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ABSTRACT 

A semantics is given to possibilistic logic, a 
logic that handles weighted classical logic 
formulae, and where weights are interpreted as 
lower bounds on degrees of certainty or 
possibility, in the sense of Zadeh's possibility 
theory. The proposed semantics is based on fuzzy 
sets of interpretations. It is tolerant to partial 
inconsistency. Satisfiability is extended from 
interpretations to fuzzy sets of interpretations, 
each fuzzy set representing a possibility 
distribution describing what is known about the 
state of the world. A possibilistic know ledge base 
is then viewed as a set of possibility distributions 
that satisfy it. The refutation method of automated 
deduction in possibilistic logic, based on 
previously introduced generalized resolution 
principle is proved to be sound and complete with 
respect to the proposed semantics, including the 
case of partial inconsistency. 

1 INTRODUCTION 

Possibilistic logic is a logic of uncertainty tailored for 
reasoning under incomplete information. At the syntactic 
level, it handles formulas of propositional or first-order
logic to which lower bounds of degrees of necessity (i.e. 
certainty) or possibility are attached. The degrees of 
possibility follows the rules of possibility theory (Zadeh, 
1978 ; Dubois and Prade, 1988) and the degrees of 
necessity are defined from degrees of possibility through a 
classical duality relationship. A possibilistic knowledge 
base can thus be viewed as a stratified (or layered) classical 
knowledge base, where some formulae are more certain, or 
more possible than others. Resolution rules have been 
derived in accordance with the axioms of possibility theory 
(Dubois and Prade, 1987, 1990a) and a refutation technique 
has been implemented for necessity-valued formulas 
(Dubois,Prade and Lang, 1987) further on extended to both 
possibility and necessity-valued formulas (Lang, 1991). 
The main ideas behind possibilistic logic are : i) the degree 
attached to a proof path in a possibilistic knowledge-base 
is the least degree attached to a formula in this proof path, 
and the degree attached to a consequence of a possibilistic 

knowledge base is the greatest degree attached to proof
paths yielding this consequence ; ii) when two 
antagonistic propositions p and --.p can be derived, the one 
with the highest degree inhibits the other one. The latter 
point indicates that possibilistic logic can handle partial 
inconsistencies. Moreover possibilistic logic proposes a 
way of handling uncertainty based on the idea of ordering 
rather than counting, contrary to probabilistic logic. 
This paper presents a semantics for possibilistic logic in a 
fairly general situation, i.e. possibility or necessity-valued 
clauses, and the presence of partial inconsistency, are 
allowed. It extends a previous semantics dedicated to 
necessity-valued propositional clauses only (Dubois et a!., 
1989). This semantics is based on an extension of the 
satisfiability notion from sets of interpretations to fuzzy 
sets of interpretations. The idea of a fuzzy set of 
interpretations is that some interpretations are preferred to 
others and enable non-trivial inferences that could not be 
made if interpretations were equally considered. In this 
sense, possibilistic logic belongs to the family of non
monotonic logics based on preferential models, whose 
general setting has been devised by Shoham (1988); see 
Dubois and Prade (1991) on this point. Possibility 
distributions are viewed here as a convenient way of 
encoding a preference relation by attaching a weight to 
each interpretation of a set of formulas. Possibilistic logic 
completely contrasts with Ruspini (1991)'s so-called 
"fuzzy logic" where the semantics relies on the idea of 
similarity rather than ordering. Ruspini's logic is one of 
graded indiscernibility between worlds (in the spirit of 
Pawlak (1982)'s rough sets) while possibilistic logic is a 
logic of preference between interpretations. 
Possibilistic logic is closely related to Shackle (1961)'s 
degrees of potential surprize, and Spohn (1988)'s ordinal 
conditional functions. See Dubois and Prade (1990b) on 
this latter point. Possibility measures can also be viewed 
as consonant belief functions (Shafer, 1976). However, 
possibilistic logic is not a truth-functional many-valued 
logic and is not a logic of vagueness (as is fuzzy logic) 
because it primarily pertains to non-fuzzy propositions the 
truth of which is uncertain due to incomplete information. 
In the next section, a language and a semantics are 
presented for possibilistic logic, a logic of necessity and 
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possibility-valued (classical) formulas. A version of the 
semantics, in terms of a possibility distribution on a set 
of interpretations for the case of consistent knowledge 
bases is first presented, where consistency refers to the 
proper assignment of the possibility and necessity degrees 
(with respect to the axioms of possibility and necessity 
measures). A generalized semantics, where an extra
element representing the absurd interpretation is added to 
the referential of the possibility distribution, is then 
introduced in order to allow for inconsistencies. Section 3 
describes an automated deduction procedure based on 
extended resolution and refutation. Completeness of the 
deduction procedure holds, with respect to the proposed 
semantics. 

2 POSSIBILISTIC LOGIC : 
LANGUAGE AND SEMANTICS 

2.1 LANGUAGE 

A possibi/istic formula is either a pair (q> (N a)) where q> 
is a classical first-order formula and a E (0,1], (a should 
be StriCtly positive) or a pair (q> (fl �)) where� E [0,1]. 
(<p (N a)) expresses that <p is certain at least to the degree 
a, i.e. N(<p) �a, and (<p err �)) expresses that <p is 
possible at least to the degree �.i.e. IT(cp) ��.where rr 
and N are dual measures of possibility and necessity 
modelling our incomplete state of knowledge (Zadeh, 
1978 ; Dubois and Prade, 1988). The right part of a 
possibilistic formula, i.e. (N a) or err �). is called the 
valuation of the formula, and is denoted val(<p). 

The basic axiom of a possibility measure IT is fl( <p v <p') = 
max (IT( <p ),IT( cp')) (on a finite language ;£,- on which 
formulas are defined). Informally, fl(<p) = 0 means that <p 
is impossible while IT( <p) = I means that <p is consistent 
with current knowledge. Particularly fl(<p) = 0 when <p is a 
contradiction. The necessity measure N is defined as N(<p)= 
1 - ITC�cp), and is such that N(<p 1\ <p') = min(N(<p),N(cp')). 
N(<p) = 1 means that <p is sure ; for instance N(<p) = 1 
when cp is a tautology. Since V <p, N(<p v �cp) = 1, we 
only have N(<p v cp') � max(N(<p),N(<p')); indeed, for <p' = 
�cp, we may have N(cp) = N(�<p) = 0 (i.e. IT(cp) = IT(�cp) = 
1). It can be shown that N(<p) � IT(cp), generally. More 
specifically, IT(cp) = 1 as soon as N(<p) > 1. This is due to 
the axioms that force IT(cp v �cp) = 1 = max(IT(<p),IT(�cp)). 
When fl(<p) = IT(�cp) = 1, we capture a state of ignorance 
about <p. Hence since we use lower bounds on possibility 
or necessity measures, various cases of relative ignorance 
can be captured ranging from the case where we know that 
we do not know (IT(<p) = rrc�cp) = 1) to the case where we 
do not know if we know errCcp) � 0, TI(-,<p) � 0). Let CJ,f 
be the set of all possible valuations of possibilistic 
formulas. Since N(<p) > 0 entails TI(cp) = 1, and the 
valuations act as lower bounds, ( <p (N a)) is stronger than 
( <p err �)) for any a > 0, � � 0 ; this leads us to define the 
following ordering among valuations : 

(N a) � (N �) iff a � � ; err a) � err �) iff a�� ; 
(IT a)� (N �) Va, V � > 0. 

Hence the maximal and minimal elements of o/ are 
respectively (N 1) (expressing that a formula is completely 

certain) and en 0) (corresponding to the strongest form of 
ignorance, since fl(<p) � 0 only). A possibilistic 
knowledge base is then defined as a finite set (a 
conjunction) of possibilistic formulae. ff"* will denote 
the set of classical formulae obtained from a set of 
possibilistic formulae fF, by ignoring the weights. A 
possibilistic formula whose valuation is of the form (N a) 
(resp. err a)) will be called a necessity-valued (resp. 
possibility-valued) formula. Let LP 1 (resp. LP2) denote 
the language consisting of only necessity-valued formulae 
(resp. where possibility-valued formulae are also allowed). 

2.2 SEMANTICS UNDER CONSISTENCY 

Let ;£,- be a classical language associated with the set ff"* 
of classical formulae obtained from a set fF of 
possibilistic formulae, and let Q be the set of (classical) 
interpretations for ;£,- . Let ;£,- ' be the set of closed 
formulae of ;£,- . 

Then we define a possibility distribution 1t as a mapping 
from Q to [0,1] such that 3 ro E Q, n(ro ) = 1 
(normalization). This possibility distribution represents 
the description of an incomplete state of knowledge, such 
that n(ro) = 0 means that ro is forbidden while n(ro') > 
n(ro) means that ro' is an interpretation preferred to ro. 
The normalization constraint expresses the natural 
requirement that there should exist at least one fully 
possible interpretation in Q with respect to a consistent 
(possibly incomplete) state of knowledge. The possibility 
measure IT. induced (in the sense of Zadeh (1978)) by the 
possibility distribution 1t is the function from ;£,-' to [0,1] 
defined by V cp E ;£,- ', IT(cp) = Sup(n(ro), ro F= <p} 1 where 
ro F= <p means "ro is a model of cp". The dual necessity 
measure N induced by 1t is defined by V <p E ;£,- ', N(cp) = 
1 - Il(-,cp) = Inf ( 1 - n(ro), ro F= -,cp} 1. Then, it can be 
seen that expressing constraints of the form N(<p) �a or 
Il(cp) � � is equivalent to specify a set of possibility 
distributions over Q which are compatible with the 
corresponding possibilistic formulae. A possibility 
distribution 1t on Q is said to satisfy the possibilistic 
formula (<p (N a)), iff N(<p) �a, where N is the necessity 
measure induced by n. We shall then use the notation 1t F= 
(<p (N a)). In the same manner, we write 1t F= (<p err�)) iff 
Il(cp) ��.where IT is the possibility measure induced by 
n. Then, let fF = (<Pi, i = l .  .. n} be a set of possibilistic 

formulae <l>i =(<pi vi) where <piE ;£,-' and ViE o/; a 

possibility distribution 1t is said to satisfy ff", i.e. 1t F= ff", 
iff V i = 1, ... ,n, 1t satisfies <l> i. Then, a possibilistic 
formula <l> is said to be a logical consequence of the set of 
possibilistic formulae fF iff any possibility distribution 
satisfying fF also satisfies <l>, i.e. V 1t, (7t F= ff) ==> 
(1t F= <l>). 

Example: let fF = ((p (N 0.7)), (-,pv q (n 0.8))}. 

1 Sup {) and Inf {) denote the least upper bound and 
greatest lower bound respectively of the subset of real 
numbers defined between {) 
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1t 1= ff iff N(p) � 0.7 and fl(-,p v q) � 0.8 
iffinf{ 1 - 1t(CO), co 1= -,p) � 0.7 and 

Sup{1t(ro), co 1= -,p v q) � 0.8. 
Let [p, q], [-,p, q], [p, -,q] and [-,p, -,q] be the 4 different 
interpretations for the propositional language generated by 
{p, q) (where [p, q] gives the value True to p and q, etc.). 
Then, it comes down to 
1t I= ff iff 1t ([-,p, ql):::; 0.3, 1t ([-,p, -,q]):::; 0.3, 

1t ([p, ql) � 0.8, max (1t ([p, q]), 1t ([p, -,q]) ) = 1. 
Indeed fl(-,p):::; 0.3 and fl(-,p v q) � 0.8 

¢'> max(1t(-,p" q), 1t(-,p" -,q)):::; 0.3, 
max(1t(p" q), 1t(-,p" q), 1t(-,p" -,q)) � 0.8, 
max(1t(p" q), 1t(-,p" q), 1t(p "-,q), 1t(-,p "-,q)) =1 

¢'> 1t(-,p 1\ q) :::; 0.3, 1t(-,p 1\ -,q) :::; 0.3, 
1t(p 1\ q) � 0.8, max(1t(p" q), 1t(p" -,q)) = 1. 

It is then obvious that ff 1= (q (Il 0.8)). Indeed, any 
possibility distribution 1t satisfying ff is such that 
1t ([p, ql) � 0.8, and thus verifies fl(q) = max(1t ([p, q]), 
1t ([-,p, ql)) � 0.8 ; hence 1t satisfies (q (Il 0.8)). • 

It is worth noticing that in LP 1 there is an equivalence 
between the consistency of the classical set of formulae 
ff * and the existence of a greatest normalized possibility 
distribution 1t satisfying ff, as shown in (Dubois et al., 
1989). Indeed if 1t is normalized it can be easily checked 
that 'v'<p, min(N(<p),N(-,<p)) = 0 where N is defined from 1t; 
in other words it is impossible that there exists <p such 
that both <p and -,<p have a strictly positive lower bound 
for their necessity degrees (i.e. that both <p and -,<p appear 
in the deductive closure of ff*). 

Our semantics is similar to Nilsson's (1986) probabilistic 
logic semantics. Indeed this author considers a set of 
probability distributions on the set of interpretations n, 
defining probability measures on the set of closed 
formulas � ' , which are compatible with bounds 
constraining the probability of formulae in the knowledge 
base. The notions of logical consequences are similar in 
both approaches. 

2. 3 EXTENDING THE SEMANTICS T O  
PARTIAL INCONSISTENCIES 

Let us first take an example let '() 
{(-,p v r (N 0.6)), (....,q v ....,r (N 0.9)), (p (N 0.8)), 
(q (N 0.3)). It can be checked that 1t 1= y iff 

1t ([p, q, r]):::; 0.1 ; 1t ([p, q, ....,r]):::; 0. 4; 
1t ([p, -,q, r]):::; 0.7 ; 1t ([p, -,q, -,r]):::; 0.4 ; 
1t ([-,p, q, r]) :::; 0.1 ; 1t ([-,p, q, -,r]):::; 0.2; 
1t ([-,p, -,q, r]):::; 0.2 ; 1t ([-,p, -,q, -,r]):::; 0.2; 

Sup{1t(ro), co E Q) = I. 
This set of constraints being unsatisfiable (because of the 
normalization constraint), there is no possibility 
distribution over n satisfying '() , which comes down to 
say that y is inconsistent. As a consequence, any 
possibilistic formula is a logical consequence of y . 
However, it would not be fully satisfactory to define a 
logic which handles degrees of uncertainty without 
allowing for degrees of (partial) inconsistency. Indeed, if 
we consider the above example where we suppose that p, q 

and r respectively express "the hostages will be freed" (p); 
"Peter is going to be the victim of an affair" (q) ; "Peter 
will be elected" (r) respectively. Then the formulas 
contained in ff express that it is moderate! y certain that if 
the hostages are freed then Peter will be elected, that it is 
almost certain that if Peter is victim of an affair then he 
will not be elected, that it is rather certain that the 
hostages are going to be freed and that it is weakly certain 
that Peter will be the victim of an affair. The 
inconsistency comes from the beliefs of the experts who 
gave the information stored in the knowledge base. 
However, the expert who gave the last formula was only 
weakly certain of what he said, so that the inconsistency 
should be relativized. Since the first three formula of'() are 
strictly more certain than the last one, we would like our 
logic to behave as if the set of formulas were only 
partially inconsistent, its inconsistency degree being the 
valuation of the weakest formula involved in the 
contradiction ; then, the deduction of a formula with a 
valuation strictly greater than this inconsistency degree 
should still be permitted ; since this deduction would 
involve only a consistent part of the knowledge base made 
here of the most certain pieces of information in the 
example, we should still be able to deduce (r (N 0.6)) non
trivially; this is done in Section 3. However a conclusion 
deduced from a partially inconsistent knowledge base 
should be regarded as more brittle than what is derived 
from a consistent one. 
We are now going to give a semantics which handles such 
partial inconsistencies. The problem with the first 
semantics is that according to the definition of possibility 
and necessity measures we have (if .l denotes the 
contradiction) : fl(.l) = Sup(1t(ro), OJ 1= .l} =Sup 0 = 0 
and N(.l) = Inf{l - 1t(CO), co I= -,.l) = 1 -Sup(1t(ro), 

co E Q) = 0. Hence the solution requires that non-zero 
values for fl(.l) and N(.l) be allowed. 
The solution we propose consists in adding to the set of 
interpretations Q an extra-element, noted OJ .l in which 
any formula is "true", i.e. V <p E �',co .Li= <p which 
corresponds to the idea of an "absurd interpretation" 
discussed by Stalnaker (1968)2 Let Q .l = Q u {OJ .Ll· A 
possibility distribution on n .l is a mapping ii from n .l 
to [0, 1] such that :1 CO E Q .l, ii( CO) = I (normalization 
over n .L)· Then we define two functions from �'to [0,1] 

A ,.. A 

induced by 1t: fl(<p) = Sup{1t(CO), (!) E n.l, (!)I= <p); 
N"(<p) = Inf{l- n(ro), co E Q .l• co FF <p). Note that N"(<p) 
does not take ii(OJ_L) into account, while n(<p) does ; 

2The idea of adding an extra-element to the 
referential of a possibility distribution has been already used 
for dealing with the case of an attribute which does not apply 
to an item of a data base. However the extensions of the 
possibility and necessity measures which are used for the 
evaluations of queries in incomplete information databases 
differ from the extensions defined here ; see chapter 6 of 
Dubois and Prade (1988). 
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particularly �(<p) = inf(l- it(ro), ro E Q, ro F= -,cp}, and 
�(.l) = 1- sup(it(ro), ro E  Q} ;:;: 0 ;  note also that 
ro Fj= <p is no longer equivalent to ro F= -,cp, since ro _1_ F= 

<p and ro .l F= -,cp . 
As it can be easily seen, we have 

'd <p E ;t.', n(<p) = maxm(.l), I - �(-,<p)] 
Note that n and � are not possibility and necessity 
measures with respect to Q, but only with respect to Q .l· 

We now give the inconsistency-tolerant semantics of 
possibilistic logic. Each possibilistic formula (<p (Il a)) 
or (<p (N a)), is now considered as meaning n(<p) <::a 
(respectively �(<p) <::a), i.e. we take into account the 
absurd interpretation in our understanding of expert 
statement. For instance, (<p (IT a)) expresses that "it is 
possible at least to the degree a that either <p is true or we 
are in an absurd situation". This leads us to the following 
definitions : 

satisfaction : it � (<p (I1 a)) iff n(<p);:;: a ;  it � 
(<p (N a)) iff �(<p);:;: a, where nand � are the extended 
possibility and necessity measures induced by it ; it � 
fF iff it satisfies all formulae of fF ; 

- logical consequence : fF � <l> iff '<lit, it� fF implies 
it � <l>. 

The inconsistency-tolerant semantics is more general than 
the first one we introduced. In the case of a consistent 
possibilistic knowledge base fF (i.e., there exists a 
possibility distribution 1t over Q satisfying fF according 
to the first semantics), then the two logical consequence 
relations F= and � are equivalent. This is no longer true if 
fF is inconsistent (this is the property we wished). For 
instance, let us consider again l'J = ((-,p v r (N 0.6)), 
(-,q v -,r (N 0.9)), (p (N 0.8)), (q (N 0.3)} which is 
inconsistent according to the first semantics ; then, 
according to the inconsistency-tolerant semantics, l'J is 
consistent since we can find a possibility distribution on 
Q _1_ satisfying l'J . For example the possibility 
distribution, fio defined by 

ito ([p, q, r]) = O.l ; 
ito ([p, -,q, r]) = 0.7 ; 
it0 ([-,p, q, r1) = 0.1 ; 
ito ([-,p, -,q, r]) = 0.2 ; 
it0 (ro j_) = 1, 

it0 ([p, q, -,r]) = 0.4 ; 
ito ([p, -,q, -,r]) = 0.4 ; 
ito ([-,p, q, -,r]) = 0.2; 
ito ([-,p, -,q, .....,r]) = 0.2 ; 

satisfies lJ . Moreover, since y is not inconsistent 
according to the inconsistency-tolerant semantics, any 
formula can no longer be derived from y contrary to what 
happened with the first semantics. For example we have 
lJ � (r (N 0.6)) but we do not have g � (r (N 0.7)) ; 
indeed ito � lJ but we do not have no � (r (N 0.7)). 
Hence the new semantics is definitely more tolerant to 
inconsistencies than the former one. When a set of 
possibilistic formulae fF is inconsistent in the sense of 
the first semantics but not in the sense of the second, then 
we shall say that fF is partially inconsistent. As we are 

going to show it, we can distinguish between two different 
types of partial inconsistencies. 
Let fF be a set of possibilistic formulae ; considering the 
possibility distributions on Q _1_ satisfying fF ,  three 
situations may occur : 
(i) 3 it � fF such that it( ro _]_) = 0 : in this case, fF is 

consistent in both semantics ; fF is then said to be 
completely consistent. 

(ii) V it � fF, it(ro j_) > 0 but 3 it � fF such that 
S u p (  it(ro ), ro * roj_) = I : then, for any it 
satisfying fF ,  we have n(_l_) = it(OO_j_) > 0 and 
�(_!_) = 1 - Sup (it(ro), ro * ro_1_) = o. Thus fF 
induces a "possible inconsistency" (contradiction 
being possible to a strictly positive degree). The 
minimal value of n(_l_) = it(roj_) among the 
possibility distributions it on Q _!_ satisfying fF 
gives the inconsistency degree of fF .  Let 
a= Inf( n(_l_), it � fF) ; then Incons(fF) = (I1 a). 

(iii) V it � fF, Sup( it (ro), ro * ro j_} < 1 (which entails 
that V it � fF, nero j_) = 1). In this case, for any it 
satisfying fF ,  we have n(_l_) = it(OO_j_) = 1 and 
�(.l) = 1 - Sup(it(ro), ro * OO_j_} > o. Thus fF 
induces a "(somewhat) necessary inconsistency" ; the 
minimal value of � (_!_) among the possibility 
distributions it on Q _!_ satisfying fF will give us the 
inconsistency degree of fF .  Let a = Inf(�(.l), 
it � fF) ; then Incons(fF) = (N a). 

fF is thus characterized by its inconsistency degree which 
is a valuation of the form (I1 a) or (N a) ; if fF is 
completely consistent then Incons(fF ) = (IT 0). If 
V it � fF, Sup( it(ro), ro * ro _]_} = 0 then Incons(fF) = 
(N 1) and fF is completely inconsistent. If Incons(fF) = 
(I1 a) with a > 0 or Incons(fF) = (N �) with � < I then 
fF is partially inconsistent. 

The following scale shows the hierarchy of 
inconsistencies: (see Figure 1) 

Incons(S" ) 

(N 1) complete inconsistency 
(Na) 
(Il l) partial 

(I1 a) inconsistency 

(IT 0) complete consistency 
Figure 1 

The knowledge base y gives an example of a degree of 
inconsistency equal to (N 0.3). An example of a 
knowledge base with a degree of inconsistency of the form 
(I1 a) is given by� = ((p (IT 0.7)), (-,p (N 0.6))). 
Clearly n satisfies � ¢=> Il(p) <:: 0.7 and N(-,p) <:: 0.6 ¢=) 
Il(p) <:: 0.7 and Il(p) :<;; 0.4, a contradiction in the first 
semantics. Using the inconsistency-tolerant semantics, 
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we get for W "#- <0_1_, 'd WI= p, n(<O) ::;; 0.4 and 3 WI= 
--,p, it(w) = 1; it(w _j_) = 0.7. Hence Incons(�) = (TI 0.7). 
The examples indicate that the inconsistency degree of a 
possibilistic knowledge base ff is the valuation of the 
least formula (in the sense of the ordering in 9f) involved 
in the strongest contradiction in ff. Let w E 9f such that 
Incons(ff ) = w. It is easy to see that 'd <l> E ff ,  
Incons(ff - {<I>}) ::;; w. Let ff' � ff such that Incons(ff') = 
Incons(ff) and 'd <I> E ff', Incons(ff' - { <l>}) < Incons(ff'). 
ff' is called a smallest maximally inconsistent subset of 
ff. Then the following result holds : 
Proposition I : The inconsistency of a possibilistic 
knowledge base ff is the smallest weight of possibilistic 
formulas in any smallest maximally inconsistent subset 
ff• of ff. More precisely, if Incons(ff) = (N a) then there 
exists at least one formula (<p (N a )) E ff' and 
'd (<p' w) E ff', w ;:,: (N a). If Incons(ff) = (I1 �) then 
there is a unique possibility-valued formula in ff' of the 
form (<p (I1 �)). 
Proof: 
i) Incons ( fF) = (N a). Assume ff• = {(<pi (N ai)), 

i = 1,m} u {(<fl j (I1 �j), j = m + 1, . . .  ,n}. The 
inconsistency degree is 

a= 1 - SUPw"#W _j_ n(w) 
under the constraints 

�(<fli) 2': ai, i = 1,m 
n(<flj) 2': �j· j = m + 1, . . .  , n 

Since a> 0, n(w _1_) = 1 and the constraints n(<flj) 2': 

� j are ever satisfied. Hence Incons(ff ') = 
Incons{(<fli (N ai)), i = l ,m}. The minimality of ff' is 
thus contradictory with the presence of possibility
valued formulas in ff '. Thus ff '  is of the form 
{(<fli (N ai)), i = 1,n}. By assumption any possibility 
distribution it satisfying ff' is such that n(w)::;; 1 -a 
for all w * w _1_. Assume a 1 = mini= 1,m ai. Let us 
prove that a 1 = a. 7t satisfies ff' if and only if 'd i, 
n(w)::;; 1 -ai, 'd w I= •<fli· w * w _j_ ; in other words, 
'dit, it� ff implies 'd w I= •<fl1 v '<fl2··· v •<fln• 
it ( w )  ::;; maxi 1 - a i = 1 - a 1 . Hence, since 
• <fl1 v •<fl2··· v •<fln = T, where T denotes the 
tautology (otherwise ff' would not be inconsistent), 
'd wE Q, n(w)::;; 1 - a1 is due ton � ff '. Hence 
the inequality a 2': a 1· Now let 1t be defined by 
it(w) = 1 -a1 if w 1= <fl2" <fl3··· "<fln· w "'<OJ., 
n(w)::;; 1 -ai if w I= •<fli· w "'w _!_· 

Because <fl2" <fl3··· "<fln ;o'_l_, 3w, it(w) = 1-a1. 
and it� ff.Hencea=a1. 

ii) lncons(fF) = ([J /3). It is obvious that ff' contains at 
least one possibility valued formula. Let us show that 
it is unique. The inconsistency degree is now of the 
form : 

� = inf it( w _j_) 
under the constraints 

N(<pi);:,: ai, i = 1,m 
max(n(wJ.). TI(<pj));:,: �j· j = m + 1, . . .  , n 

Since � > 0, 'd 7t � ff', 3k such that TI(<pk) < �k· 
and Incons(ff') = �k for some �k· In order to minimize 
this value, let us maximize it over Q, so as to make 
the set (j I TI(<pj) < �jl as small as possible. Let it be 
defined by n(w) = min{1 - ai, w I= •<fli· w "'<OJ.} .  

Clearly, it 1= {(<pi (N ai)), i = l ,m}, 3 wE Q, it(w) 
= 1 (since there is no inconsistency among the 
N-valued formulas), and 'dn' , it' � {(<pi (N ai)), 
i = 1,m} ==} 'd wE Q, it'(w)::;; it(w). The only 
parameter le ft is it ( w _1_ ). Let � k = 
max { �j I I1( <flj) < �j} where I1 is based on it. Note that 
the maximality of it over Q minimizes the number of 
(<flj (I1 �j)) with I1(<flj) < �j· 

For simplicity assume �k = �m+ 1· Let us put it(w _j_) = 
� m + 1 . Then clearly, it � ff ', since 'd j , 
m a x (� m + 1 • I1(<fl j)) 2': � j  by construction. Thus 
Incons(ff')::;; �m+1· Now, 'd<flj such that TI(<pj) 2': �j· 
Incons(ff' - { ( <p (I1 �j)}) = Incons(ff') ; the same thing is 
true for all <flj such that I1(<flj) < �j < �m+ 1· If there is 
another formula (<fli (I1 �i)) such that �i = �m+ 1• dropping 
one of these formulas still requires it(<O_j_) = �m+ 1 for 
ensuring it �  ff'. Hence, if ff •  is really minimal it 
contains only one possibility-valued formula, i.e. (<flm+l 
(I1 �m+1)) and Incons(ff') = (I1 �m+1)· • 

Incons(ff) acts as a threshold inhibiting all deductions of 
ff with a valuation ::;; Incons(ff). Indeed, deductions such 
as ff � (<p w) where w ::;; Incons(ff) are trivial since 
ff � (<p w) comes directly from ff � (J. w) and the 
inequalities n(<p) 2': n(J.) . �(<p) 2': �(_!_) (it easy to check 
that if for any classical formulae <p and 1jf, if <p 1= 1jl then 
n(<p) 2': n(1j!), �(<p) 2': �(1j!)). On the contrary, deductions 
with a valuation strictly greater than Incons(ff) are not 
caused by the partial inconsistency ; these deductions are 
called non-trivial deductions. 
Lastly, the following results are easy to prove (Lang, 
1991) : If ff is a set of possibilistic formulae and w a 
valuation of 9f, let us note ff w = {(<p v), v 2': w} and 
ff w = { (<p v), v > w} ; then 
(i) ff�(<pw) iff ffw�(<pw) 
(ii) If Incons(ff) = w, ff is �-equivalent to ff w and to 

ffw u ((_!_ w)}. 

3 AUTOMATED DEDUCTION IN 
POSSIBILISTIC LOGIC 

Two well-known automated deduction methods have been 
generalized to possibilistic logic : i) resolution (Dubois 
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and Prade, 1990a) and ii) the Davis and Putnam semantic 
evaluation procedure for propositional logic (Lang, 1990). 
Here we focus only on resolution for which we give 
soundness and completeness results. 

3.1 CLAUSAL FORM 

In order to extend resolution to possibilistic logic, a 
clausal form is first defined. A possibilistic clause is a 
possibilistic formula (c w) where c is a first-order or 
propositional clause and w is a valuation of 'V'. A 
possibilistic clausal form is a conjunction of possibilistic 
clauses. If a possibilistic formula fF contains only 
necessity-valued classical formulae, then there exists a 
clausal form G of fF such that Incons(G) = Incons(ff), 
which generalizes the result holding in classical logic 
about the equivalence between the inconsistency of a set of 
formulae and the inconsistency of its clausal form. Indeed 
possibilistic clausal form G of ff can be obtained by the 
following method: if ff = ((ljli (N ai)), i= 1... n}, then 
put each IPi into clausal form, i.e. IPi = (V) "j(Cij) where 

Cij is a universally-quantified classical clause ; then 
(V) "i,j((Cij (N ai))} is the possibilistic clausal form 
equivalent to fF 3 . If fF contains also possibility-valued 
formulae, then generally we cannot compute from fF a 
clausal form having the same inconsistency degree as fF, 
even in propositional possibilistic logic. For instance, the 
closest clausal form we can compute from ff = 
((p " q  (IT a )), (-,p v -,q (N 1))} (a > 0) is C = 
( (p (TI a)), (q (TI a)), (-,p v -,q (N 1))}, but it can be 
checked that Incons(ff) = en a) whereas Incons(G) = 
(IT 0). This negative result comes from the non
compositionnality of possibility measures for conjunction. 
Indeed (p "q en a)) is much stronger than (pen a))" 
(q en a)), since (p 1\ q en a)) means ncr 1\ q) � a, i.e. 
3 co E Q .l such that co 1= p " q and ii( co) � a, whereas 
(p en a)) 1\ (q en a)), means :leo, co' E Q .l SUCh that 

co 1= p, co' 1= q and ii(co) �a, ii(co') �a. This problem, 
also appears in modal logics (Farinas and Herzig, I988) 
and can be similarly solved in our framework by 
"coloring" the "IT" valuations. We denote respectively by 
CLPI (resp. CLP2) the language consisting in necessity
valued clauses only (resp. necessity- and possibility-valued 
clauses). 

3 .  2 POSSIBILISTIC RESOLUTION RULES 

The following possibilistic resolution rule, between two 
possibilistic clauses (q WI) and (c2 w2), has been 
established by Dubois and Prade (1987, 1990): 

(CJ w1) (C2 w2) 
(R) 

3 Indeed, N(r,i(Cij)) 2: a is equivalent to min;[N(Cij)) 

2: a and thus to "'j[N(c;j) 2: a]; fF is then equivalent to 

"'i("'j{(cij (N a;))]]. i.e. "ij{(Cij (N a;))]. 

where R(q ,c2) is a classical resolvent of q and c2, and * 
is defined by 

(N a) * (N �) = (N min( a.�)) ; 
(N ) (IT r:t) _ {

en�) if a+�> 1 ; 
a * 

f-' - err 0) if a + � � 1. 
err a) * en �) = en 0). 

The similarity between (R) and resolution patterns existing 
in modal logics has been pointed out ; see (Dubois and 
Prade, 1990). The following result can be easily checked 

Proposition 2 (soundness of rule (R)) : let G be a set of 
possibilistic clauses, and C a possibilistic clause obtained 
by a finite number of successive applications of (R) to C ; 
then C � C. 
Proof: 
(i) If C = (q (N a)), C' = (c2 (N �)), the application of 

rule R yields C" = (R(cl ,c2) (N min( a,�)). Then Vrc 

satisfying C " C' we have l'l(c I) �a and N(c2) � �. 

and then l'l(cJ" c2) = min(N(q),l'l(c2)) �min( a,�) 
and finally N(R(q,c2)) � 1\l(ci" c2) � min(a,�). 
Thus rule R is sound in this case. 

(ii) If C = (Cj (N a)), C' = (c2 en �)), rule R yields C" = 
(R(q ,c2) en (a * �)) ; if a+� � 1, a * � = 0 and 
then trivially C, C' � C". If a + � > 1, Vii 
satisfying C" C' we have l'l(q) �a and D(c2) � � ; 

but ncc2) = max[ii(co _L), Il(c2)], then 

- either ii(co .L) � � and then D(R(ci ,c2)) � � and 

finally ii � C" ; 
- or ii(co.L) <�. then ncc2) = Il(c2) ; in this case 

Il(c2) = max[Il(-,cl" c2), Il(q "c2)l; 

but l'l(q) �a entails Il(-,q) � I - a < �. then 

Il(q "c2) �� and DCR(ci ,c2)) � Il(R(cl ,c2)) � 

Il(q "c2) ��.and finally ii � C". 

Then rule (R) is sound. • 

3 . 3  REFUTATION BY RESOLUTION 

In this section we consider a set ff of possibilistic 
formulae (the knowledge base) and a formula ljl ; we want 
to know the maximal valuation with which ff entails <p, 
i.e. Val(ff,<p) =Sup (wE 9f, ff � (<p w)). 

This request can be answered by using refutation by 
resolution, which is extended to possibilistic logic as 
follows : 

Refutation by resolution : 

1. Put ff in clausal form C ; 
2. Put ljl in clausal form ; let CJ, ... , Cm be the 
obtained clauses ; 
3. C' � C u ((q (N I)), ... , (en (N 1))} 

4. Search for a proof of (.l w) with w maximal , by 
repeatedly applying the resolution rule (R) from C'; 
5. Val(fJ,<p) = w 
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When the knowledge base consists of both necessity
valued and possibility-valued formulae, then since the 
transformation into clausal form is not complete (it does 
not preserve the inconsistency degree), we shall suppose 
that 5F is a set of possibilistic clauses ; in this case, C = 
ff and step 1 is omitted. Soundness and completeness 
results hold for possibilistic resolution. Let ff be a set of 
possibilistic clauses, <p a classical formula, C' the set of 
possibilistic clauses obtained as explained precedently. 
Then we have the following results : 
Proposition 3 Soundness and completeness of refutation in 
clausal possibilistic logic : 

ff � ( <p w) <=> Incons( ff 1\ (---,<p (N 1))) � w 
or equivalently: Incons(ff 1\ (-,<p (N 1))) = Val(ff,<p). See 
the proof in Annex. 
This result allows us to compute Val(ff,<p) by proving the 
inconsistency of ff 1\ (-,<p (N 1)). 
Note that in Proposition 3 we are not making use of 
resolution. The two following propositions relate the 
resolution procedure to the computation of the degree of 
inconsistency. 
Proposition 4 Soundness and completeness of refutation 
by resolution in LP 1 (Dubois, Lang and Prade, 1989) : let 
ff be a set of necessity-valued first-order formulae and C 
the set of necessity-valued clauses obtained from ff ; then 
the valuation of the optimal refutation by resolution from 
C (i.e. the greatest valuation of the obtained empty clause) 
is the inconsistency degree of ff. 
Corollary : let <p be a classical formula and C' the set of 
possibilistic clauses obtained from ff u { (-,<p (N 1))) ; 
then the valuation of the optimal refutation by resolution 
from C' is Val(ff,<p). This corollary derives immediately 
from Propositions 3 and 4. 
Prwosition 5 Soundness and completeness of refutation 

by resolution in propositional CLP2 : if C is a set of 
propositional necessity- or possibility-valued clauses, then 
the valuation of the optimal refutation by resolution from 
C is the inconsistency degree of ff. 
Corollary : let <p be a classical formula and C' the set of 
possibilistic clauses obtained from C u { (-,<p (N 1))) ; 
then the valuation of the optimal refutation by resolution 
from C' is Val(C,<p). 
Proposition 5 is a consequence of Propositions 3 and 1 
together with the expression of the resolution rule. 
N.B. : Proposition 5 does not hold for first-order 

possibilistic clauses; for instance, if C = { (p(x) (Il a))), x 
being a (universally quantified) variable and a> 0, and <p = 
p(a) A p(b), then there is no (Il a)-refutation by resolution 
from C A {(-,p(a) v -,p(b) (N 1))), whereas C � 
(p(a) 1\ p(b) (I1 a)). It does not hold either for possibilistic 
general formulas, since the tranlation into clausal form 
does not preserve the inconsistency degree if the knowledge 
base contains possibility-valued formulas. Completeness 
can be recovered by indexing the "IT" symbols in the 

(Il a)-valuations, in the same spirit as in modal logics 
(Farinas and HeiZig, 1988)). 

3.4 ILLUSTRATIVE EXAMPLE 

We now give an illustrative example. Let C be the 
following knowledge base, concerning an election whose 
two candidates are Mary and Peter : 
C1 (Elected(Peter) vElected(Mary) (N 1)) 
C2 (---,Elected(Peter) v -,Elected(Mary) (N 1)) 
C3 (-,Former-president(x) v Elected(x) (N 0.5)) 
C4 (Former-president(Mary) (N I)) 

C5 (-,Supports(John,x) v Elected(x) (N 0.6)) 
C6 (Supports(John, Mary) (I1 0.8)) 
C7 (-,Victim-of-an-affair(x) v -,Elected(x) (N 0.9)) 
We cannot find any refutation from C ; hence, C is 
consistent, i.e. Incons(C) = (Il 0). Let us now find the best 
possibility or necessity degree of the formula 
"Elected(Mary)". Let C'= C u {(-,Elected(Mary) (N 1))); 
then there exist two distinct refutations by resolution from 
C', which are: 

(-,Elected (Mary) (N 1)) C3 
------

(...,Former-president (Mary) (N 0.5)) 4 

(_1_ (N 0.5)) 
I OPTIMAL! 

(-,Elected (Mary) (N 1)) C5 
------

(-,Sup�C6 

(_1_ (I1 0.8)) 
NON-OPTIMAL 

Hence we conclude that C � (Elected(Mary) (N 0.5)), i.e. 
it is moderately certain that Mary will be elected ; this 
degree (N 0.5) is maximal, i.e. Val (C, Elected(Mary)) = 
(N 0.5). Then, we learn that Mary is being the victim of 
an affair (which is a completely certain information). This 
leads us to update the knowledge base by adding to C the 
possibilistic clause C8 : (Victim-of-an-affair(Mary) (N !)). 
Let C 1 be the new knowledge base, C 1 = C u { C8} . Then, 
we can find a (N 0.5)-refutation from cl : 

C8 C7 C3 C4 
------- ------

(-,Elected (Mary) (N 0.9)) (Elected (Mary) (N 0.5)) 
--------

(_1_ (N 0.5)) 

Hence ff 1 is partially inconsistent, with Incons (CJ) = 
(N 0.5). 
The refutation which had given N (Elected(Mary) � 0.5 can 
always be obtained from ff 1 but since its valuation is not 
greater than Incons(ff J). it has become a trivial deduction. 
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On the contrary, adding to fF 1 the possibilistic clause 
(Elected(Mary) (N 1)), we find this time a (N 0.9)
refutation. And, since (N 0.9) > Incons(fF 1), we have the 
non-trivial deduction fF 1 � (-,Elected(Mary) (N 0.9)), and 
it could be shown that we also have fF 1 � (Elected(Peter) 
(N 0.9)). 

CONCLUSION 

Possibilistic logic drastically differs from probabilistic 
logic since the former is based on the ideas of ordering and 
preference (only the ordering of numbers is used) while the 
latter is b�sed on 

_
the ideas of measure and counting. 

Possi_biiistlc logic Is a logic of incomplete information 
that Is more robust than classical logic, because it is 
tolerant to inconsistency. Besides, as advocated elsewhere 
possibilistic logic is in full accordance with current 
theories of belief revision based on epistemic entrenchment 
(Dubois and Prade, 1990b), and with the principles of non
monotonic reasoning (Dubois and Prade, 1991). One of the 
strength of possibilistic logic is that the proof methods in 
�lassical logic still apply, even in the presence of partial 
mconsistency, and keep all their power, as indicated by the 
completeness results of this paper. This is would not be 
the case with a similar probabilistic extension of logic. 
Moreover efficient strategies for refutation methods have 
also been implemented (Dubois et a!., 1987). Current 
applications of possibilistic logic include hypothetical 
reasoning (Dubois, Lang and Prade, 1990), logic 
programming (Dubois, Lang and Prade, 1991), the 
automated resolution of combinatorial optimization 
problems with bottleneck-like objective functions (Lang, 
1991) and belief revision. 
Among topics for further research is the study of the links 
between the semantics presented here and the Kripke-like 
sem�ntics previously proposed for necessity and 
possibility measures by Dubois, Prade and Testemale 
(1988). Another issue is to bridge the gap between 
possibilistic logic (especially the handling of possibility 
degrees (Il a) ) and the semantics proposed by Yager 
(1987) in default logic for defaults such as "if p is certain 
and q is possible then r ". It would require to allow for 
disjunctions of weighted formulas in the language. 
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Annex: Proposition 3 

ff � (cp w) � Incons(ff" (-.cp (N I))) � w 
or equivalently 

Incons(ff" (-.cp (N I)))= sup(w, ff � (cp w)} 

Proof (Lang, I991): 

(�) 
Case (i) : w = (TI a) 

Let us suppose that ff � (cp (TI a)), i.e. Vii satisfying 
ff, fi(cp) = max[Il(cp),fi( .l)] �a. 

Let ii be a possibility distribution satisfying ff" (-.cp (N 
1)), i.e. V ro >' ro .l such that ro 1= cp, it(ro) = 0 ; then 
IT ( cp )  = 0 ; but it also satisfies ff and we have 
max[Il(cp),fi(.l)] �a, thus we get fi(.l) � a; and finally 
Incons(ff" (-.cp (N I))) � (TI a). • 

Case (ii): w = (N a) 
Let us suppose that ff � ( cp (N a)), i.e. Vii satisfying 
ff, �(cp) � a, or equivalently V ro >' ro .l such that ro 1= 

cp, ii(ro) S 1 - a. Let ii be a possibility distribution 
satisfying ff" (-.cp (N 1)), i.e. ro >' ro.l such that ro 1= cp, 
ii( ro) = 0 ; but ii also satisfies ff and then V ro >' ro .l 
such that ro 1= -.cp, ii(cp) S 1 -a, which entails N(.l) = 
inf{l- ii(ro), ro >' ro.l} = inf{1 - ii(ro), (ro >' ro.l and 
ro 1= cp) or ( ro >' ro .l and ro 1= -.tp)} � a ; and finally 
Incons(ff " (-.cp (N 1))) � (N a). • 

(<==) 
Case (i) : w = (IT a) 

Let ff ={('Pi (N Uj)), i E I} u {(�j (IT �j)),j E J} and let 
us suppose Incons(ff" (-,cp (N 1))) � (IT a). 

Let us suppose that ii satisfies ff, i.e. 
�( 'I'i) � ai, viE I 
nc�j> � �j> v j e 1 ; 

and prove that ii satisfies (cp (IT a)), i.e. fi(cp) � a. 

Let us define it' as follows 
ro >' ro .l• ro 1= cp � ii'(ro) = 0 
ro * ro.l, ro 1= -,cp � ii'(ro) = ii(ro) 
if sup{n'(ro) , ro >'ro.l} < 1 then ft'(ro.l) = 1 
otherwise ii'(ro .l)= max {�j· j e J, (V ro >' ro .l• 

ro 1= �- � ii'(ro) < �j)} 
= max{�j,j E J, ft'(�j) < �j} 

Clearly sup( ii'(ro), roE Q .ll = 1, then ii' is a normalized 
possibility distribution over Q .l· Let us prove that it' 
satisfies ff " ( -.cp (N 1)) : 
-Vie I, we have V ro >' ro.l, it'(ro) s it(ro), then 

�'('I'i) � �('I'i) � ai; 
thus it' satisfies N-valued formulae in ff 
- v j E J, n·c�j) = max[it'(ro .l),TI'(�j)l and then 

-either IT'(�j) � �j· and then ii• satisfies (�j (TI �j)); 
- or IT'(�j) < �.i ; in this case, by definition of 
ii'(ro .l) we have n'(ro .l) � �j· and then fi'C�j) � �j ; 

thus ii' satisfies IT-valued formulae in ff 
- �( -.cp) = inf{ 1 - ii'(ro), ro >' ro .l• ro 1= cp} = 1, then it' 

satisfies (-.cp (N 1)) Then it• satisfies ff" (-.cp (N 1)). 
But by hypothesis Incons(ff" (-,cp (N 1))) � (IT a); hence 
it• ( ro .l ) � a ,  or from the definition of it'  ( ro .l ) : 
max{�j,j e J, IT'(�j) < �jl � a, which is equivalent to : 
3 j e J, IT'C�j) < �j and �j � a  (a) 
But IT'C�j) = max[IT'(cp 1\ �j), IT'(-,cp 1\ �j)l 

= max[O, TI'(-,cp" �j)l = 0(--,cp" �j), 
since ro >' ro .l• ro 1= -,cp ==} n'(ro) = ii(ro) and (a) becomes 

3 j e J, 0(--,cp" �j) < �j and �j � a. (b) 
But fi satisfying ff, we have V j E J, fi(�j) � �j· i.e. 
VjeJ, max(ii(ro.l), IT(cp" �j). IT(-.cp" �j)) � �j �a (c) 
Now (b) and (c) lead to 

3 j e J, max(it(ro.l), TI(cp" �j)) � l3j �a (d) 

Then fi( cp )  = max[it(ro .l),IT(cp)] � max[it(ro.l ) ,  
IT(cp" �j)l �a, and then it satisfies (cp (TI a)). • 

Case (ii) : w = (N a) 
Let ff = { ('I'i (N ai)), i E I} U { (�j (TI �j)), j E J} let US 
suppose that Incons(ff" (-.cp (N 1))) � (N a). 

Let it be a possibility distribution satisfying ff ; we have 
to show that it satisfies (cp (N a)). 

Let us define it' in the following way : 
ro * ro .l• ro 1= cp � it'(ro) = 0 
ro * ro .l• ro 1= -.cp � ii'(ro) = ii(ro) 
it'( (J) .l) = 1 

Clearly ii' satisfies ff" (-,cp (N 1)). Indeed 
-Vie I, V ro >' ro.l, it'(ro.l) s ii(ro.l), 

then �'('I'i) � �('I'i) � ai ; 

-V j E J, fi(�j) � n'(ro.l) =I� �j; 
- �(-,cp) = inf{1- it'(ro), ro >' ro.l, ro 1= cp} = 1. 

By hypothesis, we have Incons(ff" (-.cp (N 1))) � (N a) ; 
since ii' satisfies ff " ( -,cp (N 1)) we can write 

V ro * ro.l, ii'(ro) s 1- a; then �'(cp) = �(cp) = 

inf{1- it'(ro), ro >' ro.l, ro 1= -.cp} �a, 

it enables us to conclude that it satisfies (cp (N a)). • 


