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Abstract 

Penalty logic, introduced by Pinkas [17], as
sociates to each formula of a knowledge base 
the price to pay if this formula is violated. 
Penalties may be used as a criterion for se
lecting preferred consistent subsets in an in
consistent knowledge base, thus inducing a 
non-monotonic inference relation. A pre
cise formalization and the main properties 
of penalty logic and of its associated non
monotonic inference relation are given in the 
first part. We also show that penalty logic 
and Dempster-Shafer theory at·e related, es
pecially in the infinitesimal case. 

1 Introduction 

The problem of inconsistency handling appears when 
the available knowledge base - KB for short - (here 
a set of propositional formulas) is inconsistent. Most 
approaches come up with the inconsistency by select
ing among the consistent subsets of KB some preferred 
subsets; the selection criterion generally makes use of 
uncertainty considerations, sometimes by using explic
itly uncertainty measures (such as Wilson [27 ], Ben
ferhat and Smets [2)), or more often using measures 
expressed qualitatively as priorities (the idea comes 
back to Rescher [20] and has been developed by many 
authors, among them Brewka [3], Nebel [16], Cayrol 
[4], Benferhat, Cayrol, Dubois, Lang, Prade [1] and 
Lehmann [14]). Although these priorities are gener
ally not given a semantics in terms of uncertainty mea
sures (however see [1] for a comparative study of the 
priority-based and possibilistic approaches to inconsis
tency handling), their intuitive interpretation is clearly 
in terms of gradual uncertainty: the least prioritary 
formulas (i.e., the ones which are most likely to be re
jected in case of inconsistency) are clearly the ones we 
are the least confident in, i.e., the least certain ones. 
All aforementioned priority-based approaches consist 
in ranking the f{ B in n priority levels (assume that 1 
is the highest priority and n the lowest) and maximize 
the set or the number of formulas satisfied at each 
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level, with the condition that violating however many 
formulas at a given level is always more acceptable 
than violating only one formula at a strictly higher 
level: thus these approaches are non-compensatory, 
z. e., levels never interact. 

An alternative approach, more or less empirical but 
apparently very appealing (besides it has already been 
used several times in the literature) consists in weight
ing formulas with positive numbers called penalties. 
Contrarily to priorities, penalties are compensatory 
since they are additive: the global penalty for rejecting 
a set of formulas is the sum of the elementary penal
ties of the rejected formulas. Moreover, inviolable (or 
unrejectable) formulas are given an infinite penalty. 
The additive combination of penalties leads to an in
terpretation in terms of cost, thus this criterion is util
itarist, contrarily to priority-based approaches which 
are rather egalitarist. This additive criterion is very in
tuitive, since rejecting a formula generally causes some 
"additive" trouble with the experts which provided the 
f{ B with the formulas, or some real financial cost, or 
another kind of additive cost. Note that a degenerate 
case of penalties (all penalties being equal to 1)  prefers 
subsets of maximum cardinality. Moreover, and as we 
will see later, these penalties can sometimes be inter
preted as the "probability of fault" of the source which 
provided us with the information (all sources failing in
dependently), up to a logarithmic transformation. In 
any case, these penalties can be viewed as measuring 
uncertainty since, again, the less expensive to reject, 
the more uncertain the piece of information. Thus, 
penalty logic expresses uncertainty in terms of costs. 
However a formal connection of penalties with classical 
theories of uncertainty has not really been made. 

Penalty-based approaches have been already used sev
eral times in the literature, first by Pinkas 91 [17] (from 
whom we borrowed the terminology "penalty") who 
uses them for inconsistency handling and for mod
elling symmetric neural networks behavior, and also 
by Eiter and Gotlob 94 [10] for cost-based abduction, 
by Sandewall 92 [21] for cost-based minimization of 
surprises in temporal reasoning and by Freuder and 
Wallace [12] for tackling inconsistencies in Constraint 
Satisfaction Problems. Moreover, penalties associated 
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to formulas have also been used for guiding the search 
in randomized algorithms dedicated to the satisfiabil
ity problems, such as GSAT [23, 22]. Lastly, there 
should clearly be a link between penalties and utility 
theory (the latter has been recently used in AI, espe
cially in decision-theoretic planning - see e.g. [18]); 
however, in this paper we do not investigate this pos
sible link. 

In this paper we revisit penalties by giving a further 
formalization of Pinkas' work; we also go further in the 
theoretical study of penalty-based inconsistency han
dling and non-monotonic reasoning. We briefly give 
a formalization in penalty logic of an additive O.R. 
problem. Lastly, we establish a link between penalties 
and Dempster-Shafer theory; this link is twofold: first, 
the penalty function (on interpretations) is equivalent, 
up to a log- transformation, to a contour function (i.e., 
the plausibility function restricted to singletons); then 
penalty functions on formulas coincide with plausibil
ity functions of an infinitesimal t'ersion of Dempst.er
Shafer theory. 

2 Penalty logic 

2.1 Formal definitions 

In the following, .2' will be a propositional language 
based on a finite number of propositional variables. T 
and .l will represent tautology and contradiction re

spectively. Formulas of .2' will be written '{), 1j!, etc. 
The set of interpretations attached to .2' will be de
noted by n, and an interpretation by w. 'P F= 1/! and 
'P f=l'lj! will represent logical consequence and logical 
equivalence between the formulas 'P and 1/! respectively. 
I== will also be used between an interpretation and a 
formula to denote satisfiahility. The set of models of 
a formula 'P will be denoted by M ( 'P); the set of for
mulas of .2' satisfied by w, i.e., {'P I w I== 'P} will be 
denoted by [w ]. 
A classical knowledge base 91 is a set of formulas of 
.2'. A sub-theory of 91 is a consistent subset of §9. A 
maximal sub-theory T of §9 is a consistent subset of 91 
such that 'if'{) E 91 \ T, T U { 'P} is inconsistent. Given 
a formula 1/!, T is said 'ljl-consistent iff T U { 1j!} is con
sistent; Tis maximal'lj!-consistent if it is 1/J-consistent 
and V'P E §9 \ T, T U { '{), 1/!} is inconsistent. w+ will 
be the union of the set of all the strictly positive real 
numbers and { +oo }, equipped with the usual order (in 
particular, if a: #- +oo then a: < +oo). 
A penalty knowledge base PK is a finite multi-set of 
pairs {'P;, a:;) where '{); E .2' and a:; E w+. a; is the 
penalty associated to 'Pi; it represents intuitively what 
we s hould pay in order to get rid of 'Pi, if we pay the 
requested price we do not need any longer to satisfy 
'Pi; so the larger a:; is, the more important 'Pi is. 

In particular, if a:; ::: +oo then it is forbidden to re
move i.p; from PK ('Pi is inviolable). 

Since PK is a multi-set of pairs (and not a. set), it. is 
possible for a pair{'{), a:) to appear several times in PI\; 
for example, PK = {{a, 1), {a, 1)} is not equivalent to 
PK' = {{a, 1}} since using PK, it costs 2 to delete a 
and using PK', it costs only 1. 

However, as we will see in 2.1.4, if a formula'{) appears 
several times in PK then we may replace all the occur
rences of the formula 'P by only one occurrence of 'P 
annotated with the sum of the penalties associated to 
this formula in the previous base. The new knowledge 
base obtained is equivalent to the initial base. 

91c will be the set of all the penalty knowledge bases. 
Note that when the penalties are all infinite, penalty 
logic comes down to classical logic (no formula can be 
violated). 

Lastly, we will say that PK E !JlJc is consistent if the set 
of formulas 'Pi of PK is consistent ( without mentioning 
the penalties ex;). Also, in the expressions sub-theory of 
PK, subset of PK and PK \A we will refer to the set of 
formulas obtained from PK by ignoring the pena.lties. 

2.1.1 Cost of an interpretation 

Let PK = {{'{);,a:;},i = 1 .. . n} be a penalty knowl
edge base. 

Definition 1 (Pinkas 91 [17]) The cost of an in
terpretation w E Q with respect to PK , denoted by 
kpK( w ), is equal to the sum of the penalties of the for
mulas zn PK violated by w: 

(with the corn,enfion L:1P,E0 a:;= 0) 

Definition 2 A PK-preferred interpretation is an in
terpretation of minimal cost w.r.t. PK, i.e. an inter
pretation minimizing kpl(. 

As an example, let us consider the following penalty 
knowledge base PK1: 

'PI =a 
y2 = b v c 
y3 = -.b 
'P4 = -.c 

0:1 = +oo 
0:2 = 10 
0:3 = 5 
0:4 = 7 

Here are the corresponding interpretations costs: 

kpr<, ({-,a, b, c}) 
kpr<, ( {...,a, b, .....,c}) 
kpK,({a,-,b,--.c}) 
kpK,({a,b,-.c}) 
kpK,({a,•b,c}) 
kPK,({a,b,c}) 

kpK, ( { •a, •b, c}) = +oo 
kpK, ( { •a, •b, •c}) = +oo 
10 
5 
7 
5 + 7 = 12 

If the interpretations are decisions to make (for exam
ple if the knowledge base is made of constraints con
cerning the construction of a timetable), then a min
imum cost interpretation corresponds to the cheapest 
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decision, i.e., the most interesting one. The cheapest 
interpretation is generally not unique. Besides, if the 
penalties are all equal to 1 then a cheapest interpreta
tion satisfies a maximum consistent subset of PK w .r. t. 
cardinality. 

2.1.2 Cost of consistency of a formula 

Definition 3 The cost of consistency of a formula r.p 
with respect to PK, denoted by f{ PK ( cp), is the mini
mum cost with respect to PK of an interpretation sat
isfying r.p: 

KpK(C,O) =min kpK(w) 
wi='P 

(with the convention min0 kPK(w) = +oo) 

Example: 

f{PK1 (a!\ b) 5 
KpK,(a-+c) 7 
KPK,(-.a) +oo 

The cost KpK('f') of a formula r.p, is the minimal price 
to pay in order to make PK consistent with cp. For 
example, in order to make PK1 consistent with a -+ c, 
the least expensive way is to remove r,o4. 

Property 1 J(PK(l..) 
minwEn{kPK(w)} 

+oo and J( PK ( T) 

All proofs can be found (in French) in Dupin de Saint
Cyr, Lang and Schiex 94 [8] and in Dupin de Saint-Cyr 
93 [7). 
KPK(l_) = +oo is easy to understand, because it is 
impossible to have PK consistent with 1... Let us note 
that /(pK (T) is the cost of any PK-preferred inter
pretation; it is thus the minimum cost to make PK 
consistent. 

Property 2 KpK(T) = +oo ¢} {cp; E PK,a;:::: +oo} 
is inconsistent. 

This quantity KPK(T) is important, because it mea
sures the strength of the inconsistency of PK (i.e., how 
expensive it will be to recover the consistency). If the 
penalties are all equal to +oo then KpK(T) can only 
take two values: 0 if and only if PK is consistent, and 
+oo if and only if PK is inconsistent. 

Example: J(PK, (T) = 5; the only minimum cost in
terpretation is {a, b, -.c }. To make PK1 consistent, the 
least expensive solution is to take off (or to ignore) the 
formula 'f'3· 

Property 3 /(pK(T) = 0 ¢} PK is consistent. 

Indeed, if KpK(T) = 0 then there is no need to delete 
any formula in order to make PK consistent, therefore 
PK is consistent (and conversely). 

Property 4 'Vi.p, ¢ E .!f, (cp f= ¢) :::::} KpJ<('P) 2: 
KPK(?/;) 

This property is the monotonicity of K with respect to 
classical entailment. 

Property 5 'Vr,o, ¢ E 2: 

1. KPK(IO !\ ¢) 2: max(I{pK('P), Kpr<(?/;)) 

2. KpK(\0 V ¢) = min(KP K (cp) , KpK(¢)) 

3. f<pK(l..) 2: /{pK(IO) 2: f{pK(T) 

Note that, up to its interval of definition and its or
dering convention w.r.t. Proposition 5 (((0, +oo), ::::) 
instead of ((0, 1), S)), /{pK is actually a possibil
ity measure. Note also that Spohn's ordinal condi
tional functions x: verify property 2 1. e. x:( A U B) = 
min(x:(A), x:(B)) [26). 

2.1.3 Cost of a sub-theory 

Definition 4 (Pinkas 91 [17J) The cost CPK(A) of 
a sub-theory A of PK, is the sum of the penalties of 
the formulas of PK that are not in A: 

{!f'.,<:>,)EPK\A 

For instance, considering the knowledge base PK1, 
given A1 = {i.pl,i.p2,'P3} and A2 = {r,o2,i.p4}, we have 
CPK1 (Al) = a4 = 7 and CpK1 (A2) = 0:1 + a3 = +oo. 

Definition 5 'VA, B � PK, 

B 2:PK A (B is preferred to A) ifJCPK(B) S CPK(A). 

'VA, B � PK , B >h A if and only if B 2:PK A and 
not A 2:PK B. 

Definition 6 (Pinkas 91 [17]) A � PK is a pre
ferred sub-theory relatively to PK (or 2:PK
preferred) if and only if A is consistent and ,3 B � PK, 
such that B is consistent and B >f,K A. 

Note that there may be several preferred sub-theories 
(in the previous example, { cp1, 'P2, 1p4} is the only one 
2:PK1-preferred sub-theory). 

Property 6 'VPK E fflc, 

If J<pK (T) ::f +oo, then any 2:PK -preferred sub-theory 
is a maximal sub-theory of PK w. r.t. inclusion. 

• Let us notice that when KPK(T) = +oo, every 
sub-theory of PK has an infinite cost, therefore 
every sub-theory of PK is 2:PK-preferred, but ob
viously every sub-theory is not necessarily maxi
mal w.r.t. inclusion. 

• Besides, if PK is consistent, then I<PK(T) = 0, 
and then the only >pK-preferred sub-theory of 
PK is PK itself (its Zost is 0). 

Example (continued): A3 = {r,ol,'f'2,'P4} is a 2:PK,
preferred sub-theory and it is maximal w.r.t. inclusion. 
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But, although {cp2,cp3,cp4} is a maximalsub-t.heory of 
PK1 (w.r.t. inclusion), it is not 2:-PK,-preferred (be
cause its cost is infinite). 

If we add the formula (cps = -,a, a5 = +oo} to PK1 
then the subset of infinite cost formulas is inconsistent, 
therefore every sub-theory has an infinite cost, and 
every sub-theory is a preferred sub-theory. 

Property 7 The cost kpK(w) of an interpretation 
w E 0 with respect to PK is equal to the cost of the sub
theory of PK composed of all the formulas satisfying 
w: 

Corollary 7.1 Vw E 0, 

w has a minimal cost U.'.r.f. PK 
<=> 

PK n [w] is a 2:-PK·preferred sub-theory with respfCI to 
all the sub-theories of PK 

Corollary 7.2 A is a maximal sub-theory of PK => 
Vw f= A, kpK(w) = CPK(A). 

Corollary 7.3 KPK('P) is equal to the minim11m cost 
of a 10-consistent sub-theory of PK: 

KpK(rp) = min . CrK(A) 
A<;PI<,A '1"-conH•tent 

Therefore, the cost of a formula cp with respect to the 
base PK is the cost of a cp-consist.ent 2:rK-preferred 
sub-theory of PK. 

Corollary 7.4 VA � PK, 

A is a 2:PK -preferred sub-theory 
¢::> KPK(T) = CpJ<(A). 

(cf. corollary 7.3, with cp = T). 

Definition 7 Add(PK, cp) = PK U { (<p, +oo)} 

Property 8 

Therefore, the cost to make the knowledge base consis
tent with a given formula, can be computed by adding 
this formula with an infinite penalty and then evalu
ating the cost of the new knowledge base consistency. 

2.1.4 Equivalence between penalty 
knowledge bases 

Two penalty knowledge bases are .semantically equiv
alent if they induce the same cost function on 0, i.e.: 

Definition 8 VPK, PK' E !fie, 

PK �c PK' (l>K is semantically equivalent to PK ') 
{:::> kpi< == kpw. 

Besides, we define a pre-ordering relation <<c on 5!� 
as follows: 

Definition 9 VPK, PK' E !Jic, 

PK «c PK' (PK is less expensive than PK ') 
¢:> kpK $ kpK' 

As an example, let us consider PK:J, PK3 and 
PK4 the penalty knowledge bases defined as follows: 

PK2 : PKa : PI-.:4 : 
a 5 a 8 a 1\ b 18 
a 3 b 10 
b 10 

The cost functions incluceu by those bases are the fol
lowing: 

w . , 
ta.b} 0 0 0 

_ia,-.bl 10 10 18 
J-.a, bl 8 8 18 
l....,a,...., bl 18 18 18 

So we have PK2 �c PK3 and PK3 «c PI\4 (but Pl\3 
is not equivalent to PK4). 

N.B.: the previous example shows that it is impos
sible to transform equivalently a penalty knowledgr 
base containing several non-equivalent formulas in a 
penalty knowledge base containing the conjunction of 
those formulas. 

But, if a knowledge base contains se1'eral times the 
same form1tla (or an eq11ivalent one), it is possible to 
transform it equi1•alent/y in a knowhdge base contain
ing this formula only one time with a penalty equal to 
the sum of the penalties of this form.ula in the prel•ious 
base. 

Property 9 VPK, PK' E :JlJc, 

PK �c PK' => A{cpiJ�; E PK} f=ll\ {'PiliPi E PK'} 

The converse is obviously false. 

2.2 Inconsistency handling with penalty logic 

Using penalties to handle inconsistency is a syntax
based approach, in the sense of [16], which means that 
the way a know ledge base behaves is dependent on the 
syntax of the input (this is justified by the fact that 
each formula is considered as an independent piece of 
information); for instance, {p,q,....,pY -,q} will not be
have as {p 1\ q, ....,p Y ....,q}, since in the first. case we ca.n 
remove independently the formulas p and q ( {p, q}. 
{p, ....,p V -.q} and { q, ....,p Y ....,q} are the maximal sub
theories), but in the second case we must remove or 
keep the whole formula p 1\ q ( {p 1\ q} and { ...,p V -.q} 
are the maximal sub-theories). 

In order to deal with inconsistency, the basic idea de
veloped with syntax-ba.'led approaches is to define a 
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nonmonotonic inference relation as follows: 1/J can be 
deduced nonmonotonicaly from a knowledge base iff 
all the maximal sub-theories of this base entails ( clas
sically) 1/;. 

2.2.1 Nonmonotonic inference relation 
induced by a penalty knowledge base 

Given PK E �c· 

Definition 10 'r/cp,1/J E 2', 

cp f-.- �K 1/J 
¢} 

'v' A � PK, if A is a ?:.PI< -preferred cp-consistent 
sub-theory among all the cp-consistent sub-theories of 

PK, then AU {cp} f= 1/J. 

In particular, if cp = T, the definition becomes: 
f-.- �K1/J {:} if A is a ?:.PK-preferred sub-theory among 

all the sub-theories of PK, then A F= 1/J. 

N.B.: 'r/1/;, ..L f---�K1/J. 

Property 10 'v'cp, 1/J E 2', 

'P f-.- �K 1/J 
¢} 

'r/w E 0, if w f= cp and w is a ?:.PI< -preferred 
interpretation satisfying <p, then w f= 1./J. 

This property shows that the nonmonotonic inference 
relation f-.- �K belongs to the set of relations based on 
preferential models in the sense of [15]. As �Pl< is a 
complete pre-ordering, we immediately get the follow
ing result: 

Property 11 f-.- �K zs a comparative inference 
relation1. 

Property 12 Given PK E �c and cp, 1/J E 2', with 
'P * 1., 

For instance, let us consider the following penalty 
knowledge base PK: 

{(a V b , +oo), 
(---.a 5), 

(-,av--.b , 4), 
{b--+ --.c 2), 

(a --+ c 1)} 
It can be checked that: 

f-.- �I< •c 
a f-.- �I< c 

(al\b) f---�K •c 

1 A comparative inference relation (13] is a rational rela
tion [15] that also satisfies supraclassicality: if 'P F '1/1 then 

'Pb--�K'f/;. 

2.3 An application of penalty logic: 
maximum clique in a graph 

In this section, we will see that penalty logic is not 
only a tool for inconsistency handling but also a good 
way to represent, in a logical language, discrete opti
mization problems (for instance issued from operation 
research), in which minimum cost interpretations cor
respond to optimum solutions. 

We consider an undirected graph G, i.e., a set of ver
tices U and a set of edges V connecting those vertices. 
A clique of G is a subset of V which define a complete 
sub-graph (i.e., every vertex is connected with every 
other vertex). Finding a maximum cardinality clique 
is a classical N P-ha.rd problem in operational research. 
In penalty logic we can represent it like this: 

• to each vertex s E U, we can associate a propo
sitional variable s which truth assignation means 
that this vertex belongs to the clique we are look
ing for. 

• we are searching for a set of vertices which is max
imum for cardinality, so we have to exclude the 
minimum of vertices: to each vertex we associate 
the penalty formula {s, 1). 

• the resulting set must be a clique so for each pair 
( x, y) of vertices that are not connected in the 
graph G (i.e., (x, y) � V), at least either x or y 
does not belong to the clique. In consequence, we 
can associate to each pair (x, y) � V the penalty 
formula (...,x V -,y, +oo). 

Let PK(G) = {(s, l),s E U}U{(...,xV---.y,+oo),(x,y) � 
V}. 

Property 13 (see [8]) Every minimum cost inter
pretation with respect to PI<( G) corresponds to a max
imum clique of G and conversely. 

Example: 

a d e 

b c 

(a, l)(b, l}(c, 1} 
(d, l)(e, 1} 

(•a V •c, +oo) 
{---.a V ---.d, +oo) 
(•a V •e, +oo} 
(-,b V •e, +oo) 
(--.c V •e, +oo) 

The minimum cost interpretation is {-.a, b, c, d, -.e}. 
This example shows the ability of penalty logic to en
code discrete optimization problems. One could ar
gue that, in operation research, algorithms for solv
ing classical problems (as maximum clique, minimum 
vertex cover ... ) do already exist. Those algorithms 
are probably more efficient than the one consisting in 
finding the best interpretation in penalty logic ( devel
oped in [7]). However, the logical representation of this 
kind of problems presents at least two advantages: the 
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great power of expression of logic allows us to spec
ify many complicated problems which could not easily 
be specified within the operational research language; 
and the best solution search method is independent of 
the given problem. 

3 Relating penalties to 
Dempster-Shafer theory 

In this section we are going to show: 

• first, that the cost of an interpretation kpK : rl ---+ 

[0, +oo) induced by a penalty knowledge base PK 
consisting of n weighted formulas corresponds ac
tually to the contour function pl : rl ---+ [0, 1] 
induced by Dempster's combination of n simple 
support functions (one for each formula rpi); 

• then , that moreover, the function Kp){ : .5f> -
[0, +oo) corresponds to a plausibility measure in 
an infinitesimal version of Depmster-Shafer the
ory. 

3.1 Interpretation costs and contour 
functions 

Let PK = { (rp;, a;}, i = 1 .. . n} be a penalty knowl
edge base. Let us define, for each i, the body of evi
dence m;: 

m;(rp; ) = 1- e-a, 

m; (T) = e -a• 

By convention we take e-00 = 0. Since a; E [0, +oo], 
it can be seen that m;(cpi) E (0, 1) and m;(T) E [0, 1). 
Moreover, note that lim<>,-+co m;(cp;) = 1. m; is 
called a simple support function [24]. Let m = m1 EfJ 
· · ·EBmn be the result of Dempster's combination of the 
m; 's (9] without re-normalization. The contour func
tion pl : n -+ [0, 1] associated to m is the restriction 
of the plausibility function to singletons, i.e., 

pl(w) = Pl( {w}) = L m(rp) 

Now, it is well-known [24] that 
n 

Pl({w}) = IT Pl;({w}) 
i=l 

where Pl; is the plausibility function induced by m;. 
Moreover, Pl;(w) = 1 if w f= 'Pi and Pl;(w) = e-c., if 
w f= -,'Pi. Thus, 

pl(w) ( II 1).( II e-Ct·) 

i,wl=cp; i,wl=-.cp; 

IT e-c., 
i,wl=...,<+>• 

e- Lt.�.�t==-.'Pi O'i 

e-kPK(w) 

Therefore, kpK(w) = -ln(p!(w)): up to a logarithmic 
transformation, kPK is a contour function, or more pre
cisely, the process consisting in computing kpr< corre
sponds to applying Dempster's combination without 
re-norma.lization on simple support functions. This 
equivalence does not extend to an equivalence between 
]{pK and a plausibility function (see subsection 3.2}. 
but this result is already significant, since in most prac
tical applications of penalty logic, only the contour 
function kpK is useful: this is the case when penal
ties are used to induce a preference relation on rl, a.nd 
then possibly to select one of the (or all) cheapest in
t.erpretat.ion(s). Namely, this is enough for inducing 
the inference relation \--- �K, for solving discrete op
timization problems, and also for applying penalties 
to constraint satisfaction problems or abduction. So, 
handling penalties in such a purpose is nothing but 
performing Dempster's combination on simple sup
port functions. Reciprocally, combining simple sup
port functions in order to rank interpretations can be 
done a.lt.erna.ti vely with penalty logic. 

This also brings to light. a relation bet.ween penalties 
and [25] where each formula 'Pi of the knowledge base is 
considered to be given by a distinct source, this source 
having the probability p; to be faulty (i.e., the infor
mation it provides us with is not pertinent), and all 
sources being independent (which gives the simple sup
port function m;(cpi) = (1- p;) and m;(T) = p,:). So 
if the task is only to find the most plausible interpre
tation (as in [11] which is the Constraint Satisfaction 
counterpart of [25]), it can thus be done equivalently 
with penalt.iPs. 

3.2 Formula costs as infinitesimal 
plausibilities 

Let us consider an infinitesimal version of Dempster
Shafer theory, where the masses involved are all in
finitely close to 0 or to 1. Let c be an infinitely small 
quantity2•3. Again, let PK = {(cp;,a;},i = 1. .. n}. 
Let us define, for each i, the infinitesimal body of evi
dence m,,;: 

m,,; (r,o;) = 1 - ca' 

m,,;(T) = ca' 

Let m, = m, 1 tfl· · · ffi m, n be the result of Dempster's 
combination �f the m; 's '[9) without re-normalization. 
Let us show now that J( PK has the same order of mag
nitude (w.r.t. c) as ln(P/,), where ln(Pl,) is the plau
sibility function induced by m,. 

Let us note that the set of focal elements of m, is 
exactly {"-iEI'Pi, It;::; {1 ... n}}. 

2More formally, this consists in considering a family of 
e's tending towards 0; indeed what we are interested in is 
only the limit of the considered f( I!) when I! tends to 0. 

3We recall that ft(e:) � h(e) iff lim,_o };i:j == 1. 
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Now, let us define 

R(PK, w) = {I � { l .. . n}, J\ ( <p;) i\ w consistent} 
iEI 

Now, 

Pl('!j!) II m;(<p;). II m;(T) 
IER(PK,t/J) iE/ i<l/ 

IER(PK,!j;) iEJ 

As c: is infinitely small and I is always finite, f};E1(1-
.::a•) R:: 1, therefore: 

PI(¢) R:: 
/ER(PK,!f;) i<tl 

/ER(PK,t/J) 

Let us now define Rminpen(PK, !/•) as 

{J E R(PK, !J;), La; is minimum} 
i<ll 

and let r(PK, !J;) = IRminpen(PK, ¢)1. 

Since c: is infinitely small, we have 

PI(¢) R:: 

Now, 

Therefore, 

!ERm'""'"(PK,,P) 

r(PK, '!j!).maxiER(PI<,.;,).::L,er a, 

r(PK, 
��).c:miniER(PK,�) Z.v a, 

minJER(PK,tiJ) La; 
i<l/ 

min La; BCPK ,BAtjJ consistent - 'Pi<lB 
min CpJ<(B) B�PK,BAtjJ consi•tent 

Note that r(PK, ¢) does not depend on .::, and more
over that r(PK, '¢) > 0. So, up to a logarithmic 
transformation and a multiplicative constant (in other 
terms, if we consider only the orders of magnitude 
w. r. t. c:: ), Kpl( is equivalent to an infinitesimal plausi
bility function. 

4 Conclusion 

Used to handle inconsistency and perform non
monotonic inferences, penalty logic has shown to have 
interesting properties. Using penalties for selecting 
preferred sub-theories of an inconsistent knowledge 
base not only allows to distinguish between the degree 
of importance of various formulas, as usual priority
based approaches do, but also to express possible com
pensations between formulas. The non-monotonic in
ference relation defined satisfies the usual postulates 
[13] and is (logarithmically) related to an infinitesimal 
version of Dempster-Shafer theory . 

Furthermore, the complexity of the penalty non
monotonic deduction problem has been considered in 
[5] and is ranked as one of the most simple non
monotonic inference problem (in��). 

Penalty logic may also been considered as a logical lan
guage for expressing discrete optimization problems. 
The search for a preferred interpretation has been im
plemented using an A • -like variant of Davis and Put
nam procedure (6] and has been tested on small ex
amples. Randomized search algorithms such as GSAT 
[23, 22] could also be considered, but they do not guar
antee that an optimum is actually reached. 

As shown in [5], solving the problem of searching a 
preferred interpretation allows to simply solve the non
monotonic inference problem, without any restriction 
on the language of the formulas expressed4. Any
way, even the limited ll.� complexity can be consid
ered as excessive when faced to practical applications. 
A reasonable approach would then consist in defining 
a gradual inference relation and in trying only to solve 
an approximation of the resulting gradual inference 
problem. 

Among the other possible extensions of penalty logic, 
one could consider associating many unrelated penal
ties to a single formula. Partially ordered penalty vec
tors would then replace penalties. Another possible ex
tension consists in taking into account not only penal
ties caused by violations but also profits associated to 
satisfactions (which could be expressed using negative 
penal ties). 
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