
Online Approval Committee Elections
Virginie Do1,2 , Matthieu Hervouin2 , Jérôme Lang3 and Piotr Skowron4
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Abstract
Assume k candidates need to be selected. The can-
didates appear over time. Each time one appears, it
must be immediately selected or rejected—a deci-
sion that is made by a group of individuals through
voting. Assume the voters use approval ballots, i.e.,
for each candidate they only specify whether they
consider it acceptable or not. This setting can be
seen as a voting variant of choosing k secretaries.
Our contribution is twofold. (1) We assess to what
extent the committees that are computed online can
proportionally represent the voters. (2) If a prior
probability over candidate approvals is available,
we show how to compute committees with maximal
expected score.

1 Introduction
In the vast majority of elections, the set of candidates is known
upfront. Yet, there are contexts where candidates appear over
time. A paradigmatic example is hiring for a job: candidates
come every day to pass an interview, they are evaluated by
members of a jury, and then it must be decided immediately
whether to hire them or not. When we must hire only one
candidate and when the evaluation is performed by a single
agent (human or algorithm), we get the classic secretary prob-
lem. The variant where several employees must be hired, is
called the multiple secretary problem. These problems have
numerous variants (for instance, depending on whether we
want to optimize the rank or the value of the selected candi-
date, whether the distribution over candidates’ values is known,
etc.). However, when the candidates are evaluated by a set of
voters, we obtain a voting version of the secretary problem, or
equivalently, an online version of multiwinner elections (also
called committee elections).

A typical example is the recruitment of a team of researchers
for a research unit, from a pool of candidates who are being
interviewed one at a time. In this example, the jury member
may have different backgrounds and may have heterogeneous
preferences over candidates. A second example is another
hiring scenario where the voters are explicit criteria (e.g., skills
or demographic attributes such as gender).

In generalized secretary problems, each candidate is usually
evaluated by a single number [Babaioff et al., 2008]. In voting,

numerical evaluations are not very convenient, and simpler
types of ballots are typically used. In this paper we assume
each voter submits an approval ballot. Deciding whether to
approve or disapprove the current candidate is cognitively easy
and the landscape of approval-based committee rules (ABC
rules) is relatively well understood. In particular, ABC rules
are well studied for proportionality, which guarantees that vot-
ers’ approvals are fairly represented in the elected committee.
In contexts where voters are evaluation criteria, it ensures that
these are well covered by the set of hired candidates.

Formally, we have a set of n voters; at each time t, a new
candidate ct is observed; ct is then approved or disapproved
(possibly after being interviewed) by each voter; and we have
to decide immediately whether to include ct in the commit-
tee. We have to select a committee of size k, and exactly m
candidates can be observed.

If we could wait until all candidates have been interviewed,
then we would be in the classic setting of approval-based
committee elections. In this setting there is a plethora of well-
understood rules with different distinctive properties [Lackner
and Skowron, 2020]; we would then pick one of these rules,
say f , and compute its outcome. We cannot do this, because
if candidate ct appears at time t, then it must be decided at
time t whether to hire it or not.1 Still, the rule f can serve
as a reference: the set of candidates that would have been
computed by f if we had been able to wait can be considered
the optimal set of winners, and can be used for measuring the
quality of an online selection algorithm.

We consider two paradigms for evaluating rules.
First, we examine ABC rules f that aim at maximizing cer-

tain scoring functions f -sc. Given a fixed function f -sc, we
evaluate online rules by comparing the scores of returned com-
mittees with the scores of the optimal ones. We explain how
the existing mechanisms for the multiple secretary problem
can be applied in order to obtain rules that perform well. Yet,
our first contribution lies in designing optimal algorithms for
the case, where a prior distribution over candidate approvals
is available. The goal becomes to design algorithms that maxi-

1We could consider intermediate contexts where we can wait
some amount of time before deciding to hire a candidate or not, but
in this first study we will simply assume that the decision to hire a
candidate or not must be done immediately and irrevocably. This is
often realistic: a good candidate has good chances to find another job
if not hired immediately.
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mize the expected score of the selected committees. We show
that for selected scoring functions f -sc or under some assump-
tions, this can be done in polynomial time.

Second, we look at two axioms of proportionality. These
properties require that each group of voters with cohesive
preferences must be represented in the selected committee pro-
portionally to its size. We give a polynomial-time computable
online selection policy that satisfies the axiom of proportional
justified representation [Sánchez-Fernández et al., 2017]. We
further show that the stronger axiom of extended justified
representation is not satisfiable in the online setting, but it
can be approximated. We give two such approximation algo-
rithms, one which gives the best possible approximation but is
computationally inefficient, and the other one, which can be
computed in polynomial time.

After discussing related work (Section 2), we define the
online committee elections problem (Section 3). Then, we
discuss the construction of policies maximizing the expected
score (Section 4), and the construction of policies providing
some exact or approximate proportionality guarantees (Section
5). We conclude in Section 6.

2 Related Work
Online selection problems Our setting is close to general-
ized secretary problems [Babaioff et al., 2008], where the
goal is to hire the best possible subset of candidates among a
finite set of candidates arriving one at a time. A candidate’s
value is revealed upon arrival, and the hiring decision must
be taken immediately and cannot be changed afterwards. The
connection between our work and this class of problems is
detailed in Section 4.1. [Yu et al., 2019] consider a bi-criteria
secretary problem with multiple choices, where each criterion
can be seen as a voter, the subset of choices as the elected
committee, and their objective function as the multiwinner ap-
proval voting objective. We consider instead a multiplicity of
voters, and various objectives corresponding to general Thiele
rules in multiwinner voting. In the single secretary problem
variant of [Bearden et al., 2005], there are multiple indepen-
dent attributes, which can be seen as voters in a single-winner
election. In the context of search engines, [Panigrahi et al.,
2012] aim to find a diverse set of items from an input stream,
by maximizing a coverage function of multiple features. In
our committee election framework, items can be seen as can-
didates and features as voters, yet their objective function is
different from the committee scoring functions we consider,
and proportional representation is not studied.

Social choice in online settings Our work is mainly related
to the study of proportional representation in committee elec-
tions, and in particular approval-based committee elections,
which are surveyed in [Lackner and Skowron, 2020]. In recent
years, there has been increased interest in studying online ver-
sions of voting problems. Proportionality is studied in [Dey
et al., 2017] who formalize voting streams, a setting in which
alternatives are fixed, but voters arrive in an online manner,
which is the opposite to ours. In [Freeman et al., 2017], the
sets of voters and alternatives are fixed, but the valuations of
each voter for an alternative varies over time. Utilities are
defined at each timestep as the cumulative reward of each

agent given past decisions, and the goal is to maximize Nash
social welfare. [Lackner, 2020] consider a similar setting with
ordinal preferences instead of cardinal valuations, and study
voting rules that weight agents according to their past satisfac-
tion. [Hossain et al., 2021] address the partial observability of
voters’ preferences.

While these works study (repeated) single-winner elections,
the only existing work on online multiwinner elections to our
knowledge is [Oren and Lucier, 2014]. The difference with
our setting is that they consider online random arrival of voters
rather than candidates, and they do not study proportionality
axioms. [Do et al., 2021] also study a close online commit-
tee selection problem to ours, yet a major difference is the
absence of voters in their case. Proportionality is then defined
based on multiple demographic attributes and a distance to
target proportions on these attributes. In independent work,
[Banerjee et al., 2022] study a similar setting of fair online
allocation where each public good can be assimilated to an
election candidate. While they focus on a quantitative no-
tion of proportional fairness, we study welfare guarantees and
qualitative proportionality axioms.

Recent studies address fairness in online versions of other
public decision-making problems, such as dynamic propor-
tional rankings [Israel and Brill, 2021] and participatory bud-
geting [Lackner et al., 2021].

3 Preliminaries
For each i ∈ N we write [i] to denote the set {1, . . . , i}.
By H(i) we denote the i-th harmonic number, i.e., H(i) =∑i
j=1

1/j. By w(·) we denote the inverse function2 of x 7→ xx,
i.e., w(i) = x if xx = i; clearly w(i) = O(log(i)). Further, it
holds that log(i) = O

(
w(i)2

)
.

An approval-based election (in short, an election) is a triple
E = (C,N, k, (Ai)i∈N ), where C = {1, . . . ,m} is the set of
candidates, N = {1, 2, . . . , n} is the set of voters, k is the
desired size of the committee, and for each i ∈ N , A(i) ⊆ C
is the approval ballot associated with i, that is, the set of
candidates that i finds acceptable. Conversely, we let N(c) =
{i ∈ N : c ∈ A(i)} denote the set of voters who approve
candidate c.

We refer to k-elements subsets of C as to size-k committees.
An approval-based committee election rule (in short, an ABC
rule) is a function R that takes as input an election E =
(C,N, k) and returns a nonempty set of committees; we call
the elements ofR(E) winning committees. Typically we are
interested in selecting a single winning committee, but we
allow for ties.

An online ABC rule is an algorithm that iterates over the
candidates according to the sequence c1, c2, . . . , cm, and in
each step makes the decision whether to include a candidate at
hand, ct, in the winning committee, or not. When making such
a decision we assume that the algorithm does not know the
preferences of the voters over the candidates ct′ with t′ > t.
In other words, we assume the candidates appear one after
another over time. When a candidate ct appears, the voters’

2We have w(i) = exp(W (ln(i)) where W is the Lambert func-
tion, i.e. the inverse multivalued function of x 7→ xex.
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preferences regarding ct are revealed, and the algorithm needs
to make an irrevocable decision of whether ct is selected or
not.

In the following sections, we evaluate winning committees
W ∈ R(E) based on the approval ballots A(i) of the voters,
either assigning a value to W to measure aggregated satis-
faction (Section 4), or analyzing the proportionality axioms
satisfied by W (Section 5). Importantly, in the online setting
we consider, the approval ballots are not available beforehand,
but only once all candidates have been seen and approvals
revealed. It is possible to analyze an ABC rule ex-ante, by
measuring the quality of W in terms of E[f(|A(i) ∩W |)] for
some f , as we do in Section 4. It is also possible to evaluate it
ex-post, once all approval ballots are available and a committee
has been elected, as we do in Section 5.

4 Maximizing Aggregated Satisfaction
In this section we look at the problem of maximizing the ag-
gregated voters’ satisfaction. Consider a voter i, who approves
r members of the elected committee W , i.e., r = |A(i) ∩W |.
Given a function f : N → R, we define the f -utility of
i from W as f(r). An f -Thiele method [Thiele, 1895;
Lackner and Skowron, 2020] is an ABC rule that maxi-
mizes the total f -utility of the voters: given an election
E = (C,N, k) it elects committees W that maximize the
following score:

f -sc(W ) =
∑
i∈N

f (|A(i) ∩W |) .

Examples of Thiele methods commonly studied in the liter-
ature include (1) Multiwinner Approval Voting rule (MAV),
with fMAV(r) = r, (2) Proportional Approval Voting (PAV)
with fPAV(r) = H(r), and (3) Approval Chamberlin–Courant
rule (CC), with fCC(r) = min(1, r).

4.1 Unknown Distributions
For MAV, the problem of finding the best approximate com-
mittee can be casted as a multiple choice secretary prob-
lem [Kleinberg, 2005]. This is because we can define the
value of a candidate c as N(c), the number of voters approv-
ing c, and because fMAV is additive in the values.

More generally, for all concave utility functions, we can
directly apply the results for the submodular secretary prob-
lem [Bateni et al., 2013]. This includes not only MAV but
also CC and PAV, because fCC and fPAV are submodular set
functions. We obtain an online ABC rule with a constant-
factor approximation guarantee, which works as follows. It
first divides the sequence of candidates into k roughly equal-
size parts—the size of each part is between bm/kc and dm/ke.
From each part we select exactly one candidate as follows.
Consider the i-th part, and assume the set of (i − 1) can-
didates Wi−1 has been already selected. To select the i-
th candidate we first observe the first dm/kee candidates in
the i-th part of the sequence, and find one, call it ai, that
maximizes f(Wi−1 ∪ {ai}). Next, we select the first can-
didate c such that f(Wi−1 ∪ {c}) ≥ f(Wi−1 ∪ {ai}). If
we found no such candidate in the i-th part of the sequence,
we pick the last candidate from the i-th part, and move to

the next part. This way, we select exactly one candidate
from each part of the sequence. By the result of [Bateni
et al., 2013], this algorithm returns a committee W such that
E[f -sc(W )] ≥ 1−1/e

7 f -sc(Wopt) ≈ 0.09f -sc(Wopt).
The above results are valid for unknown distributions of val-

ues of (subset of) candidates, and do not depend on how these
values are defined. The interest of the following Section 4.2 is
to leverage the specificity of our problem, where the objective
function f -sc depends on multiple voters and is additively
decomposable in their utilities. Precisely, the input at each
time t is richer than the single value N(c), and more specific
than an abstract function f -sc(S). Rather, we observe at each
time the approvals of each voter for the arriving candidate ct,
i.e., n multiple binary valuations. Using this specific problem
structure, and an additional assumption of prior knowledge of
approval probabilities, we show how dynamic programming
can be used to go beyond the off-the-shelf solutions offered
by generalized secretary problems.

4.2 Known Distributions
We now assume that we have a known prior distribution: we
know the probability p(i) = p(x ∈ Ai) that voter i approves
the next observed candidate x. These probabilities may de-
pend on i, and the events x ∈ Ai and x ∈ Aj for different
i 6= j need not be independent.

Whether it is realistic to assume we know p(i) depends on
the context. If we have a database of past instances on similar
problems, then we can compute the approval frequency of
voters (or of a given voter, if she appears in several instances
and the database is not anonymous).

For the sake of simplicity, we now assume that (UI) p(i)
has the same (uniform) value p for all voters, and that the
events that voter i approves or not candidate j are independent.
Assumption (UI) is classic in social choice. Note that (UI) is
not necessary for some of our results to hold: what we need
is only that the probability Pj that a candidate is approved by
j voters is polynomial-time computable. Under (UI), Pj =(
n
j

)
pj(1− p)n−j .

A policy is a function π that decides, at each step when a
new candidate comes and once the approvals and disapprovals
for this candidate are observed, whether the candidate should
be selected or not. More rigorously, the policy maps a state
to a decision; we postpone the definition of a state because it
varies with the rule used.

A history is a sequence of candidates together with as-
sociated votes and actions: h = 〈(ct, N(ct), at), t =
1, . . . , q〉 for q ≤ m. ct is the candidate observed at time
t; N(ct) is the set of voters who approve ct; and at ∈
{yes, no} (decision to selecting or not ct). For instance,
h = 〈(a, {1, 3, 4}, yes), (b, {1, 2}), no)〉 is the history where
a is observed, approved by voters 1, 3 and 4, selected, then b
is observed, etc. A history is terminal if either q = m or the
number of selected candidates is k. A policy is safe if all its
induced histories select exactly k candidates. Provided that
m ≥ k, safe policies exist. Each terminal history h of a safe
policy has an associated set of selected candidates W (h) of
cardinality k and a reward f -sc(W (h)). A policy induces a
probability distribution over histories, which in turns allows to
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define its expected score. An optimal safe policy is one with
maximal expected score:

V ∗ = max
π

Eh∼π [f -sc(W (h))]

We now show that we can express an optimal safe policy as
a mapping from any state to an action yes or no, and that it
can be computed by a dynamic programming algorithm. The
exact definition of a state varies with the multiwinner voting
rule. A state is full if it corresponds to k candidates having
been selected already, and tight if its associated number of
candidates already selected plus the number of candidates yet
to be seen is equal to k.

Multiwinner Approval Voting
With MAV, we have fMAV(W ) =

∑
c∈W |N(c)|. In this case

a state is a triple s = (α, β, γ), where

• α ∈ {1, . . . ,m} is the number of candidates seen so far,
including the currently observed candidate.

• β ∈ {0, . . . ,min(k, α− 1)} is the number of candidates
selected so far.

• γ ∈ {0, . . . , n} is the number of voters who approve the
current candidate.

The number of states is (n + 1)(k + 1)
(
m+ 1− k

2

)
. A

state is full if β = k and tight if β +m− α+ 1 = k. A safe
policy must map every full state to no and every tight state to
yes. Note that for α = m, a state obtained by following a safe
policy is either tight or full.

Let V ∗(α, β, γ) be the expected score of an optimal safe
policy from (α, β, γ).

Under (UI), V ∗ satisfies the Bellman equations

V (α, β, γ, no) =
∑n
j=0 PjV

∗(α+ 1, β, j)
V (α, β, γ, yes) = γ +

∑n
j=0 PjV

∗(α+ 1, β + 1, j)
V ∗(α, β, γ) = max (V (α, β, γ, no), V (α, β, γ, yes))

V (α, β, γ, yes) and V (α, β, γ, no) are the expected utili-
ties obtained when selecting (resp., not selecting) the current
candidate in state (α, β, γ) and then following an optimal safe
policy. (For a detailed justifications, see the Appendix). Thus,
the optimal safe policy can be computed by dynamic program-
ming by iterating on all states from α = m down to α = 1.
There are O(n2km) states and each state needs a summation
over n terms.

Proposition 4.1. For MAV, under assumption (UI), an opti-
mal safe policy can be computed in time O(n2km).

Chamberlin-Courant Approval Voting
Recall that fCC(W ) = |{i ∈ N : W ∩A(i) 6= ∅}|.
Proposition 4.2. For CCAV, under assumption (UI), an opti-
mal policy can be computed in time O(n3km).

The proof is similar to that of Proposition 4.1, except that
the state space is larger. The marginal value of a candidate x
when the current set of selected candidates is S is 1 if some
of the voters who have no approved candidate in S approves
x, and 0 otherwise. This means that to be able to determine
the marginal value of a new candidate, it is necessary to know
the number of voters, among those who have disapproved all

candidates selected so far, who approve the currently observed
candidate. So now a state is a tuple s = (α, β, γ, δ), where
α and β are as before, δ ∈ {0, . . . , n} is the number of all
“unsatisfied” voters, i.e., those that approve no candidate in the
current selection, and γ ∈ {0, . . . , δ} is the number of those
unsatisfied voters who approve the current candidate.

The optimal policy is computed by dynamic programming,
iterating on all states, with the Bellman equations

V (α, β, γ, δ, no) =
∑δ
i=0 p(i, δ)V

∗(α+ 1, β, i, δ)
V (α, β, γ, δ, yes) =

γ +
∑δ−γ
i=0 p(i, δ − γ)V ∗(α+ 1, β + 1, i, δ − γ)

V ∗(α, β, γ, δ) = max (V (α, β, γ, δ, no), V (α, β, γ, δ, yes))

where p(i, δ) =
(
δ
i

)
pi(1 − p)δ−i. Now there are Θ(n2km)

states, therefore the algorithm runs in O(n3km).

PAV and General Thiele Rules
The states used for CCAV are no longer sufficient: to know the
marginal gain for voter i, of the current candidate, relatively to
the current selection, we must store the number of candidates
already selected approved by i.

The number of states is now in the order of mkn. The
dynamic programming algorithm still works but runs in time
exponential in n. Consequently, we get polynomial-time com-
putability if the number of voters is constant.
Theorem 4.1. For all Thiele rules, including PAV, fCCAV , if
the number of voters is constant then an optimal safe policy
can be computed in polynomial time.

Small values of n are realistic: we can think of a small jury,
or of the interpretation of voters as criteria.

A subclass of Thiele rules for which the problem is still
tractable consists of rules such that the number of values of
the score vector is bounded by a constant. This is the case for
MAV and CCAV, but also for other rules such as truncated
PAV, defined by the vector (1, 1/2, 0, . . . , 0).

5 Proportionality
In this section we focus on the concept of proportionality. Our
goal is to design online ABC rules which would guarantee
each minority of the voters the right to decide about a part of
the elected committee.

Recall that k is the committee size. For an integer ` ∈ [k]
we say that a group of voters S ⊆ N is `-cohesive if (1) it is
large enough, |S| ≥ ` · n/k, and (2) its members approve of at
least ` common candidates, |

⋂
i∈S A(i)| ≥ `. We extend this

notion, and define an approximate variant of `-cohesiveness.
Given an α > 1 we say that a group S is α-`-cohesive if
(1) |S| ≥ α · ` · n/k, and (2) |

⋂
i∈S A(i)| ≥ `.

The two notions of proportionality that are commonly con-
sidered in the literature are proportional justified representa-
tion (PJR) [Sánchez-Fernández et al., 2017], and extended
justified representation (EJR) [Aziz et al., 2017]. Below we
define their approximate variants.
Definition 5.1 (Proportional justified representation). Given
an α > 1 we say that a committee W satisfies an α-
Proportional Justified Representation (α-PJR) if for each
` ∈ [k] and each α-`-cohesive group of voters S it holds
that |

⋃
i∈S A(i) ∩W | ≥ `.
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Analogously, we define the axiom of α-EJR.

Definition 5.2 (Extended justified representation). Given an
α > 1 we say that a committee W satisfies an α-Extended
Justified Representation (α-EJR) if for each ` ∈ [k] and each
α-`-cohesive group of voters S there exists a voter i ∈ S who
approves of at least ` committee members, i.e., |A(i)∩W | ≥ `.

We say that a committee election rule satisfies α-PJR if each
committee returned by the rule satisfies α-PJR. Analogously,
we define what it means that a rule satisfies α-EJR. These
axioms form a hierarchy: if a rule satisfies α-EJR then it
also satisfies α-PJR. If a rule satisfies α-EJR (respectively,
α-PJR) for α = 1 then we simply say that the rule satisfies
EJR (respectively, PJR). EJR is a very strong axiom and for
the time being it is known to be satisfied only by PAV [Aziz
et al., 2017] and Rule X [Peters and Skowron, 2020]. Further,
Sequential Phragmén’s Rule satisfies 2-EJR [Skowron, 2021].

5.1 Proportional Justified Representation
Somehow surprisingly, it appears that the axiom of PJR can
be satisfied in the online setting by the following Greedy Bud-
geting Rule. Each voter is initially given 1 dollar. When a
candidate c ∈ C arrives we look if the voters who approve c
have at least n/k dollars in total. If so, we add c to the commit-
tee and ask the voters from N(c) to pay n/k. The properties
of the algorithm do not depend on how spread the cost of n/k
among the voters from N(c), but a fair policy would suggest
to do it as evenly as possible. This way the rule would resem-
ble the method of equal shares [Peters and Skowron, 2020;
Pierczyński et al., 2021].

Since the voters have in total n dollars, and buying each can-
didate costs n/k, it is clear that the rule cannot select more than
k candidates. If it picks less, we can add the last candidates
that appear, so that exactly k of them are selected.

Theorem 5.1. The Greedy Budgeting rule satisfies PJR.

Proof. Consider an election E = (C,N, k), and towards
a contradiction suppose the committee W returned by the
Greedy Budgeting Rule does not satisfy PJR. Let S be an
`-cohesive group such that |

⋃
i∈S A(i) ∩W | < `.

Each time we select a candidate, we ask the voters to pay
exactly n/k. Since |

⋃
i∈S A(i) ∩W | ≤ ` − 1 we asked the

voters from S to pay at most (`− 1) · n/k. Since |S| ≥ ` · n/k
we get that the voters from S have at least n/k dollars at each
step of the rule. Consequently, each time when a candidate
from

⋂
i∈S A(i) appears, these voters have enough money to

buy it. As a result, each candidate from
⋂
i∈S A(i) would be

selected. There are at least ` such candidates. This gives a
contradiction and completes the proof.

5.2 An Online Algorithm with H(k)-EJR
We now move to the case of extended justified representation
(EJR). We start by defining the Online Greedy Cohesive algo-
rithm (OGCA), and next we will prove that OGCA satisfies
H(k)-EJR (note that OGCA favors large groups of voters and
does not satisfy JR).

Consider a candidate c ∈ C that arrives. If there exists a
group of voters S ⊆ N(c) with |S| ≥ H(k) · ` · n/k such that
each voter from S approves less than ` candidates selected

so far, then OGCA accepts c. Otherwise, c is rejected. If the
rule were to select less than k candidates, the candidates that
arrived last are accepted so that the committee seats are filled.
Theorem 5.2. For each election E, OGCA returns a size-k
committee that satisfies H(k)-EJR.

Proof. The fact that the algorithm satisfies H(k)-EJR follows
directly from its definition, we will prove that it selects at most
k candidates using a budgeting argument.

With each candidate c we associate the price of n/k. When
the algorithm accepts c, its cost is spread equally among the
voters who approve it. Notice that for any ` ∈ [k], each voter
buys at most ` candidates forming an H(k)-`-cohesive group.
For any such candidate c, |N(c)| ≥ H(k) · ` · n/k.

For ` = 1, each voter buys at most one candidate c forming
an H(k)-1-cohesive group, and in such a case the voter pays
at most n/k · 1

H(k)·1·n/k = 1
H(k) .

For ` = 2, a voter buys at most two candidates forming an
H(k)-2-cohesive group. One of such candidates could have
been bought before (as a candidate forming aH(k)-1-cohesive
group), and the voter would pay 1

H(k) for it. For the second
candidate, the voter would pay at most n/k · 1

H(k)·2·n/k =
1

2H(k) .
Repeating the reasoning for ` = 1, . . . , k, we get that each

voter paid at most:
∑k
`=1

1/`H(k) = 1. Thus, the total amount
of money paid is at most equal to n. Since each candidate costs
n
k , our algorithm could have selected at most k candidates.

Interestingly, in terms of proportionality guarantees the
Online Greedy Cohesive algorithm is optimal.
Theorem 5.3. For each ε > 0 there exists no online ABC rule
that would satisfy (1− ε)H(k)-EJR.

Proof. For the sake of contradiction assume that there exists
an algorithmA that satisfies (1−ε)H(k)-EJR for some rational
ε > 0.

Let us fix k, and assume the number of voters n is such
that (1 − ε) · n/k is an integer. In the first round there arrive
candidates who are approved by (1 − ε)H(k) · n/k voters.
Each such candidate is approved by a disjoint group of voters.
Assume that the number of such candidates equals m1, where:
m1 =

⌊
n

(1−ε)H(k)·n/k

⌋
≥ k

(1−ε)H(k)−1. Note that each such a
candidate must be selected by A. Indeed, if one of them were
not selected, the algorithm could violate (1−ε)H(k)-EJR. This
could happen, for example, if all the remaining candidates that
have not yet arrived were approved by no voters.

In the second round there arrive m2 candidates, each ap-
proved by a different group of 2(1−ε)H(k) ·n/k voters, where:
m2 ≥ k/2(1−ε)H(k)− 1. By the same argument as before, we
infer that A must accept each such a candidate.

Analogously, in the i-th round, i ≤ k
(1−ε)H(k) there arrive

mi candidates: mi ≥ k
i(1−ε)H(k) − 1, and each of them must

be accepted byA. In totalAmust have accepted the following
number of candidates:

m =

b k
(1−ε)H(k)c∑
i=1

mi.
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In the following sequence of estimations we use the fact that
for each i it holds that log(i) ≤ H(i) ≤ log(i) + 2:

m =

b k
(1−ε)H(k)c∑
i=1

mi ≥
b k

(1−ε)H(k)c∑
i=1

(
k

i(1− ε)H(k)
− 1

)
≥ k

(1− ε)H(k)
·H
(⌊

k

(1− ε)H(k)

⌋)
−
⌊

k

(1− ε)H(k)

⌋
≥ k

(1− ε)H(k)
·
(

log

(
k

(1− ε)H(k)

)
− 2

)
≥ k

(1− ε)H(k)
·
(

H(k)− log
(
(1− ε)H(k)

)
− 4
)

≥ k

(1− ε)

(
1−

log
(
H(k)

)
+ 4

H(k)

)
.

Note that limk→∞
log
(
H(k)

)
+4

H(k) = 0, thus for sufficiently large
k the last expression in the sequence of inequalities is larger
than k. We infer that A would need to select more than k
candidates, a contradiction.

5.3 A Polynomial-Time Algorithm Satisfying
w(k)2-EJR

The OGCA algorithm presented in Section 5.2 cannot be com-
puted in a polynomial time. This is because checking if there
exists an `-cohesive group is NP-hard [Skowron et al., 2017].
In this section we define an algorithm that runs in polynomial
time, and which offers only a slightly worse EJR guarantee
than OGCA.

Our algorithm, which we call Subcommittees via Greedy
Budgeting Rule (SGBR), is defined as follows. Let α =
dw(k)e. The idea is to independently elect α smaller commit-
tees, each of size k′ = bk/αc. We elect the i-th subcommittee,
i ∈ [α], using the Greedy Budgeting Rule, but with a con-
straint that we can pick only the candidates who are approved
by at least nα

i

k voters.
Formally, we assume that each voter is given an initial

budget of (1, . . . , 1) ∈ [0, 1]α, that is α independent coins.
The i-th coin can be used for buying the candidates who are
approved by at least nαi

k voters. Each candidate costs nα
k

coins. When a candidate c ∈ C arrives, we find the largest
pair i ∈ N and S ⊆ N(c) (we first maximize i, and second
|S|) such that: (1) |S| ≥ nαi

k , (2) Each voter from S has at
least nα

k|S| coins of type i left. That is, those voters can afford
to buy candidate c assuming each of them paid with the coins
of type i, and each would pay the same amount of money. If
such pair (i, S) does not exist, we reject c. Otherwise, c is
accepted and we ask each voter from S to pay nα

k|S| for c.
Since each voter has in total α coins, and buying each

candidate costs nα
k the algorithm selects ≤ k candidates.

Theorem 5.4. SGBR satisfies dw(k)e2-EJR.

Proof. For the sake of contradiction assume that given an
election E = (C,N, k) Subcommittees via Greedy Budgeting
returns a committee W that fails α2-EJR. Let S be a subset
of α2-`-cohesive voters such that |S| = α2`nk and | ∩i∈S

A(i)| ≥ ` for some ` ∈ [k], and that for all v ∈ S, we have
|A(v) ∩W | < `.

There exists j ∈ [α] such that nkα
j ≤ |S| ≤ n

kα
j+1. From

that it follows that ` ≤ αj−1. Let Wj be the j-th subcommit-
tee. For each elected candidate from Wj a single voter can
pay at most:

nα
k

n
kα

j
=

1

αj−1
≤ 1

`
.

Since each voter from S approves at most (`−1) candidates
in Wj , they paid at most (`− 1) 1

` and their remaining budget
is greater than 1

` ≥
1

αj−1 . Thus, when a candidate from
∩i∈SA(i)\Wj appears there are at least |S| voters, |S| ≥ n

kα
j ,

each having at least 1
αj−1 coins of type j left. Thus, their

total budget is sufficient to buy the candidate: |S| · 1/αj−1 ≥
nαj/k · 1/αj−1 = nα/k .

Consequently, each candidate from ∩i∈SA(i) would be
selected. There are at least ` such candidates, thus |A(v) ∩
W | ≥ ` for each v ∈ S. This gives a contradiction and
completes the proof.

Remark. While EJR always implies PJR, α-EJR does not nec-
essarily imply PJR. Still, α-EJR provides desirable guarantees
even when PJR is not satisfied. PJR is a property that is often
used both in the context of proportionality and of diversity.
If our primary focus is to provide voters from large cohesive
groups with multiple representatives, then α-EJR should be
considered. For example, assume there are n voters, 2n candi-
dates and k = n is the desired committee size. Assume that
each of the first n candidates that arrive is approved by exactly
one voter, and each such candidate is approved by a different
voter. Further, assume that each of the next n candidates is
approved by all n voters. Then the committee that consists of
the first n candidates satisfies PJR (in fact, this would be the
committee selected by the Greedy Budgeting Rule). Such a
committee would be bad from the perspective of α-EJR, since
each voter would have only a single representative. In this
case, our algorithms for α-EJR would return clearly better
committees.

6 Conclusion
Our main message is that online approval-based commit-
tee elections are easier than we might have thought. First,
for Thiele rules with submodular score functions we have a
constant-factor approximation algorithm (obtained as a corol-
lary of a known result), and a dynamic programming algorithm
for maximizing the expected score, which runs in polynomial
time for some rules or under some assumptions. Second, we
have an algorithm that returns a committee satisfying PJR, and
two that return an approximate EJR committee: one with an
optimal ratio, the other one running in polynomial-time.

A further work direction consists in moving to ordinal pref-
erences, where voters rank the current candidates in the list of
candidates already observed.
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