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Abstract 

This article deals with plausible reasoning 
from incomplete knowledge about large-scale 
spatial properties. The available information, 
consisting of a set of pointwise observations, 
is extrapolated to neighbour points. We use 
belief functions to represent the influence of 
the knowledge at a given point to another 
point; the quantitative strength of this in
fluence decreases when the distance between 
both points increases. These influences are 
aggregated using a variant of Dempster's rule 
of combination taking into account the rela
tive dependence between observations. 

1 Introduction 

This article aims at handling knowledge about large
scale spatial properties (e.g. soil type, weather), in 
contexts where this knowledge is only partial; i.e. some 
piece of information is known only at some given lo
cations of space. We have investigated some means to 
perform plausible reasoning on this kind of informa
tion at any point in the considered space. 

Several studies can be related to the question of 
imprecise knowledge in spatial databases, but they 
usually consider the question of representing incom
plete knowledge about the location of spatial ob
jects (using relational theories, more or less related 
to the seminal work of [Randell et al., 1992], or us
ing fuzzy locations [Bloch, 2000]), or about vague re
gions [Cohn and Gotts, 1996], rather than about static 
properties and their distribution over a given space. 
[Wiirbel et al., 2000] apply revision strategies to in
consistency removing in geographical information sys
tems. A completely different line of work, in the 
robotics literature, deals with map building using oc
cupancy grids (see e.g. [Iyengar and Elfes, 1991]); it 
will be briefly discussed in Section 5.2. 

While plausible reasoning has been applied to a vari
ety of domains, it has rarely been applied to reasoning 
about spatial information. On the other hand, it has 
been applied to reasoning about temporal information, 
which gives some hints about how to do it for spa
tial information. Plausible reasoning about systems 
that evolve over time usually consists in assuming that 
fluents1 do not change and therefore that their value 
persist from one time point to the subsequent one, un
less the contrary is known (from an observation, for 
instance) or inferred; this implies some minimization 
of change. Now, the latter persistence paradigm can 
be transposed from temporal to spatial reasoning. In 
the very same line of reasoning, when reasoning about 
properties in space, it is (often) intuitively satisfactory 
to assume that, knowing from an observation that a 
given property r.p holds at a given point x, then it holds 
as well at points "close enough" to x. 

What we precisely mean by "close enough" depends 
on the nature of the region as well as on the property 
r.p involved. Moreover, it is clear that the belief that 
r.p "persists" from point x to point y is gradually de
creasing: the closer y to x, the more likely r.p observed 
at x is still true at y. This graduality can be modelled 
by order relations or by quantitative measures such as 
probability. However, as we explain in Section 3, pure 
probabilistic reasoning is not well-suited to this kind of 
reasoning, unless very specific assumptions are made. 
We therefore model persistence with the help of the 
belief function theory, also known as the Dempster
Shafer theory. Belief functions (and their duals, plau
sibility functions) generalize probability measures and 
enable a clear distinction between randomness and ig
norance that probability measures fail to do. 

After giving some background on belief functions, we 
show how to infer plausible conclusions, weighted by 
belief degrees, from spatial observations. Then, we 
relate computational experiments, evoke information
theoretic and decision-theoretic issues, and conclude. 

1 A fluent is a proposition which evolves over time. 
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2 Background on belief functions 

The Dempster�Shafer theory of evidence 
[Dempster, 1967] [Shafer, 1976] is a generalization of 
probability theory enabling an explicit distinction 
between randomness and ignorance. 

Let S be a finite set of possible states of the world 
(taken to be the set for possible values for a given vari
able, for the sake of simplicity), one of which corre
sponds to the real world. A (normalized) mass assign
ment is a mapping m: 25 -t [0, 1] such that m(0) = 0 
and LACS m(A) = 1. The condition that m(0) = 0 is 
sometimes omitted (see [Smets and Kennes, 1994]): if 
m(0) > 0 then we say that m is an unnormalized mass 
assignment. The interest of having a mass assignment 
unnormalized is the ability to keep track of a degree 
of conflict. 

The subsets of S with a nonempty mass are called the 
focal elements of m. m is a simple support function iff 
it there is a nonempty subset A of S and a a E [0, 1] 
such that m(A) =a and m(S) = 1-a (by convention, 
when specifying a ma.ss assignment we omit subsets 
with an empty mass). 

A mass assignment m induces two set functions Belm 
and Plm from 25 to [0, 1]: the belief function Belm 
and the plausibility function Plm are defined respec
tively by: '</B � S, Belm(B) = LACB m(A) and 
Plm(B) = LAnB;t.0 m(A). When m is normalized, 
Belrn (B) represents the probability of existence of at 
least one true piece of evidence for A, while Plm(B) 
represents the probability of existence of at least one 
true piece of evidence which does not contradict A. 

When all focal elements are singletons, m can be 
viewed as a probability distribution on S; in this case 
Belm (A) = Plm(A) = LsEA m(s), hence, Belm and 
Plm coincide and are identical to the probability mea
sure induced by m. Therefore Dempster-Shafer theory 
generalizes probability theory on finite universes. 

The Dempster-Shafer theory of evidence enables an 
explicit distinction between randomness and ignorance 
that probability theory cannot2. Another crucial ad
vantage of the theory of belief functions is that it is 

2This is clear from the following two mass functions: 
mi{head,tails} = 1; m2({head}) = m2({tails}) = %· 
m2 represents a true random phenomenon such as toss
ing a regular coin, while m, would correspond to a case 
where it is not reasonable to define prior probabilities on 
{head, tails} - imagine for instance that you were just 
given a parrot with the only knowledge that the two words 
it knows are ''head" and "tails": there is absolutely no 
reason to postulate that it says "heads" and "tails" ran
domly with a probability % (nor with any other probabil
ity) ; it may well be the case, for instance, that it always say 
"head". This state of complete ignorance about the out
come of the event is well represented by the neutral mass 

well-suited to the combination of information from dif
ferent sources. The Dempster combination m1 ffi m2 of 
two (normalized) mass functions m1 and m2 on S is 
defined by 

mt ffi m2(A) = L 
X,Y�S,XnY=A 

where 

m1(X)m2(Y) 
R(m1, m2) 

X,Y<::;S,XnY=0 

Importantly, this operation is associative, which en
ables its extension to the combination m1 ffi m2 ffi . .. ffi 
mn of an arbitrary number n of mass assignments. 

When unnormalization is allowed, we define the t.m

normalized Dempster combination of two (normalized 
or not) mass assignments m1 and m2 on S by 

X,Y<;:S,XnY=A 

The resulting m1 ffiu m2 (0) measures the degree of 
conflict between m1 and m2. 

Lastly, in some cases it is needed to transform a mass 
assignment into a probability distribution. This is the 
case for instance when performing decision-theoretic 
tasks. Importantly, this transformation should take 
place after combination has been performed and not 
before, as argued in [Smets and Kennes, 1994] who in
troduce the pignistic transform T(m) of a normalized 
mass assignment m, being the probability distribution 
on S defined by: Vs E S, T(m)(s) :::: LA<;:S,•EA ���) · 

Alternatives to the pignistic transform for decision 
making using belief functions are given in [Strat, 1994]. 

3 Extrapolation from observations 

3.1 Observations 

From now on we consider a space E, i.e., a set of 
"spatial points" (which could be seen as either Eu
clidean points or atomic regions). E is equipped with 
a distance3 d. 

We are interested in reasoning on the evolution "in 
space" of some properties. For the sake of simplicity, 
the property of interest merely consists of the value of 

function m(S) = 1. 
3Recall that a distance is a mapping d : E2 -t JR+ 

such as (i) d(x, y) = 0 if and only if x = y; (ii) d(x, y) = 
d(y, x) and (iii) d(x, y) + d(y, z)::; d(x, z). However we do 
not really require the triangular inequality (iii); hence our 
formal framework only requires d to be a pseudo-distance 
but these technical details will not be discussed further. 
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a given variable, whose domain is a finite set S. S is 
furthermore assumed to be purely qualitative, i.e., S is 
not a discretized set of numerical values. S may be for 
instance a set of possible soil types, or a set of weather 
types. The simplest case is when S may is binary, i.e., 
the property of interest is a propositional variable the 
truth value of which we are interested in -for instance 
S= {rain,-,rain}. 

An observation function 0 is a mapping from 
Dom(O) � E to the set of nonempty subsets of S. 0 
intuitively consists of a set of pointwise observations 
(x, O(x)) where x E E and O(x) is a nonempty subset 
of S; such a pointwise observation means that it has 
been observed that the state of the world at point x be
longs to O(x ) . 0 is said to be complete at x if O(x) is a 
singleton and trivial at x ifO(x) = S. The range R(O) 
of 0 is the set of points where a nontrivial observation 
has been performed, i.e., R(O) = {x!O(x) f. S}. 

3.2 Spatial persistence 

The question is now how to extrapolate from an ob
servation function 0. As explained in the introduc
tion, the spatial persistence principle stipulates that 
as long as nothing contradicts it, a property observed 
at a given point is believed to hold at points nearby, 
with a quantity of belief decreasing with the distance 
to the observation. This principle is now formally en
coded in the framework of belief functions. 

Let x be a given point of E, called the focus point. 
What we are interested in is to infer some new (plau
sible) beliefs about what holds at x. For this we con
sider a set of mass assignments {myy:z: , y E R(O)} 
where each myYx is the simple support function de
fined by 

{ my<-+x(O(y)) 
myyx(S) 

= f(O(y), d(x, y)) 
= 1- f(O(y), d(x, y)) 

where f IS a mapping from (25 \ 0) X JR+ to [0, 1] s.t. 

1. f is non-increasing in its second argument, i.e., 
a� f3 implies f(X,a):::; f(obs,{3); 

2. f(obs, a ) = 1 if and only if a= 0;4 
3. f(obs, a) -+a-Hoo 0 

f will be called a decay function. Decay functions for 
modelling decreasing beliefs over time have first been 
used in [Dean and Kanazawa, 1989]. 

The intuitive reading of the mass assignment my<-+" 

is the following: the fact that O(y) is observed at y 
supports the belief that O(y) holds at x as well, to a 

4 as noticed by a referee, there are intuitive cases where 
this condition could be weakened. 

degree which is all the higher as y is close to x. In 
particular, if x = y (thus d(x, y) = 0) then O(x) = 
O(y) has a maximal (and absolute) impact on x while, 
when y gets too far from x, this impact becomes null. 

By default (and like to [Dean and Kanazawa, 1989] for 
temporal persistence) we will use exponential decay 
functions f(obs, a) = exp(- >.(;bs)) where J..(obs) is a 
real strictly positive number expressing the "persis
tence power" of the observation obs (such a function is 
called an exponential decay function) . This deserves 
further comments. 

We first consider the case of complete observations, 
i.e., obs is a singleton {v}. J..({v}), written J..(v) with
out any risk of misunderstanding, characterize the per
sistence degree of the value v: the lower J..( v) , the 
stronger the spatial persistence of the property V = v. 
The two limit cases for J..( v) are: 

• J..(v) = 0; by passage to the limit we write 
exp (- >. (v)) = 0 and therefore the property V ::::: v 

is non-persistent: as soon as d(x, y) > 0, the fact 
that V = v holds at point y does not support 
the belief that V = v should hold at x too. As 
an example, consider the property "the 5th dec
imal of the temperature at x is even". Clearly, 
this property is non-persistent (provided that the 
granularity of space is coarse enough); 

• J..( v) = +oo : by passage to the limit we write 
exp(- >.tv)) = 1 and therefore the property V = v 

is strongly persistent: as soon as it is true some
where in space, it is true everywhere in E. 

How J..( v) is determined depends on the variable V and 
the value v involved. It may be determined by expe
rience. Considering a point x where V = v is known 
to hold, the probability of the relevant persistence of 
V = v from y to x (which may sometimes be under
stood as the probability of continuous persistence from 
x to y - this will be discussed later), according to 
the formula above, is exp(- t(�)) ) . In particular, if 
dl (V = v) is the "half persistence" of V = v, i.e., the 
dfstance for which the probability of "relevant" persis
tence is equal to �, then we have J..( v) = t·:f). 
Now, when V is not a singleton, the persistence decay 
function of V will be taken to be the persistence func
tion of the most weakly persistent element of v, i.e., 
J..(V) = minvEV J..(v). 

The critical point is the reference to relevant persis
tence rather than with simple persistence. Assume 
that we try to build an approximately valid weather 
map and that the property rain = true observed at 
point x. Clearly, this property being known to have a 
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significant spatial persistence, this piece of knowledge 
is a strong evidence to believe that it is also raining at 
a very close pointy, such as, say, d(:r, y) = 1km. This 
is not at all an evidence to believe that is raining at 
z where d(x, z) = 8000km, hence, the impact of x on 
z regarding rain is (almost) zero. This does not mean 
that the probability of raining at z is (almost) zero. It 
may well be the case that it is raining at :r; but in this 
case, the fact that it is raining at z is (almost certainly ) 
unrelated to the fact that it is raining at x, because, for 
instance, the air masses and the pressure at these two 
points (at the same time) are independent. The im
pact /(rain, d(x, z)) =true of x on z regarding rain 
can be interpreted as the probability that, knowing 
that it is raining at x, it is also raining at z and these 
two points are in the same "raining region". Hence 
the terminology "relevant persistence", which may also 
be interpreted as "continuous persistence" (i.e., persis
tence along a continuous path) if we assume moreover 
that a raining region is self-connected5. 

This is where the difference between pure probability 
and belief functions (recall that they generalize prob
ability theory ) is the most significant: in a pure prob
abilistic framework, this impact degree, or probability 
of relevant persistence, cannot be distinguished from 
a usual probability degree. If we like to express prob
abilities of persistence in a pure probabilistic frame
work, we need a mapping 9rain : E2 --+ [0, 1] s.t. 
Prob(H olds(x, rain)IH olds(y, r ain))= 9rain(d(:c, y)). 
This mapping g is different from f. More precisely, 
g 2: f holds, and g and f are closer and closer to f as 

d(x, y) is smaller and smaller; when d(x, y) becomes 
large (with respect to the persistence degree of rain), 
the impact g tends to 0 while g tends to the prior prob
ability of raining at x. From this we draw the follow
ing conclusion: a pure probabilistic modelling of spatial 
persistence needs not only some knowledge about how 
properties persist over space but also a prior probabil
ity that the property holds at each point of space; the 
latter, which may be hard to obtain, is not needed with 
the belief function modelling of persistence. 

The second drawback of a pure probabilistic modelling 
of spatial persistence is the lack of distinguishability 
between ignorance and conflict. Suppose (without loss 
of generality) that the (uniform) prior probability of 
persistence is �· Consider the four points w, x, y, z 
where x is very close to x and y and half way between 
both, and w is very far from x. Suppose that it has 
been observed that it is raining at y and that it is 
not raining at z. The probability, as well as the be
lief, that it is raining at :r, are very close to �. The 

5and, in a stronger way, by "linearly continuous per
sistence" if we assume that a raining region is not only 
self-connected but also convex. 

explanation of this value � is the following: the two 
pieces of evidence that it is raining at y and not rain
ing at z have a strong impact on x and are in conflict. 
An analogy with information merging from multiple 
sources is worthwhile: the rain observed at y and the 
absence of rain at z both can be considered as informa
tion sources, the first one telling that it is raining at x 
and the second one that it is not, the reliability of the 
sources being function of the distance between them 
and the focus point x. In the absence of a reason to 
believe more one source than the other one, the prob
ability that it is raining at x is �. This has nothing to 
do with the prior probability of persistence: had this 
prior been 0.25, the probability that it is raining at x 
would still have been �· 

Consider now w as the focus point. w being very far 
from y and z, their impact is almost zero and the prob
ability of rain at w is (extremely close to) the prior 
probability of rain, i.e., �· This value of � is a prior 
and comes from ignorance rather than with conflict. 
Therefore, probability cannot distinguish from what 
happens at x and at w, i.e., it cannot distinguish be
tween confiictual information and lack of information. 
Belief functions, on the other hand, would do this dis
tinction: while the belief of raining at x would have 
been close to �, the belief of raining at w, as well as 
the belief of not raining at w, would have been dose 
to 0. Hence the second conclusion: a pure probabilis
tic modelling of spatial persistence does not allow for a 
distinction between confiictual information and lack of 
information, while the belief function modelling does. 

3.3 Combination 

Once each observation is translated into a simple sup
port function my<-+x, the belief about the value of the 
variable V is computed by combining all mass assign
ments my<-+x for y E R(O). 

A first way of combining them consists in applying 
mere Dempster combination, i.e., 

If one wishes to keep explicitly track of the measure 
of conflict then one may use unnormalized Dempster 
combination instead. However, a naive use of Demp
ster combination has a severe drawback. Consider the 
following space E == {x,y,z,w} where d(x,y) = 1; 
d(x, w) = d(y, w) = 10; d(z, w) = 10; d(x, z) = 
d(y, z) = 19 and the observation function 0 concern
ing rain: O(x) = O(y) = true; O(z) = false. The 
focus point is w.We take an exponential decay func
tion with a uniform >. = 30. The mass assignments 
mx<-tw, my'-+w and mx<-+w are the following: 
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X 
•---- • .lP.. w w z \·------- - ---------+-------------.:') 
y 

10 ? 

mx<-+w ( {true}) 
mx<-+w ( {true, false}) 

= exp(- �) � 0.5 
= 1- exp(- �) � 0.5 

my<-tw ( {true}) 
mx<-+w ({true, false}) 
mz<-+w ({false}) 
mx<-+w ({true, false}) 

� 0.5 
� 0.5 
� 0.5 
� 0.5 

The combination m<-+w = mx<-+w Ef) my'-+w Ef) mz<-tw 

yields 

m<-+w ( {true}) 
m<-+w ({false}) 
mx<-tw ({true, false}) 

� 0.6 
� 0.2 
� 0.2 

Clearly, this is not what we expect, because x and y 
being close to each other, the pieces of information 
that it is raining at z and at y are clearly not inde
pendent, and thus the mass assignments mx<-tw and 
my<-tw should not be combined as if they were inde
pendent. On the other hand, on the following figures, 
where mx<-tw, mx<-tw and mx'-+w are identical to those 
above but x is no longer close to y, the above result 
m<-tw = mx<-tw $my<-tw EBmz<-tw is intuitively correct. 

To remedy this problem, we introduce a discounting 
factor when combining mass assignments. The dis
count grows with the dependence between the sources, 
i.e., with the proximity between the points where ob
servations have been made. 

We use here a method inspired from multi-criteria 
decision making (where positive or negative interac
tions between criteria have to be taken into account 
when aggregating scores associated to the different cri
teria) . Assuming that E is fin ite, for X � E and 
x E E \X, we introduce a conditional importance de
gree J-t.(xiX) E [0, 1] expressing the importance of the 
knowledge gathered at point x once the points in X 
have been taken into account. The quantity 1-J-t.(xiX) 
is therefore a discount due to the dependence with the 
information at x and the information already gath
ered.Intuitively, it is desirable that "the further x from 
X", the higher J.l(xiX). When xis sufficiently far from 
X, there is no discount and J.l.(xiX) is taken to be 1. 
Several possible choices are possible for J.l· In the im
plementation we chose the following function6: for any 

6lts intuitive justification, which is based on an anal-

X � E and for any x E E \ X, 
J.l(xiX) = min(1, J1.(X U {x})- J-t.(X)) where J.l.(0) = 0, 
J.l(X) = 1 if lXI = 1 and for any X of cardinality 
n � 2, 

2 - �  . 
J.l(X) = 2- n L{y,z}�X,y;tz e ). where ). IS a pos-
itive real number. 

In particular we have J.l.(xl0) = 1 and Ji.(xi{Y}) = 1-d(.r,y) . e- -----r- . Takmg ). = 10, on the exam pie of figure 1 we 
have J.l.({yl{x}}) � 0.095 and J-t.(z l{x}) � 0.85. 

Now, the aggregation of the n mass assignments 
my'-+x, y E R( 0) \ { x}, with respect to J1. is done by 
the following algorithm. Let x be the focus point and 
R( 0) the points where a nontrivial observation has 
been performed. 

1. sort the points in R(O) by increasing order of 
the distance to x, i.e., let Lo(x) be the ordered 
list (Yt,-··,Yn)} where R(O) = {Yt,···,Yn} and 
d(x, yl) ::; ... ::; d(x, Yn); 

2. for i f- 1 to n do 
- J.li f- J.l(Yi I{Yl • . . .  , Yi-d ); 
_1 t � ·I m�(o(ill = 1- (1- f(O(i), d(x, y;))�· e m, · 

mHS) = (1- f(O(i), d(x, y;))�' 

3. compute mx = ffiio::l .. n mi 

This way of combining by first reranking and then us
ing interaction factors is reminiscent of the aggrega
tion operator known in multi-criteria decision theory 
called Choquet integral. Formal analogies will not be 
discussed further here. 

In practice, it is often the case that each pointwise 
observation is precise, i.e., O(yi) = {v;} for each 
y; E R(O). In this case, the above combination op
eration can be written in a much simpler way: the 
mass of a value { v} can be expressed as follows, given 
a few preliminary notations : Vm;, ::J!j, Vj E V/ a:; = 
m;({vj}) f. 0; Vi E [l..p],P; = {k E (l..n]/mk({v;}) f. 
0}; ViE [l..p],P; = {k E [l..n]/mk({v;}) = 0}. In 
that case, it is easy to show that combination without 
discount yields: 
m(v;) = (1- (0kEP, (1- a:�c))) * (0kEP, (1- a:�c ) ) . 

Whereas combination with discount yields: 
m( v;) = (1- (0kEP; (1- o:�c )�k )) * (0xEP, (1- a�c)�k ). 

ogy with fuzzy measures and interaction indexes in multi
criteria decision making, would be rather long and compli
cated to explain without introducing further several defi
nitions. We omit it because this is not the main scope of 
the paper. 
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4 Experiments 

We recall that what we focus on is the plausible ex
trapolation of information: given a set of observations 
on E, what is the likelihood of the truth of a formula 
on a point outside of the set of observations ? For the 
experiments, we used a binary value domain, namely 
S = {white, black}. 
We compute the overall mass assignment for each lo
cation x in the space E, by combining the mass as
signment induced by every point y in the observation 
set R(O). We have two courses of action from here. 
Either we make a plain Dempster combination of all 
the simple support functions mx = EByER(O) my<-+x, ei
ther we make a correction based on a Choquet integral 
applied to the exponents (as explained at the end of 
Section 3.3), to lower the influence of close concurring 
observations (for which the independance hypothesis 
cannot hold). After this combination is performed, we 
can decide whether to normalize the results (by as
signing the mass of the null set to the other possible 
sets) or to keep a non-zero mass for contradictory in
formation. Keeping un-normalized resulting mass as
signments helps visualizing the conflictual regions. 

We chose the following experimental framework: we 
consider a space of pixels E, ordered along two axes, 
and for which a distance relation is the Euclidean dis
tance. The distance unit is then one and the factors 
>..(white), >..(black) are uniformly fixed at 3, and we 
took the same value of 3 () used for the coefficient of 
interaction between observations 7. The best way to 

Figure 1: Corrected(left) and non-corrected (right) in
terpolation, with conflicting values and three concur
ring, close observations 

illustrate our results would be to assign a color to each 
pixel, assigning a red intensity to one value, a blue in
tensity to the other (and eventually a green intensity 
to the belief in the empty set, if one want to keep track 
of the level of contradiction). This way a black pixel 

7This settings proved empirically to give visual results 
that illustrates well the principled we use here. Obviously, 
these factors should be tailored for specific spatial proper
ties with respect to the scale of the actual observed space. 
Moreover, other distances could be considered where the 
interaction and persistence of relevance would take into 
account other factors. 

reveals no information, and a purple one would reveal 
conflicting values. Since color is not possible in this 
article we will show figures in shades of gray. Each 
observation point will be in black or white, and the 
shade of gray for each interpolation will be a difference 
between the combined mass of the two values (normal
ized). In order to see the observations points, the more 
likely a point is to have a value close to a black obser
vation, the more white it is, and conversely. A middle 
gray will indicate similar levels of both values. For 
instance, figure 4 shows the result for three close con
curring "black" observations next to a single "white" 
observation. In one case the information is corrected to 
take into account the fact that close points are related 
and do not express independent sources. In the other 
one we have made a plain Dempster combination. We 
can see that the three black points combined have an 
influence similar to a single point. In the limit case 
where the three points are exactly identical we would 
have exactly the same result as with only one point 
(illustrating this would not be very spectacular). Fig
ure 2 nonetheless shows different levels of interpolation 
varying with the distance between concurring observa
tions, with or without the Choquet-like correction. 

Figure 2: Corrected normalized (left) and non
corrected normalized (right) interpolation, with vary
ing distances between observations with identical val
ues 

5 Information·theoretic and 

decision-theoretic issues 

Plausible information can be very useful in the context 
of decision-making, when decisions have to be made on 
the basis of uncertain information. 

5.1 Information intensity maps 

Our framework can be used to measure the variations 
of the quantity of information over space. In order 
to do so, we may compute a probability distribution 
on S at each point of E, using for instance the pig
nistic transform, and the information level at each 
point can then be computed using usual information-
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theoretic measures such as entropy8. Hence we can 
build a map where each point x is associated to the 
entropy of its final probability distribution. Entropy 
increases as information decreases; in other words, the 
quantity 1- H (p) measure the quantity of information 
of p. Minimal entropy is obtained at points at which 
at a complete observation has been made. Maximal 
entropy is obtained at points associated with a uni
form probability distribution (if any). Note that this 
uniform probability distribution may come either from 
conflictual observations or from a lack of information: 
as explained in Section 3.2, once the combined mass 
assignment has been transformed into a probability 
distribution, there is no longer a way to distinguish 
conflict from lack of knowledge. 

This is true independently of the number of values 
we consider for a spatial fluent, but to illustrate the 
process, we show on figure 3 the level of information 
using as before the 2-valued set S = {white, black}. 
In this case, the quantity of information 1 - H(p) 
grows with IP( white) - H Information is minimal 
when p(white) = p(black) = � and maximal when 
p(white) = 1,p(black) = 0 or p(white) = O,p(black) = 

1. The shade of gray is proportional to IP( white)-� 1-
This way, a black point corresponds to a low amount 
of information and a white point to a high one. Again 
we show the results both with and without correction. 

Figure 3: Corrected normalized (left) and non
corrected normalized (right) level of information 

5.2 Decision-theoretic map construction 

We are now interested in the following problem: given 
a set of observations 0, where (and what) is it worth
while to measure next? This problem, already consid
ered in the field of robotics (where it has received a 
pure probabilistic treatment), is relevant not only for 
exploring geographical data but also for the question of 
granularity dependent representations. Indeed, given a 
coarse-grain representation of spatial information seen 

8We recall that the entropy of a probability distribution 
p over a finite setS is defined as H(p) = L:.ES -p(s) lnp(s) 

as a set of observations on a larger space, what lo
cations are the most informative when one want to 
switch to a finer-grained representation? 

An information intensity map already gives some hints 
about where it should be interesting points to make 
new measures: measures seem more useful in regions 
in which the information quantity is low. However, 
picking the point of E with the lowest amount of in
formation is not sufficient in general. Especially, it 
is relevant to make a difference between points where 
nothing is known because the observations are too far, 
and the ones where there is conflict between observa
tions at points nearby. 

If one is interested in choosing one measurement, a 
classical heuristics is the maximum expected entropy 
loss9. This, however, works well if (1) only one more 
measurement has to be made; (2) the measurements 
have uniform costs; (3) the utility of a gain of infor
mation does not depend on the value observed nor 
on the location of the measurement. The more gen
eral problem of determining an optimal measurement 
policy over a given number of steps can be cast in 

' the framework of Partially Observable Markov De
cision Processes. This requires the specification not 
only of measurement costs but also a utility function 
which grows with the global amount of information 
(and which possibly takes account of the relative im
portance of some values or of some regions). This point 
is left for further research, and should be positioned to 
the recent work of [D. Kortenkamp and Murphy, 1997] 
extending the idea of occupancy grids with the use of 
MDP. 

Once a series of measurements has been done, one may 
decide either to stop the measurements, or, if the quan
tity information is considered high enough (relatively 
to the expected cost of new measurements), we can 
then easily compute a "plausible map" from the re
sult of the combination step, by assigning each point 
of the space a value with the highest probability, in 
order to represent the most likely distribution of the 
spatial property considered. Figure 4 shows the result 
on a sample observation set, with two different levels 
of gray for each value. One can again observe that the 
correction decreases the likeliness of a value near con
curring measures. In practise, it would probably be 
better to decide of a threshold under which the belief 
in a value is irrelevant before pignistic transformation. 
If we know indeed that the belief in value 1 is 0.05, 
and belief in value 2 is 0.04, (thus the belief in the 
set {1,2} is 0.91), we don't want to assume it is more 
likely that value 1 holds and thus we would like the 
map to remain undetermined at this point. 

9This heuristics is widely used in model-based diagnosis 
when choosing the next test to perform. 
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Figure 4: Deciding of the most likely map, with (left) 
or without (right) corrections 

6 Conclusion 

We have given here a way of using a set of theoreti
cal tools for the study of (partial) spatial information. 
By modelling intuitions about the likelihood of spa
tial properties which depend only on distance factors 
(persistence, influence), we have shown how to infer 
plausible information from a set of observations. The 
field is now open to experimental investigations of the 
various parameters we have introduced in a generic 
way, as our ideas have been quite easy to implement. 

Our way of extrapolating beliefs could be applied to 
other fields than spatial reasoning. A similar use of 
belief functions is made in [Denoeux, 1995] for classi
fication and by [Hiillermeyer, 2000] for case-based rea
soning. However, these frameworks do not consider 
possible interactions before combining, probably be
cause this issue is less crucial in the contexts they con
sider than in spatial reasoning. 

We think a number of paths can be now followed 
that would show the relevance of this work for spatial 
representation and reasoning. First of all, we now 
need to focus on the intrinsic characteristics of spatial 
properties that may influence the parameters we have 
considered here. Persistence is certainly dependent 
on more factors that mere distance (for instance, 
rain is influenced by terrain morphology), and it 
would be useful to isolate which kind of information 
could be combined with our framework. The second 
orientation we have only sketched here is related 
to spatial decision problem. If we are interested in 
identifying the extension of a spatial property (let's 
say the presence of oil in the ground for the sake of 
argument), it would be useful to take into account 
information about the possible shape (convex or not) 
or the possibly bounded size of the observed fluent, 
as it will influence the location of an interesting (i.e. 
informative) new observation. 

Acknowledgements: we thank the referees for giving 
us helpful comments and relevant references. 
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