π, π . F implies π . (ϕ α)

where π . F   iff   ∀ i ∈ {1, …, n}, π . (ϕi αi)



i.e. the set of possibility distributions satisfying F  is
included in the set of those satisfying (ϕ α).

The consistency of F  is estimated by the extent to
which there is at least an interpretation completely
possible for F , i.e. there exists a normalized
possibility distribution satisfying F; the quantity

Inc(F) = 1 – supπ.F  supω∈Ω π(ω)

is called the inconsistency degree of F. If Inc(F ) = 0,F is completely consistent; indeed Inc(F ) = 0 iff the
knowledge base obtained from F  by ignoring the
valuations is consistent. If Inc(F) = 1 F  is completely
inconsistent, and if 0 < Inc(F) < 1 then F  is partially
inconsistent. Then we have [7,2]

•  Inc(F) = inf{N(⊥) | π .  F} where N is  induced by π.

•  Let F = {(ϕ1 α1), ..., (ϕn αn)}, and

  π*F(ω)   = min{1 – αi | ω . ¬ϕi, i = 1,…, n}

         = 1 if ∀i, ω .  ϕi  ;

then π .  F iff π  ≤ π*F. π*F is the least specific (i.e.

the largest) possibility distribution satisfying F .
Moreover F .  (ϕ α) iff π*F .  (ϕ α). Besides Inc(F) =

1 – supω∈Ω π*F(ω).

Inc(F) can be seen as a threshold below which any
deduction from F is trivial. Indeed, if Inc(F ) = α, then

∀π .  F,  N(⊥) ≥ α and a fortiori ∀ϕ, N(ϕ) ≥ N(⊥) ≥ α
where N is induced by π; thus, any deduction F .  (ϕ β)

with β ≤ α is trivial. Allowing non-trivial deductions
only makes the consequence operator nonmonotonic
[5]. Deduction and refutation are extended to
possibilistic logic [7][2] by

•  F ∪ {(ϕ 1)} .  (ψ α)   iff   F . (ϕ → ψ  α).

•  F . (ϕ α)   iff   F ∪ {(¬ϕ 1)} . (⊥ α).

Thus, if we want to know whether (ϕ α) is a logical
consequence of F or not, it is sufficient to compute the
inconsistency degree of F ∪ {(¬ϕ 1)}, which is equal to

the largest α such that F .  (ϕ α). A necessity-valued

clause (nvc) is a nvf (c α) where c is a clause. If (ϕ α) is a

nvf and if {c1, …, cn} is a clausal form of ϕ  then a

clausal form of (ϕ  α ) is {(c1 α ), …, (cn α )}. The

resolution rule is then :

(c1 α1) , (c2 α2) ;  (c' min (α1, α2))

where c' is a resolvent of clauses c1 and c2. Possibilistic

resolution for nvc's is proved to be sound and complete
for refutation [7]. Let us consider an example.F1={(¬p∨r 0.7),(¬p∨q 1),(¬q∨r 0.4),(p 0.5),(q 0.8)}

It induces the constraints ∀ π . F1,

π . (¬p ∨ r 0.7) ⇔ N(¬p ∨ r) ≥ 0.7 ⇔ Π(p ∧ ¬r) ≤ 0.3⇔
∀ ω .  p ∧ ¬r, π(ω) ≤ 0.3; and similarly ∀ ω . p ∧ ¬q,

π(ω) = 0 ; ∀ ω .  q ∧ ¬r, π(ω) ≤ 0.6 ; ∀ ω . ¬p, π(ω) ≤
0.5 ; ∀ ω .  ¬q, π(ω) ≤ 0.2. π*F1 is thus given by

π*F1 (p∧q∧r) = 1 ;

π*F1 (¬p∧q∧r) = π*F1 (¬p∧q∧¬r) = 0.5 ;

π*F1 (p∧q∧¬r) = 0.3 ;

π*F1 (¬p∧¬q∧r) = π*F1 (¬p∧¬q∧¬r) = 0.2 ;

π*F1 (p∧¬q∧r) = π*F1 (p∧¬q∧¬r) = 0.

We have the following derivation, when looking for the
certainty of r, and thus adding (¬r 1) to F1

(¬p ∨ r  0.7), (¬r 1) ;  (¬p 0.7)

(¬p 0.7), (p 0.5) ;  (⊥ 0.5)

i.e. N(r) ≥ 0.5 and indeed it can be checked that using
π* F1, we have for the associated possibility measure

Π*(¬r)=0.5. Then N*(r)=0.5, and ∀π≤π*F1, N(r)≥0.5.

3 Multi-Source Possibilistic Logic
The semantics of possibilistic logic only requires the
definition of necessity measures on a logical languageL, and in order to define these necessity measures fromL to [0,1], we only needed three operations on [0,1] :
the minimum and maximum operators (which underlie
the ordering structure) and the order reversing operation
(1 – (·)). A straightforward generalization is to map
possibility distributions, as well as possibility and
necessity measures, no longer into [0,1] but into any
complete distributive lattice L. In the following, we

take L = [0,1]S where S is a given set, interpreted as the
set of sources of information. L is equipped with the
fuzzy set intersection (∩ ), union (∪ ) and

complementation (_ ), pointwisely defined by means of
the operations min, max and 1 – (.) respectively (the
ordering being the fuzzy set inclusion defined by the
inequality between membership functions) ; formally,
∀x = (x1,…,xm), y = (y1,…,ym) ∈ L,

x∪y =(max(x1,y1),…,max(xm,ym))

x∩y=(min(x1,y1),…,min(xm,ym))

äx=(1 – x1,…,1 – xm).

where S = {s1, …, sm} and xi ∈ [0,1], yi ∈ [0,1].  Now

we actualize the definitions of Section 2, in the
framework of fuzzy set-valued possibilistic logic,
keeping in mind the multi-source interpretation. A fuzzy
set A of S  will be denoted by {µA (sj) / sj , j = 1,m}
where µA(sj) is the membership degree of sj. Then

• π will denote a multi-source possibility distribution
defined from the set of interpretations Ω to L =



[0,1]S, i.e. π(ω) is the fuzzy set {πj(ω) / sj , j = 1,m}

of S, where the degree attached to sj is interpreted as

the degree of possibility πj(ω) of the interpretation ω
according to the source sj. π is said to be normalized

iff ªω∈Ω π(ω) = S, i.e. ∀j=1,m, maxω∈Ω πj(ω) = 1

(since S = {1/s1,…,1/sm}). This is equivalent, if Ω is

finite, to ∃ω, πj(ω) = 1, i.e. each πj  is normalized; it
means that each source is fully consistent;

• the possibility measure Π associated with π is defined

by the fuzzy set  Π(ϕ) = ª{ π(ω), ω .  ϕ}

= {(maxω.ϕ πj(ω))/sj , j=1,m} = {Πj(ϕ)/sj , j=1,m}

(Πj is the scalar possibility measure induced by πj)

• by duality N(ϕ) is defined by the fuzzy set

 N(ϕ) = ∏(¬ϕ) = Á{ ÄπÄ (Äω), ω . ¬ϕ}

= {(minω.¬ϕ 1–πj(ω))/sj,j=1,m} = {Nj(ϕ)/sj,j=1,m}

Clearly, we can write
Π(ϕ ∨ ψ) = Π(ϕ) ∪ Π(ψ) ; N(ϕ ∧ ψ) = N(ϕ) ∩ N(ψ).

The semantics of multi-source possibilistic logic is
then easily defined, as a very natural generalization of
possibilistic logic's. Let us consider the knowledge
base F = {(ϕi Ai), i = 1,n}, where Ai denotes a fuzzy set

of S  interpreted as Ai  = {µA i
(sj )/sj , j=1,m} with

µAi
(sj) ≤ Nj(ϕi), i.e. Ai provides lower bounds on the

extent to which ϕi  is necessarily true according to each
source sj . Then the least specific multi-source

possibility distribution is given by

π*F(ω) = Á{ ÄAi, ω .  ¬ϕi , i=1,n}
= {(mini,ω.¬ϕi 

1 – µAi
(sj)) / sj, j=1,m}

= {πj*F(ω) / sj, j=1,m}

where πj*F is the least specific possibility distribution

representing the semantics of the information provided
by source sj. The fuzzy set of inconsistent sources with

respect to F is given by Inc(F ) = ª{ π*F(ω), ω ∈ Ω}  =

Á{ π*F(ω), ω∈Ω}={(1 – supω∈Ω πj*F(ω)) / sj,j=1,m}.

Clearly, instead of focusing on the set of sources for
which a given formula ϕ is somewhat certain, we may
dually consider the set of formulas which are somewhat
certainly true for a given source sj. As made clear by the

above expressions, the two points of view are perfectly
equivalent. Indeed the fuzzy sets π, Π, N, π*F, Inc(F)

introduced above, can be viewed as vectors of the
corresponding scalar values for j = 1,m.

Formally, the multi-source extensions of deduction
and refutation theorems hold, i.e. we respectively have

• F ∪ {(ϕ S)} . (ψ A)  iff  F . (ϕ → ψ A)

• F . (ϕ A)  iff  F ∪ {(¬ϕ S)} .  (⊥ A).

as well as counterparts of the other results of Sec. 2.
Clausal forms also extend to the multi-source case. The
resolution rule (c A), (c' A') ;  (c" A ∩ A') obtains, where
c" is a resolvent of clauses c and c'. It is obvious when A
and A' are non-fuzzy; in terms of fuzzy sets it reads

(c {µA(sj) / sj, j=1,m}), (c' {µA'(sj) / sj, j=1,m});  (c" {min(µA(sj), µA'(sj)) / sj, j=1,m}).

In order to get a sound and complete procedure we must
add the combination rule (c A), (c A') ;  (c A ∪  A'),
which states that if the clause c is considered as
somewhat certainly true by the two fuzzy sets of sources
A and A', c is still similarly considered by their union.
More precisely, the greatest lower bound according to
each source is retained as expected, i.e. we obtain

(c {max(µA(sj), µA'(sj)) / sj , j = 1,m}).

Example . We consider the knowledge base F1  of
Section 2, provided by source s1 together with the two

knowledge bases F2 and F3 given by s2 and s3,

F2 = {(¬p ∨ q 1), (¬q ∨ r 0.8), (¬p ∨ r 0.2), (p 0.8),
(q 0.9), (r 0.6)} ;F3 = {(¬q ∨ r 0.4), (¬p ∨ ¬r 0.3), (p 0.5)}.

Altogether it makes the following multi-source
knowledge base (zero membership degrees are omitted)

F = {(¬p∨q {1/s1,1/s2}), (¬p∨r {0.7/s1,0.2/s2}),

(¬q∨r {0.4/s1,0.8/s2,0.4/s3}),(¬p∨¬r {0.3/s3}),
 (p {0.5/s1,0.8/s2,0.5/s3}),(q {0.8/s1,0.9/s2}),

(r {0.6/s2}) }.

Then by resolution and combination we can compute the
multi-source certainty attached to r. So we proceed by
refutation by adding (¬r S ) = (¬r {s1,s2,s3}) =

(¬r {1/s1, 1/s2, 1/s3}) to F. We get

(¬  p∨r   { 0. 7/s1,0.2/s2} ) (¬ r  { 1/s1,1/s2,1/s3} )

(¬ q  {0.8/s1,0.9/s2} )

(¬ p  { 0.7/s1,0.2/s2}) (p  {0.5/s1, 0.8/ s2,0.5/s3} )

(¬ r  {1/s1,1/s2,1/s3})(r  { 0.6/s2} )

(⊥  { 0.5/s1,0.2/s2} ) (⊥   { 0. 4/s1,0.8/s2} )

(⊥   { 0. 5/s1,0.8/s2} )

(⊥  { 0.6/s2} )

( ¬ r  { 1/s1,1/s2,1/s3})

(r  { 0.4/s1,0.8/s2} )

(¬  q ∨ r  { 0.4/s1,0.8/s2, 0.4/ s3})

Thus N(r) ⊇ {0.5/s1, 0.8/s2} (where ⊇ denote fuzzy set

inclusion, i.e. it means N1(r) ≥ 0.5, N2(r) ≥ 0.8). It can
be checked that π*F is normalized since πj*F is so, for

j=1,3 ; it means that each source gives consistent



information. However it does not mean that the sources
are consistent altogether. Indeed from F  we can also
prove N(¬r) ⊇  {0.3/s3}, i.e. s3 is in conflict with
{s1,s2} with respect to r. Thus by distinguishing

between the sources, we avoid inconsistency problems
(while dealing with F1∪F2∪F3 in our example would
create an inconsistent possibilistic knowledge base).

We do not insist here on the case where a source
provides inconsistent information by itself. The
treatment of this situation is an immediate by-product of
the capability of possibilistic logic to handle inconsis-
tency [7][5][2] as briefly recalled in Section 2.

4 Fusion of Sources and Information
Combination

The necessity measure defined from a multi-source
possibility distribution is equivalent to a vector of
scalar-valued necessity measures, each of them
representing a source. Given m sources of information,
a natural question is then to know if it is possible to
replace these m sources by an equivalent fictitious
source. More generally, the pieces of information
provided by the different sources have to be combined,
taking into account the relative reliability of the
sources, in order to provide the user with synthetic
conclusions. The problem of the fusion of m sources, is
partially answered, in the possibilistic framework, by
the following result (see [4] for the proof)

• The only functions f from [0,1]m to [0,1], satisfying
the idempotency constraint f(a, …, a) = a, such that the
function defined by

∀ϕ, N(ϕ) = f(N1(ϕ), …, Nm(ϕ))
is still a scalar necessity function, are of the form

N(ϕ) = min(g1(N1(ϕ)), …, gm(Nm(ϕ)))
where the gj's are functions from [0,1] to [0,1] such that

∀j, gj(1) = 1 and ∃k, gk(0) = 0. The gi's can be chosen

as non-decreasing.

Clearly, the idempotency constraint ensures that if
all the sources agree on the level of certainty of a
proposition, the result of the combination is what each
source tells, i.e. ∀ a ∈ [0,1], N1(ϕ) =… = Nm(ϕ) = a ⇒
N ( ϕ ) = a. This is equivalent to the following
combination in terms of possibility distributions

π(ω) = max(h1(π1(ω)), …, hm(πm(ω)))

with ∀j, hj(0) = 0 and ∃k, hk(1) = 1. More precisely we
should have hj(x) = 1 – gj(1 – x).

This result is in agreement with the fact that in
classical logic the intersection of deductively closed
knowledge bases is itself deductively closed. Indeed the

intersection of the closed knowledge bases corresponds
to the union of their set of models (assuming Nj(ϕ) ∈
{0,1}, and choosing ∀j, hj(1) = 1, since Nj(ϕ) = 1 ⇔ ϕ
belongs to the deductive closure of Fj).

An example of function gj is gj(x) = max(x, 1 – λj)

with the normalization condition maxj=1,m λj  = 1. It

leads to a weighted minimum combination for N, i.e.

N(ϕ) = minj=1,m max(Nj(ϕ), 1 – λj).

In terms of possibility distributions, it is equivalent to
π = maxj=1,m min(πj ,λ j ), i.e. π is obtained as a

weighted union of the possibility distributions
associated with each source. It is a weighted version of
the fuzzy set union. Note that π remains normalized as
soon as all the πj  are. The weight λj  can be interpreted
as the relative level of reliability of source sj. Indeed, if

all the λ j  are equal, we have ∀ j, λ j  = 1 due to

normalization and the fuzzy set union on the πj  is
recovered (and the min operation for the Nj) ; if λj  = 0
the information provided by the source sj is not taken

into account. For intermediary λ j , only sufficiently

certain information is taken into account. Clearly, this
consensus based on a (weighted) union of the
possibility distributions, or equivalently on the min-
combination of the certainty degrees, is a very cautious
combination since, when all the λj  are equal to 1, only

the least informative lower bound, is retained as an
estimate of the certainty of a formula, among the lower
bounds provided by the sources. In other words, the
opinion of the source which is the least certain prevails.
In case of conflict between self-consistent sources

concerning a formula ϕ , i.e. ∃k, Å , Nk(ϕ) > 0 (then

Nk(¬ϕ) = 0) and NÅ(¬ϕ) > 0 (then NÅ(ϕ) = 0), this leads

to N(ϕ) = 0 = N(¬ϕ) when ∀j, λj = 1 ; when the sources

have unequal reliability, in case of conflict, the
certainty degrees of the most reliable sources are
decreased, but not necessarily down to 0, as it can be
checked.

Many other combinations may be performed, at the
semantic level, on the possibility distributions
representing the information provided by each source.
Let ∗  be the such a combination different from the

weighted union, i.e. π = π1 ∗… ∗ πm. Then as seen

above, there does not exist a function f such that the
necessity N(ϕ) induced by π can be expressed in terms of

the Ni (ϕ ) in a compositional way for any ϕ . This
situation is to be related to the fact that in classical



logic, the union of deductively closed knowledge bases
is generally not deductively closed.

The union of knowledge bases corresponds to the
intersection of the corresponding sets of models. Thus a
worth-considering combination operation on the πj  is
the fuzzy set intersection, and more generally the
weighted fuzzy intersection [4] (taking into account
reliability levels λj) defined by

π = minj=1,m max(πj, 1 – λj) with maxj=1,m λj = 1.

For λj  = 1, ∀ j, the fuzzy set intersection is recovered.

Clearly π may then be subnormalized even if all the πj

are normalized. If π is not normalized, it expresses a
conflict between the sources about some formula, as it is
the case between {s1,s2} and s3 about r in the example

of Section 3. In the particular case of a source k which is
in complete agreement with the others, but better
informed, i.e. ∃k, such that πk ≤ minj≠k πj, we have π =

πk and N = Nk. More generally, it can be shown that the
weighted intersection of the possibility distributions
representing the semantics of the F j  is nothing but the
possibility distribution expressing the semantics of the
knowledge base obtained from F 1, … ,F m  by
computing the weighted max of the certainty degrees
attached to the formulas, i.e. the knowledge base made
of the pairs (ϕ  maxj=1,m min(α j ,λ j )) where (ϕ  α j )

belongs to F j  (with possibly α j  = 0). In this

combination process the largest lower bound, among
the lower bounds provided by the sources, is retained as
the estimate of the certainty of a formula, provided that
this lower bound is not greater than the level of
reliability of the source which provides it. The fact that
the weighted union of the possibilistic deductive
closures of the Fi 's is not closed just points out that the
lower bounds computed on the formulas will not be
optimal, but are likely to be improved through
possibilistic deduction. Obviously when π is not
normalized, the knowledge base built as said above will
be (partially) inconsistent [7] [2], i.e. will contain (ϕ
α) and (¬ϕ α') with α > 0, α' > 0 for some formula ϕ.

5 - Concluding remarks
The logic presented here is similar to a so-called timed
possibilistic logic  [1] where each formula is associated
with a (possibly fuzzy) set of time instants at which this
formula is more or less certainly true. But the problem
of combining the pieces of information coming from
different sources more or less reliable has no counterpart
in the temporal interpretation.

The proposed framework suggests a methodology
for merging several knowledge bases into a single one
while retaining the origin of each piece of information.
This is done by attaching to any formula a tag where the
name of the sources that supplied this information
appears ; both the level of support of the formula by a
source, and the reliability of the source itself can be
handled. Our approach can be cast in the setting of
labelled deduction systems [6], as possibilistic logic
itself.

Our framework has some potential to deal with
inconsistency due to the presence of conflicting
sources : Firstly by structuring a knowledge base into
separate consistent parts ; in that case, the deduction
methods deal with these parts in parallel rather than
making separate inferences from each sub-base.
Secondly the inconsistency between sources can be
resolved for a given query using one of the combination
modes presented in the previous section. The choice of a
mode depends on whether one must be cautious, or can
be adventurous in the given situation. More generally
revision procedures for inconsistent knowledge bases
should explicitly involve the origin of the pieces of
information and the reliability of the sources.
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