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Abstract

We investigate two forms of dependence between variables
and/or formulas within a propositional knowledge base:con-
trollability (a set of variablesX controls a formula� if there
is a way to fix the truth value of the variables inX in order
to achieve� to have a prescribed truth value) anddefinability
(X defines a variabley if every truth assignment of the vari-
ables inX enables us finding out the truth value ofy). Several
characterization results are pointed out, complexity issues are
analyzed, and some applications of both notions, including
decision under incomplete knowledge and/or partial observ-
ability, and hypothesis discrimination, are sketched.

Introduction
For many reasoning tasks which make use of propositional
logic, exhibiting structure can be of a great help. By “struc-
ture” we mean some relationships that exist between some
sets of variables and/or formulas within a propositional
knowledge base�. A nice example of such structure, which
has received much attention recently, isindependence(Dar-
wiche 1997) (Lakemeyer 1997) and related structural prop-
erties such as relevance (Lakemeyer 1995), or causal inde-
pendence (Darwiche & Pearl 1994). Revealing indepen-
dence relations in� not only helps understanding� bet-
ter but also is a great help for making easier some reasoning
tasks such as satisfiability, deduction, abduction or diagnosis
(Darwiche 1997). Apart from independence other kinds of
structural properties are worth investigating, especially dif-
ferent kinds ofdependenceinvolving sets of variables and/or
formulas. In this paper, two particular forms of dependence
are studied:

� controllability: a set of variablesX controls a formula�
w.r.t. � if it is always possible to fix the values of some
of the variables inX in order to achieve� to have a given
truth value (true or false); the particular case where one is
only interested in� being true corresponds to achieving
a goal and relates to qualitative decision making under
incomplete knowledge.

� definability: a set of variablesX defines a variabley w.r.t.
� if whatever the observed values of all variables ofX
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are, they enable us finding out the truth value ofy. This
notion has many applications, including designing test
policies in order to discriminate among hypotheses (such
as plausible diagnoses).

For these two kinds of dependence, several definitions are
introduced together with their specific interest, some char-
acterizations are given, computational complexity issues are
investigated, and some applications ranging from decision
under partial observability to fault isolation in model-based
diagnosis, are also sketched. As to definability, this paper
completes a companion paper (Lang & Marquis 1998) in
several directions, including the practical computation of de-
finability relations.

Formal Preliminaries
Let PS be a countable set of propositional variables and
PROPPS the propositional language built up fromPS, the
connectives and the boolean constantstrue andfalse. For
X � PS, PROPX denotes the sublanguage ofPROPPS

generated from the variables ofX only. Elements (resp.
subsets) ofPS are denotedx, y, etc. (resp. X , Y , etc).
Full instantiations of variables ofX � PS (called X–
worlds) are denoted by!X and their set is denoted
X .
� denotes a finite propositional knowledge base, i.e., a
conjunctively-interpreted finite set of propositional formu-
las fromPROPPS . V ar(�) is the set of propositional vari-
ables appearing in formula�.

For every formula� and everyx 2 PS, �x 0 (resp.
�x 1) is the formula obtained by replacing in� every oc-
curence ofx by false (resp.true).

Given a propositional knowledge base�, the set of prime
implicants modulo� of a formula� over PROPX will
be denoted byPIX� (�); this set is defined byPIX� (�) =
max(fPI(� ) �) \ PROPXg; j=) wherePI(�) de-
notes the set of prime implicants of� for every formula
�. PIX(�) (= PIXtrue(�)) denotes the subset ofPI(�)
consisting of the terms built uponX , only. IP (�) de-
notes the set of prime implicates of�. For instance, if
� = fa _ b;:a ^ c ) e; d , eg thenPIfa;b;c;dg

�
(e) =

fd;:a^ c;:a^:bg,PIfa;cg
�

(e) = f:a^ cg,PIfb;cg
�

(e) =

;, PIfa;b;c;dg
�

(a _ b) = ftrueg, IP (�) = fa _ b; a _ :c _
e;:d _ e; d _ :e; a _ :c _ dg.
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In this paper we refer to some complexity classes above
NP and coNP, details about which can be found in Pa-
padimitriou’s textbook (Papadimitriou 1994).

Conditional controllability
Let� be a propositional knowledge base,X;Z � PS, and
� be a formula. Intuitively,X positively controls� givenZ
w.r.t. � means that for any observedZ-world !Z there is
aX-world !X which certainly achieves�. A very intuitive
interpretation of positive controllability relates to decision
under incomplete knowledge and partial observability:Z is
the set of observable variables,
Z the observation space,
X the set of controllable variables,
X the action space (an
action being the composition of elementary actions, an ele-
mentary action assigning a variable ofX to eithertrue or
false), and� the goal.

Controllability in a logical setting has not received much
attention so far. The first approach we know is in (Boutilier
1994) where an action model for qualitative decision the-
ory is based on a partition between controllable and uncon-
trollable variables. While inspired by the latter, this study
extends it in several directions, especially regarding to ob-
servability and complexity (some of our results applying to
Boutilier’s framework). Controllability appears also in the
independent choice logic (Poole 1997), where each variable
is assigned a specific agent controlling it, and in (Fargier,
Lang, & Schiex 1996) in a constraint satisfaction frame-
work.

We may think of defining conditional positive controlla-
bility as follows:
X positively controls� givenZ w.r.t. � iff 8!Z 2 
Z

9!X 2 
X such that!Z ^ !X ^ � j= �.
Now, there are two points which must be considered be-

fore going further:
1. What if!Z ^� is inconsistent?This means that observa-

tion !Z is impossible: it can merely not happen. Hence
assigning an action to!Z is needless.

2. What if!Z ^ � is consistent and!Z ^ !X ^ � is incon-
sistent?This is more difficult to interpret, or at least more
ambiguous. The most intuitive interpretation is that when
!Z is observed, the action!X is simply not available2.
We now have the elements for defining formally condi-

tional controllability and related notions:

Definition 1 (conditional controllability)
Let�;� 2 PROPPS andX;Z � PS.
� X positively controls � givenZ w.r.t. � (denoted by
X �Z

� �+) iff 8!Z 2 
Z s.t. !Z ^ � is consistent
9!X 2 
X s.t. (i)!Z ^ !X ^� is consistent and
(ii) !Z ^ !X ^ � j= �.

� X fully controls � givenZ w.r.t. � (denoted byX �Z
�

�) iff bothX �Z
� �+ andX �Z

� (:�)+.

2As noticed by Fargier (personal communication), in the case
where it is guaranteed that any action can always be performed
then the specification of the decision problemmustbe s.t. for any
!Z , if !Z ^ � is consistent, then for every!X , !Z ^ !X ^ � is
consistent.
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Figure 1: A circuit.

Positive controllability intuitively means that there is a
way to fix the values of variables inX in order to make
the goal� true; full controllability means that both� and
:� can be achieved. Note that the technical difference be-
tween this definition of positive controllability and the defi-
nition given above without consistency conditions does not
rely on whether impossible observations are taken into ac-
count or not; indeed, if!Z ^� is inconsistent, then9!X s.t.
!Z ^ !X ^ � j= � is trivially satisfied (any!X does the
job). So the only difference is requiring the action!X as-
signed to an observation to be available, i.e. consistent with
the observation and the knowledge base.

As an illustration, let us consider the circuit depicted on
Figure 1. Let� = fx , a _ b; y , (b , :c); z , (x ,

:y)g. We havefa; cg �fbg
�

x+ but notfa; cg �fbg
�

x; we

also havefa; cg �fbg
�

y andfa; cg �fbg
�

z. Note that we
do nothavefa; cg �;

�
y+ (nor (:y)+, norz+, nor(:z)+)

(we only havefa; cg �;
�
x+).

Now, positive controllability can be characterized by
means of prime implicants (similar results follow easily for
other forms of controllability).

Proposition 1
X �Z

� �+ iff 8!Z 2 
Z s.t. !Z ^ � is consistent,9� 2
PIX[Z� (�) n PIX[Z(:�) s.t. � � !X and� � !Z .

As already said, a practical application area of control-
lability is decision under incomplete knowledge and partial
observability:P = hX;Z;�;�i can be seen as a logical
specification of a qualitative, single-step decision problem
with incomplete knowledge and partial observability. The
set of possible observations isPossObs(P) = f!Z 2

Z j !Z ^ � is consistentg and asound policyfor P is
a mapping� from PossObs(P) to 
X such that8!Z 2
PossObs(P), (i) !Z ^ �(!Z) ^ � is consistent, and (ii)
!Z ^ �(!Z) ^ � j= �. Clearly,X positively controls�
givenZ w.r.t.� iff there exists a sound policy forP .

We turn now to complexity issues. We first give a straight-
forward result which avoids studying separately positive and
full controllability.

Proposition 2
X �Z

� �+ iff X [ fnewg �Z
� � ^ new, wherenew 2

PS n (V ar(�) [ V ar(�) [X [ Z).



This reduction from full to positive controllability is
clearly polynomial, and a polynomial reduction from posi-
tive to full controllability is a trivial consequence of the def-
initions. Thus, both notions are polynomially related. Con-
sequently:

Corollary 1 (FULL) CONDITIONAL CONTROLLABILITY
and POSITIVE CONDITIONAL CONTROLLABILITY are in
the same complexity classes.

Since the reduction given by Proposition 2 preserves the
restrictions that are considered in the following (i.e.,Z = ;
andX [ Z = V ar(�)), both problems remain in the same
complexity classes for each of these restrictions. Accord-
ingly, in the rest of the section, we will mainly focus on the
complexity of full conditional controllability.

Proposition 3
CONDITIONAL CONTROLLABILITY is�p

3-complete

We are now going to investigate some particular restric-
tions of controllability, each of which corresponds to a par-
ticular type of decision problem. We start withuncondi-
tional controllability, obtained by lettingZ = ;.

Proposition 4
UNCONDITIONAL CONTROLLABILITY is�p

2-complete.

Intuitively, unconditional controllability means that there
is no observable variable – thus the action to be under-
taken must be taken unconditionally, which corresponds to
non-observability. Interestingly,UNCONDITIONAL POSI-
TIVE CONTROLLABILITY can be abductively characterized;
indeed,X �;

�
�+ holds iff there exists an abductive ex-

planation for� given�, where the set of possible individual
hypotheses is the set of literals built up fromX . Accord-
ingly, the�P

2 -completeness ofUNCONDITIONAL POSITIVE
CONTROLLABILITY is recovered as a consequence of Theo-
rem 4.2 from (Eiter & Gottlob 1995). Thanks to such an ab-
ductive characterization, the complexity of many restricted
subcases ofUNCONDITIONAL POSITIVE CONTROLLABIL-
ITY can be easily derived from (Eiter & Gottlob 1995).

Another particular case is obtained by lettingX [ Z =
V ar(�). We call the corresponding problemceteris paribus
controllability.

Proposition 5
CETERIS PARIBUS CONTROLLABILITYis�P

2 -complete.

Propositions 4 and 5 are similar to some complexity re-
sults in (Fargier, Lang, & Schiex 1996) for mixed constraint
satisfaction. Intuitively,ceteris paribusconditional control-
lability means that all variables are either controllable or ob-
servable (full observability).Ceteris paribuscontrollability
has been first proposed by Boutilier (Boutilier 1994) for
� = ;. His appealing characterization of controllability (X
controls� iff PIX(�) 6= ; and any� 2 PI(�) mentions a
variable ofX) is equivalent to ours when� = ;, using the
fact that� is equivalent to the disjunction of all its (standard)
prime implicants. Despite the additional restriction� = ;,
the complexity of checking this form ofceteris paribuscon-
trollability does not fall down.

Proposition 6
Boutilier’s controllability is�P

2 -complete.

Definability

Definitions and characterizations

Definability is a stronger form of dependence than control-
lability: while the latter states that there is a way to fix a
variabley to the desired truth value, definability imposes
that for everyX–world, the truth value ofy is determined.
The computational complexity of definability has been in-
vestigated in a companion paper (Lang & Marquis 1998);
herefater, the focus is mainly led on the practical computing
of definability. We start by a series of definitions concerning
definabilityand later on we give a closely related definition,
hypothesis discriminability.

Definition 2 (definability) (Lang & Marquis 1998)
Let� 2 PROPPS , X � PS andy 2 PS.

� X definesy w.r.t. � (denoted byX v� y) iff 8!X 2

X ; !X ^ � j= y or !X ^� j= :y.

� X defines minimallyy w.r.t.� iff X v� y and no proper
subset ofX does it.

� X defines nontrivially y w.r.t. � iff X v� y and� is
consistent.

� X is a basis for y w.r.t. � iff X defines minimally and
nontrivially y w.r.t. �.

While everyX–world that is not consistent with� can be
considered impossible, requiring!X ^� to be consistent in
the definition above would be useless since!X ^� j= y and
!X ^� j= :y hold whenever!X ^� is inconsistent. When
noX-world consistent with� can be found,� is inconsis-
tent. In this case, definability trivializes, i.e.,X v� y holds
for everyX and everyy, and no basis fory can be pointed
out.

Clearly enough, the four definability relations given above
can be easily extended to setsY of variables byX v� Y iff
X v� y for everyy 2 Y , as well as to formulas� (replacing
y by � in the definitions above, see (Lang & Marquis 1998)
for details).

As an illustration, let us step back to our example (Fig. 1).
We havefa; bg v� x, fb; cg v� y, fa; b; cg v� fx; y; zg;
note thatfa; b; cg defines minimallyz and alsofx; yg w.r.t.
� but not x nor y. Here is the list of all bases fory w.r.t.
�: fyg, fb; cg, fx; zg andfa; b; zg; for z we get the fol-
lowing bases:fzg, fa; b; cg, fx; yg, fa; b; yg, fx; b; cg and
fa; c; yg.

There is a clear link between (full) unconditional control-
lability and definability, which states that except in “patho-
logical” cases, definability is stronger than unconditional
controllability; indeed,X v� y implies (X �;

�
y or� j= y

or � j= :y). Furthermore, it is easily shown that ifX de-
finesminimallyy w.r.t �, thenX andy are marginally de-
pendent in the sense of (Darwiche 1997) and that for anyx



in X thenfxg is relevant tofyg in the sense of (Lakemeyer
1997)3.

While definability has been intensively studied in mathe-
matical logic (see e.g., (Beth 1953)), propositional definabil-
ity (and its computational complexity) has received much
less attention in AI, up to now. Let us nevertheless men-
tion that similar notions have been introduced in the re-
cent literature on causal reasoning (Darwiche & Pearl 1994)
(Geffner 1996b), and especially (Geffner 1996a) who pro-
poses a framework for ramification which makes use of a
causality principle

the values that a variable may take (...) is a function of
the values of its causes

that is very similar to our notion of definability4. Another
closely related work is by Ibaraki et al. (Ibaraki, Kogan, &
Makino 1998), where the focus is laid on functional depen-
dencies for Horn knowledge bases (functional dependency
is definability).

The fact that definability has not yet been fully investi-
gated by the AI community is somewhat surprising since it
proves helpful for many AI applications. For instance, when
reasoning about change, a way to address the well-known
frame problemconsists in finding out fluents that can be
derived from primitive ones (called a frame, or a defining
family in our framework) within the knowledge base, and
to apply change on reduced world descriptions (composed
of primitive fluents) (Lifschitz 1990). Many formalisms for
reasoning about change, adhere to this approach that has
been implemented in various planning systems (e.g., in the
early systemBUILD (Fahlman 1974)). The notion of ba-
sis can also prove valuable in automated reasoning. For
instance, identifying functionally dependent variables is a
way to find out variable orderings that may prevent the Bi-
nary Decision Diagram (BDD) representation of a formula
from an exponential size blowup (Hu & Dill 1993). More
recently, (Kautz, McAllester, & Selman 1997) have shown
how variable dependency can be exploited in local search
for the satisfiability problem.

We now turn back to logical characterizations of defin-
ability. As a corollary of Beth’s theorem (Beth 1953) (stated
in the more general framework of first-order logic), we get
the equivalence between theimplicit form of definability
given above and the followingexplicit form: X (explicitly)
definesy w.r.t.� iff there is a formula�y s.t.V ar(�y) � X
and� j= (�y , y); when it exists,�y is clearly unique up
to�–equivalence (i.e., every�0y s.t.�^�y � �^�0y holds
does the job).

For instance, considering our circuit example again, we
know thatfa; b; cg v� z; the corresponding formula�z is
�–equivalent to(a _ b), (b, c).

3Similar results would hold with a notion ofminimalcontrolla-
bility which is omitted for considerations of space.

4From a practical point of view, in the literature on causal rea-
soning,searchingfor bases is a priori useless – they are induced
from the causal structure of the knowledge base.

Interestingly, wheneverX defines nontriviallyy, the ex-
plicit definition of y from X in � can be derived thanks to
the following result, that makes use of the notion offorget-
ting introduced by Lin and Reiter (Lin & Reiter 1994). Let
us recall thatforget(�; X) is defined inductively by: (i)
forget(�; ;) = �; (ii) forget(�; fxg) = (�x 0_�x 1);
(iii) forget(�; X [ fxg) = forget(forget(�; X); fxg).

Proposition 7
X v� y iff � j= (�y , y), where�y 2 PROPX is
defined by�y � forget(�; V ar(�) n (X [ fyg))y 1.

The above result proves particularly helpful when�
is given by its prime implicates. In this situation,
forget(�; V ar(�) n (X [ fyg)) can be computed effi-
ciently by selecting fromIP (�) the prime implicates from
PROPX[fyg (see Lemma 8 from (Lakemeyer 1995)). Once
this formula has been computed, provided that� is consis-
tent, the truth value ofy can be computed in linear time as
the truth value offorget(�; V ar(�) n (X [ fyg))y 1 for
every!X 2 
X .

Definability can be characterized in several other ways.
In (Lang & Marquis 1998), we show how checking defin-
ability comes down to a deduction check thanks to Padoa’s
method (Padoa 1903). Hereafter, we show how definabil-
ity can also be characterized by means of prime implicants
(where

W
PIX� (y) denotes the disjunction of all prime im-

plicants inPIX� (y)).

Proposition 8
X v� y iff � j= (

W
PIX� (y)) _ (

W
PIX� (:y)).

Of course, in the general casePIX� (y) andPIX� (:y) can
be exponentially long. However, provided that these prime
implicants have been computed off-line (and that� is con-
sistent), the truth value ofy can be computed in polynomial
time for everyX–world.

Computing bases
In this section, we propose an algorithm for computing
bases. The following result shows that computing a basis
(resp. the set of all bases) for setsY of variables comes
down to compute it (resp. them) for each variable individu-
ally.

Proposition 9 X v� fy1; : : : ; ypg iff 9X1; : : : ; Xp s.t.
X = X1 [ : : :[Xp andXi v� yi for everyi 2 f1; : : : ; pg.

As a corollary,Bases (Y ) denoting the set of all bases for
Y w.r.t �, Bases (fy1; : : : ; ypg) is the minimization w.r.t.
set inclusion off[i=1::pBi j Bi 2 Bases (fyig)g.

Thanks to Proposition 9, focusing on bases for individual
variables is sufficient; this is the purpose of the algorithm
below. Without any loss of generality, we assume thatX is
contained in a fixed set of “relevant” variablesV �. The util-
ity of V � is to focus on relevant bases, only; for instance, in a
discriminability problem,V � is the set of testable variables.

This is a greedy algorithm which considers all the vari-
ables ofX in any order and throws them away when they
are not necessary for forming a basis from the current set of
relevant variables.



Proposition 10 Provided that the functionDefines re-
turns true iff X definesy w.r.t. �, the algorithm returns a
V �-relevant basis fory w.r.t. � if there exists one, “failure”
otherwise.

There are several possible ways to implement the function
Defines . In the case where the syntactic restrictions on
� makes definability testable in polynomial time, the search
for a V �-relevant basis is itself polynomial because it con-
sists injV �j definability tests (plus one consistency test). In
the general case, an approach to computeDefines that
takes advantage of Proposition 8 consists in compiling�
under the form of its prime implicants. Thus, the prime im-
plicant listsPIV

�

� (y); P IV
�

� (:y) andPIV
�

(:�) (for iden-
tifying impossibleV �-worlds) are computed off-line. These
lists are updated each time a variable is picked up (namely,
prime implicants mentioning these variables are filtered out
from the lists). Now,Defines makes use of this updated
prime implicant lists and explores a search tree the leaves
of which correspond to (partial or complete) instantiations
overX , labelled by the corresponding value ofy whenever
possible. Not only this function checks whetherX definesy
but it also generates a “definition tree” fory fromX .

Begin
If � is inconsistent
then return“failure”;
X  V �;
If not(Defines (X; y))
then return“failure”
else

Z  X ;
Repeat

pick ax in Z;
Z  Z n fxg;
if Defines (X n fxg; y)
thenX  X n fxg;

Until Z = ;;
ReturnX ;

End

Clearly enough, the worst case complexity of this algo-
rithm is high. The contrary would be surprising, since the
corresponding decision problem is hard:

Proposition 11 (Lang & Marquis 1998)
The results are synthesized in the following table5:

definability standard + minimality
standard coNP-complete BH2-complete
+� consistent BH2-complete BH2-complete

Fortunately, some tractable restrictions exist. Especially,
as a consequence of Propositions 33 and 34 from (Lang &
Marquis 1998), our algorithm for computing a basis fory
runs in time polynomial in the size ofV � plus the size of�
whenever� is a set of binary clauses, or a renamable Horn
formula or a DNF formula.

5BH2 (also known asDP) is the class of all languagesL such
thatL = L1 \ L2, whereL1 is in NP andL2 in coNP.

Hypothesis discriminability
We investigate now a notion, slightly generalizing defin-
ability, which has many practical applications ranging from
fault isolation in diagnosis to decision under partial ob-
servability. Intuitively, given a set of hypotheses variables
H = fh1 : : : hng, X discriminatesH w.r.t. � if knowing
the truth values of variables ofX helps finding outone of
thehi being true. This statement may look strange – one
may have preferred to read “finding outwhich one of thehi
is true”. However, while for many problems hypotheses are
mutually exclusive w.r.t.� (8hi 6= hj ;� j= :(hi^hj)) and
covering all possible cases (� j= h1 _ ::: _ hng, this is not
always the case (see below).

Definition 3 A discrimination problem consists in a con-
sistent knowledge base�, X � PS and a set of hypotheses
variablesH = fh1; : : : hng. X discriminatesH w.r.t. � iff
8!X 2 
X 9h 2 H s.t. !X ^ � j= h. X discriminates
minimally H w.r.t. � iff X discriminatesH w.r.t. � and no
proper subset ofX does it.

Clearly, each variablex of X corresponds to an available
test, and performing this test consists in measuring the truth
value ofx.

There is a straightforward link between hypothesis dis-
criminability and definability, in presence of exclusive and
covering hypotheses. Indeed, in this restricted case, finding
out a true variablehi is exactly as hard as finding out the
truth value of all thehk ’s in H , since for anyk 6= i we have
� ^ hi j= :hk. Thus hypothesis discriminability is more
general than definability. However, there is no complexity
gap between both problems:

Proposition 12
HYPOTHESIS DISCRIMINABILITY is coNP-complete.

Thus, when dealing with mutually exclusive and covering
hypotheses, defining families can be used to design minimal
test inputs (Struss 1994) (McIlraith 1994) in order to isolate
faulty components in model-based diagnosis (in this case
hypotheses are candidate diagnoses, and testable variables
correspond most often to available measurements). Note
that McIlraith’s notions of relevant or necessary tests (McIl-
raith 1994) have some counterparts in our framework (for
instance, a necessary test corresponds to a variable with-
out which the hypotheses space cannot be discriminated).
Lastly, the algorithm for computing bases described above
can be used to design conditional test policies (where tests
are performed sequentially and conditioned by the outcomes
of previous tests – see (Lang 1997)).

Another application of hypothesis discrimination isde-
cision making (and planning) under partial observability.
The logical formulation of a (one-stage) decision problem
consists in a description of the initial state by a proposi-
tional formula, a fixed setA of available actions together
with the descriptions of their (context-dependent) effects –
for instance by a list ofSTRIPS-like expressions) and a set of
goals (described for instance by a set of literals). These data
enable computing, for each actiona, the contextha in which
performinga certainly leads to a goal state. In order to find



out a satisfying action, we need to discriminate between the
ha’s, by observing enough of the initial state, knowing that
some variables are measurable and some are not. This is a
discrimination problem, and without the assumption that hy-
potheses are exclusive nor covering all possible situations;
this is important because it is generally useless to find out
the truth value of all theha’s once any of them has been
shown up true – which makes it different (and easier) than
computing a defining family forfha; a 2 Ag. Now, having
in mind that both conditional controllability and hypothesis
discrimination could be applied to qualitative decision under
partial observability, one may wonder why the complexities
do not coincide. Why the latter is much easier then the for-
mer relies on the fact that the “context” of each action is pre-
computed and part of the input, but also on the structure of
the decision space: the set of possible decisions is2X (thus
exponentially large) for the former while it is fixed (and thus
has a constant size) for the latter.

Conclusion
In this paper, a variety of results for conditional controlla-
bility, definability, and closely related problems such as hy-
pothesis discrimination, have been pointed out.

Regarding computational complexity, definability appears
to be much easier than controllability. The high complexity
of controllability is not surprising since decision under in-
complete knowledge with succinct representations (such as
logic) is hard. For instance, Fargier et al. (Fargier, Lang, &
Schiex 1996) give two notions of consistency of a “mixed
CSP” that are close to our notions ofceteris paribusand
unconditional controllability, and show them (respectively)
�

p
2 -complete and in�p

2 . Our results are also related (to some
extent) to recent results about the complexity of probabilis-
tic planning with succinct representations (Littman 1997);
in particular, the latter problem isPSPACE-complete if the
number of stages is polynomially bounded (andEXPTIME-
complete otherwise); since our notions of controllability cor-
respond more or less to “one-stage” planning under (qualita-
tive) uncertainty, we can expect that the complexity of con-
trollability would climb up in the polynomial hierarchy (up
to PSPACE) if polynomially many stages were allowed.

It is clear that controllability and definability are two
strong forms of dependence. We believe that relating them to
various notions of relevance can be useful. The companion
paper (Lang & Marquis 1998) is a first step in this direction.
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