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Abstract. Our incentive is to study the behaviour of lot-sizing rules in a multi-
level context when forecast demand is subject to changes within the forecast window.
To our knowledge, only Bookbinder and Heath (1988) proposed a lot-sizing study in a
multi-echelon rolling schedule with probabilistic demands. But their simulation study
was limited to two arborescent structures with 6 nodes. By means of an extensive
simulation study we show that it is always worth decreasing the error magnitude. This
should encourage companies to develop Electronic Data Interchange to ameliorate
demand forecast.

Although the presence or absence of forecast errors matters more than the error
level, we show that lot-sizing rules exhibit significant differences in their behaviour
as the level of error is augmented. This paper also provides a clear description of the
rolling procedure when applied to general product structures, probabilistic demand
within the forecast window and positive lead times.

Keywords: Material Requirements Planning, multi-level lot-sizing, rolling hori-
zon, forecast errors.



1 Introduction

In the last two decades information technologies have been increasingly adopted in
supply chains. In the mid 80’s bar code usage spread to other sectors than food sector
as its force was to facilitate instantaneous data collection at the point of sale. Later on
Electronic Data Interchange (EDI) has been developed to facilitate rapid transmission
of large amounts of information between retailers and suppliers. Companies along
the supply chain undertake to share sales information or consumer specific queries
to increase the accuracy of forecasting and respond quickly to customers’ evolving
needs.

Providing manufacturers with comprehensive and accurate data relating to the
final customer demand enables sharper demand forecasts. Still unknown is the extent
to which forecast errors may be reduced through the use of precise and up-to-date
sales information. Forecast errors are often in the range of 30-70% and may be
reduced to 10-20% if the company implements voluntarist policies to increase the
accuracy of forecasting. With EDI, one can expect an additional decrease of errors.

From an inventory management perspective, the question is whether or not it is
worth asking for ever more accurate forecasts if forecast errors of even small mag-
nitude have a tremendous impact on the cost effectiveness of lot-sizing techniques
in Material Requirements Planning (MRP) systems. In a past simulation study De
Bodt and Van Wassenhove (1983) have shown that (even small) forecast errors do not
only increase the lot sizing costs in a dramatic way but also tend to homogenize the
cost performance of the various lot sizing techniques: they tend to perform equally
bad. The study was conducted in single-level MRP on a rolling horizon and forecast
errors were injected within the forecast window.

The purpose of this paper is to investigate the impact of forecast errors on the
performance of several lot-sizing techniques in a multi-level environment on a rolling
horizon basis. Our objective is to establish whether or not De Bodt and Van Wassen-
hove’s conclusions are still valid in multi-level MRP systems. Previous research deal-
ing with multi-level problems under rolling conditions rarely considers component
commonality and always assumes zero lead times. However, positive lead times and
general product structures make the application of the rolling procedure substantially
harder and raise infeasibility problems even when demand is known with certainty
within the forecast window. The present study offers a detailed presentation of the
procedure through illustrations followed by a formal description of the main steps of
the procedure.

The paper is organized as follows. Section 2 is dedicated to a literature overview on
inventory policies under rolling conditions. Section 3 provides a detailed description
of the multi-level lot-sizing problem in a rolling-schedule environment. We discuss
the impact of positive lead times and component commonality on the feasibility of
production schedules. Section 4 presents the experimental framework designed to
assess the impact of forecast errors on the cost effectiveness of various lot-sizing
techniques. Section 5 comments on the results of this study. Major conclusions are
drawn in Section 6.



2 Literature overview

Research on lot-sizing decisions in MRP systems has essentially focused on the devel-
opment of single-level and multi-level heuristics for solving problems with determinis-
tic demand over finite horizons. However, this static framework ignores the common
practice of using a rolling schedule. This approach consists in applying a lot sizing
rule over a limited number of future periods, the forecast window, for which demand
is known either deterministically or probabilistically. In the latter case, in each pe-
riod of the window, the actual demand results from the addition of the forecast and
an error term. Usually, only the first lot size is implemented and the horizon rolls
forward the next decision period. New demands are then revealed, the model is up-
dated and the decision of the first period is again enacted. This process is repeated
until the final period of the planning horizon is reached.

Optimal methods for single and multi-level problems with a fixed horizon do not
necessarily provide an optimal solution in a rolling-schedule environment. On the
contrary, several single-level studies have shown that it might be worth using compu-
tationally simple heuristics especially when the forecast window is short. Blackburn
and Millen (1980) show that the Wagner-Whitin algorithm (1958) can be outper-
formed by the Silver-Meal heuristic (1973), notably when the number of known future
demand is limited. De Bodt, Van Wassenhove and Gelders (1982), while analyzing
the effects of forecast errors within the forecast window on cost performance of sev-
eral single-level models, show that it might be worth using the ‘simplistic’ Economic
Order Quantity. Aucamp (1985) provides a comparative study of the performance of
several lot-sizing rules, also used in combination with a look ahead/look back strat-
egy which consists in either increasing or decreasing the lot sizes generated by any
rule until no cost improvement can be found. The author experimentally observes
the poor performance of the Wagner-Whitin algorithm and the consistently high per-
formance of Least Total Cost and Silver-Meal. Bookbinder and Hn’g (1986) show
that a modified version of the Silver-Meal heuristic (to deal with sharply decreasing
demand patterns) and a heuristic by Bookbinder and Tan (1985)—which combines
the Silver-Meal and the Least Unit Cost criteria—ryield the best results in most situ-
ations. However, the Wagner-Whitin algorithm is the best method for large forecast
windows and any demand pattern other than constant demand.

Similar conclusions have been drawn based upon multi-level studies under rolling
schedule conditions. Blackburn and Millen (1982) evaluate the cost performance of
the Silver-Meal heuristic and the Wagner Whitin algorithm, also used in combina-
tion with several cost modifications designed to account for interdependencies among
stages in assembly structures. Simulation results indicate that in many situations,
the Silver-Meal heuristic outperforms the Wagner-Whitin algorithm. Gupta, Keung
and Gupta (1992) show that the Silver-Meal heuristic provides lower costs than the
Wagner-Whitin algorithm in most cases. In a recent study Simpson (1999) finds that
the Silver-Meal heuristic when combined to one of the cost modifications of Blackburn
and Millen (1982) provides the lowest cost schedules under short forecast windows.
For larger windows however, the Wagner-Whitin algorithm yields better results. This
conclusion was already drawn in earlier single-level studies (Blackburn and Millen,
1980, Bookbinder and Hn’g, 1986).

Past results make clear that forecast window length impacts cost performance,
mostly because length dramatically affects the first optimal lot size, a phenomenon



called ‘the horizon effect’. An obvious strategy to overcome this difficulty is to
lengthen the window W so as to stabilize the first lot size. In practice, future demand
data or accurate forecast are available only for a limited number of future periods.
The idea is therefore to use available demand data through W and forecast de-
mand beyond W. This strategy is only useful when combined to the Wagner-Whitin
algorithm as myopic methods ignore additional information and provide identical
schedules, be the horizon extended or not. Implementing such a strategy raises the
question of when to stop extending the horizon. Extension is naturally discontinued
as soon as a planning horizon is obtained. This occurs when the first lot size remains
identical in the optimal solution to ¢-period problems, with ¢ beginning at the next
to last regeneration point (period in which ending inventory equals zero) found in the
optimal solution to the W-period problem and ¢ ending at W — 1.

Horizon extension approaches have been widely implemented in single-level prob-
lems. Carlson, Beckman and Kropp (1982) investigate the impact of extending the
horizon on the cost performance of the Wagner-Whitin algorithm and conclude that
in some situations the more information the better. Kropp, Carlson and Beckman
(1983) propose and test 4 stopping conditions. They conclude that simpler stop-
ping rules perform better. More recently, Russel and Urban (1993) show that, with
horizon extension, the Wagner-Whitin algorithm beats the Silver-Meal heuristic for
moderate to large window values. For small W-values horizon extension does not help
the Wagner-Whitin algorithm to seek improvements over the Silver-Meal heuristic.
Refinement of the horizon extension principle has been brought by Stadtler (2000)
who proposes a cost modification to be used with the Wagner-Whitin algorithm so
as to account for the fictitious aspect of demand data beyond the forecast window.
The idea is to assign to a lot size a cost which is proportional to the periods the
order covers falling within the forecast window. Stadtler expects this modification
to favour more orders in later periods. The resultant look-beyond model yields the
best overall results when compared to the Silver-Meal technique and the heuristic of
Groft (1979).

As already mentioned, the first optimal lot size stabilizes when a planning horizon
is found. Chand (1982) has designed a simple decision rule to select the first lot size
whenever a planning horizon is not found. The rule consists in choosing the first
lot size with a minimum cost per period. The set of first lot sizes is provided by
solving optimally all ¢-period problems, with ¢ = 1,...,W. The computational study
indicates that the modified algorithm exhibits a better behaviour than the Wagner-
Whitin algorithm and the Silver-Meal heuristic. Later on, Chand (1983) has provided
an adaptation of his algorithm to serial systems. Chand is therefore the first author
to design a rolling procedure for multi-stage problems even if it is restricted to the
very specific serial case.

Despite this abundant relevant literature on the rolling-schedule problem, there is
a paucity of research examining multi-level instances with general product structures
and positive lead times. Indeed, existing multi-level studies have been restricted to
the case of small assembly structures ranging from 5 items to a maximum number
of 16 items with zero lead times. The only rolling procedure available in a multi-
level context is even confined to the very specific case of serial systems (Chand, 1983).
However, common industrial settings often involve large-sized product structures with
numerous common parts. Furthermore, the zero lead time assumption is hardly
realistic and more restrictive than it seems at first sight. Indeed, implementing lot



sizing decisions on a rolling basis becomes much more complex in this context (i.e.
positive lead time and general structures) as lot-sizing methods may provide infeasible
schedules due to a lack of component availability.

3 Problem description

3.1 Notation and definition

It is common to represent product structures as directed acyclic graphs (see Book-
binder and Koch, 1990, for example). In such a graph each node corresponds to an
item and each edge (7, ) between node ¢ and node j indicates that item ¢ is directly
required to assemble item j. Node i (equivalently item 4) is fully defined by I'~1(3)
and I'(7), its sets of immediate predecessors and successors. The set of ancestors
~immediate or non-immediate predecessors- of item i is denoted by I'~*(i). Product
structures may be categorized in terms of their complexity index, C, as defined by
Kimms (1997). Recall products are numbered in topological order by the integers
1,..., P and let P(k) be the number of products at level k, with k=0,..., K (K+1
is the depth of the structure). The total number of items obviously equals =X P(k),
which by definition is also P. The most complex—in the sense of having the largest
number of product interdependencies—structure is obtained when each item enters
the composition of all the items located at higher levels in the product structure. By
contrast, the simplest structure obtains when each item enters the composition of
exactly one item belonging to a higher level. Kimms (1997) defines the complexity
of a product structure as
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where A = X | |T'(i)| is the actual number of arcs in the structure. There is of course
a minimal number of arcs such as the product structure is connected, which we denote
Amin and is equal to P— P(0). Conversely there is a maximum number of arcs denoted
Amax that the graph can contain with Amax = S {P(k) - Ef:kHP(j)}. Structures
for which the number of arcs equals the minimum number of arcs (A = Apin) are
necessarily assembly structures with C = 0 whereas structures such as A = Apax
satisfy C' = 1. The C-index is therefore bounded from below and above, whereas the
traditional index of Collier (1981) is not.

Let L; be the cumulative lead time of item ¢ and ; its own lead time (time required
to produce or assemble item 7). We have

L; = L;+1;), 2
i jerlglgﬁi)( i +15) (2)
with L; = 0 for all ¢ with no predecessor. As decision periods are the periods in which

we order and not the delivery periods, lead time [; of item ¢ itself is not included in
the definition of L;.

Let W be the forecast window length and T the problem horizon length, with
W < T. For each decision period t, lot-sizing rules are applied on time interval
R={t,...,min(t + W — 1,7}, with t = 1,...,T and only the first lot size (that
of period t) is executed. Within interval R, demand for end items is either known



with certainty or probabilistically. In the latter, demand forecast is subject to error
(note the word ‘forecast’ is not used when there is no error). The interval on which
lot-sizing rules are applied may be extended to E periods, to increase their efficiency.
Interval R becomes R = {t,...,t+W —1,... min(t+ E—1,T)}. Demand in periods
t+W,...,t+ FE may be generated with the same pattern as the one utilized in periods
t+1,...,t+ W — 1. This demand is always fictitious.

Gross requirements d; s for item 7 in period s € R correspond to the demand that
must be satisfied in period s+ I;. Gross requirements are either forecasted or known
with certainty for end items within the forecast window whereas gross requirements
for components result from planned orders at higher levels.

Let x;; be the firm order for item ¢ in period ¢. It is the number of units of item
¢ which is ordered in period ¢ to fill the net requirements for item ¢ in period t + I;.

The pipeline inventory Z; ¢ represents the amount of inventory for item ¢ at the
end of period s if demand d; ; is to be satisfied. We have
Zis = Zis1+Tis—dis, (3)
with Zio = I;0.

Inventories and orders reduce the gross requirements to the net requirements. Net
requirements b; s result from the following definition/computation

bi,s = IIlaX(O, di,s — Zi,s—l — xi’s). (4)

Once net requirements have been computed in time interval R, any lot-sizing rule
is applied on these net requirements so as to obtain planned orders p; ; representing
quantities that will possibly be launched in period s. Only the first planned order
pi¢ is transformed into a firm order x;;. In other words, we set x;: = p;+ and x;¢
corresponds to a quantity that is really ordered in period ¢t. Planned orders and firm
orders are used to compute gross requirements for components as follows

- X - ) misif s+l <t
dio = D2 ig - Kjspt, with Xjop, = ¢ 700 G ise (5)
JET(9) J,s+;

where ¢; ; denotes the production ratio (number of units of ¢ to produce one unit of
7)-

When period T is reached, we are able to compute the inventory I;; for all items
and periods for cost calculation purposes. We have

Liy = Lig 1 +7rig — dig, (6)

where r;; denotes the scheduled receipts for item 7 in period ¢. Scheduled receipts
simply correspond to firm orders after completion, that is 7; ; = x; ;—;,. Gross require-
ments d; ; no longer result from planned orders but from firm orders

dig = > Cij-Tjp (7)
Jer(@)

as orders have all been launched at the end of the problem horizon.



3.2 Rolling procedure under certainty

This subsection is dedicated to a description of the rolling procedure applied to
general product structures involving positive lead times. We show how a situation of
stockout may appear in that situation even if demand is known with certainty within
the forecast window. We use a simple example to illustrate the functioning of the
rolling procedure. Let us consider the example in Figure 1.

1
@ o P=5 C=06 N=3 T=12 W=4

Item i 1 2 3 A 5

S; 8 35 20 32 44

e hi  0.885 0.120 0.127 0.118 0.001
I; 0 0 1 1 1
Li 3 9 9 1 0
5

Figure 1: Data of an example

Product structure in Figure 1 involves 5 items with a complexity index equals
C =(7T—-4)/(9—-4) = 0.6. We chose T" = 12 and W = 4, which means that
we apply any lot-sizing rule on the net requirements for 4 periods of deterministic
demand. Lead times are only positive for items 2, 3 and 4. Table 1 exhibits the rolling
procedure for the first three periods of the planning horizon. At the beginning,
(t = 1), we know the demand for the end item 1 in periods 1 to 4 and we must
implement launching decisions for all items in period 1. In this example, we have
applied the Wagner-Whitin algorithm in a sequential fashion. The algorithm proposes
the lot for lot solution for item 1 and a single lot size for the components. We
implement the first lot-sizing decision, so we set x;1 = p; 1, Vi. In period 2, a new
demand is revealed (that of period 5) so we still know 4 future demands. For the first
three items, the Wagner-Whitin algorithm suggests an order in period 5 to cover the
new demand. Gross requirements for item 4 have increased in period 3 and 4; a new
order is now required in period 3. A similar situation can be observed for item 5.
We set z;2 = p; 2 for all items. In period 3, the Wagner-Whitin algorithm operates
on periods {3,4,5,6}. The lot for lot solution is still suggested for the end item. For
items 2 and 3, the planned order in period 4 has been increased to cover the new
demand of period 6. A single order is still proposed for item 4 in period 3. Given
that planned orders in period 3, we may recompute the gross requirements for item
5 in period 2, using formula (5). We have ds2 = pa3 + p1,3 = 210 + 39 = 249 but
in that period we only have Z5 1 + 252 = 85 4+ 136 = 221 and it is already too late
to increase x5 o for this lot size belongs to the past. The stream of planned orders in
period 3 is therefore infeasible as Z5 o = Z5 1 4+ 252 — d5 2 = 85 4+ 136 — 249 < 0.



seER 1 2 3 4 1 2 3 4 5 1 2 3 4 5
di,s 56 | 36 39 46 36 39 46 34 39 46 34
b1s 56 | 36 39 46 36 39 46 34 39 46 34
Pi,s 56 | 36 39 46 36 39 46 34 39 46 34
AW 0 0 0 0 0 0 0 0 0 0 0
da,s 56 | 36 39 46 36 39 46 34 39 46 34
b2 s 56 | 36 39 46 0 0 0 34 0 0 34
p2,s | 177 0 0 0 0 0 0 34 0 0 70
Za.s 0 0 0 0 85 46 0 0 46 0 0
ds,s 36 | 39 46 0 36 39 46 34 0 39 46 34 36
b3,s 36 | 39 46 0 0 0 34 0 0 34 36
p3,s | 121 0 0 0 121 0 0 34 0 0 70 0
Z3.s 0 0 0 0 85 46 0 0 0 85 46 0 0 0
dy,s 36 | 39 46 0 36 39 80 68 0 39 | 116 | 104 36
bas 36 | 39 46 0 0 34 68 0 70 | 104 36
pas | 121 0 0 0 121 0| 102 0 0 210 0 0
Zys 0 0 0 0 85 46 0 0 0 85 46 0 0 0
ds,s 36 | 39 46 0 36 | 141 46 34 0 249 46 34 36
bs,s 36 | 39 46 0 56 46 34 0 46 34 0
ps,s | 121 0 0 0 121 | 136 0 0 0 136 0 0 0
Zs.s 0 0 0 0 85 0 0 0 0 85 -28 0 0 0

o O OO oo oo

o O oo

di,s: gross requirements for item 4 in period s, b; s: net requirements, p; s: planned order,
Z; s: pipeline inventory.

Table 1: A situation of stockout

We are now able to provide a formal definition of the feasibility of planned orders.
A stream of planned orders in period ¢ is feasible (and may be transformed into firm
orders) if and only if

Zik—1+xip > dip V i| (1) # (0 and Vk € {t—1,...,t —1}. (8)

To check this inequality, we only need to recompute the gross requirements in time
interval {t —l;,...,t — 1}, using formula (5).

Fach time the above inequality is not satisfied, we face a stockout. The most
natural solution to cope with such a situation is to introduce safety stocks at all
levels in the product structure. This solution is widely employed in a stochastic
context. Whenever a stockout is about to occur the safety stock is increased so as
to avoid lost demands. In the above example, a safety stock of 28 units for item 5
would have impeded the stockout exhibited in Table 1. Such a safety stock strategy
is obviously implemented at the expense of extra carrying costs.



3.3 Rolling procedure under probabilistic demand

Let us consider our example in Figure 1 and suppose the lot for lot solution is sug-
gested for items 1 and 3. It is only necessary to consider these two items to illustrate
the functioning of the rolling procedure when demand is not certain. Table 2 displays
the procedure for items 1 and 3 for the first two periods of the planning horizon. In
period t = 2, demand for item 1 in periods 2, 3 and 4 has changed and the demand
in period 5 is now known probabilistically. Demand increase in period 2 triggers a
bigger demand for item 3 in period 1 that cannot be covered by a proper order (it is
too late). We therefore face a stockout of 4 units of item 3 in period 1.

t=1 t=2
Period s € R 1 2 3 4 1 2 3 4 5
Grossreq. di,s | 56 | 36 39 46 56 | 40 | 37 43 34
Net req. b1,s | 56 | 36 39 46 56 | 40 | 37 43 34
Plan. order p1,s | 56 | 36 39 46 56 | 40 | 37 43 34
Pipe. Inv. Z1 6 0 0 0 0 0 0 0 0 O

Grossreq. d3,s | 36 | 39 46 0 40 | 37 | 43 34 0

Net req. b3,s | 36 | 39 46 0 4137|143 34 0
Plan. order p3s | 36 | 39 46 0 0 0 3 0
Pipe. inv. Z3 0 0 0 0 -4 0 0 0

Table 2: The occurrence of a stockout under probabilistic demands

This example provides a typical illustration of stockout situations arising when
demand forecast is subject to error. Actually, stockouts could be tolerated at the
expense of a lower service level. Several lot-sizing rules may provide different results
both in terms of cost effectiveness and service levels. As it is tricky to compare them
on the basis of these two criteria, we introduce safety stocks for all components so
as to make the service level always equal to 100%. Bookbinder and Heath (1988) or
Wemmerlov and Whybark (1984) have implemented a search routine for the appro-
priate values of safety stocks. First no safety stock is introduced and the maximum
stockout is recorded. Second, the safety stock is set to the value of the maximum
stockout and the lot-sizing rule is re-applied. The safety stock is adjusted each time a
stockout is about to occur. Once the safety stock is large enough, the rule is applied
over the whole problem horizon and the cost is computed.

3.4 Formal presentation of the rolling procedure with safety stocks

Table 3 lists the operations to be performed in a rolling schedule environment for all
items ¢ in the current period ¢ for which set-up decisions must be implemented. We
first recompute the gross requirements and pipeline inventories in past periods {t—; —
1,...,t—1}. In period t—[; — 1 gross requirements take their final value as d; ;—;,—1 =
> ¢ij-xjt—1 with all z;;_; determined in the previous period. This preliminary
Jer(@@)
computation is necessary to determine the net requirements in time interval {t, ..., t+
W — 1} on which we shall apply any lot-sizing rule so as to obtain a stream of
planned orders {p; s}s=¢, .. ++w—1. Computation of net requirements incorporates the

10



safety stock SS; for each item ¢. The boolean variable ‘IncludeSS’ ensures that the
safety stock is only included in the first planned order of the forecast window W.
Once planned orders have been determined along the forecast window, we implement
the first lot size decision by setting x;+ = p;¢. This firm order triggers scheduled
receipts ; period(s) later. When the current period is the first period (¢ = 1),
scheduled receipts are set to a value that makes any solution feasible. By doing
so, we ensure production possibilities for all items within the cumulative lead time.
When large product structures are considered, cumulative lead times may be so long
that nothing is produced for a large portion of the horizon. To smooth away periods
with zero production some authors (like Wemmerlov and Whybark, 1984) simply
choose to record no statistics for a given number of periods they call the start-up
period. Finally, ending inventories are computed and stockouts (SO; ;) are recorded
for each item in each period. Values of safety stocks SS; are updated and the full
rolling procedure is repeated until no more stockout occurs.

4 Experimental framework

We begin with a brief presentation of the lot-sizing techniques included in the study.
We then describe how demand and forecast errors are generated. We finally provide
our cost generator and discuss the values of other parameters which were employed
in the experiment.

4.1 Lot-sizing procedures

We selected seven single-level lot-sizing rules for use in the study. The Wagner-Whitin
algorithm (1958), the Silver-Meal technique (1973), the incremental part period algo-
rithm (1968), the Silver version of the economic order quantity (Silver, 1976) and the
periodic order quantity. The lot for lot solution was initially included but its extreme
performance led us to abandon it. Despite the development of heuristics specifically
designed to account for interdependencies among stages, the chosen heuristics are
still widely adopted in practice under rolling and multi-level conditions.

The Wagner-Whitin algorithm (WW) provides the optimal solution to the single-
level lot-sizing problem by use of dynamic programming. The economic order quan-
tity (EOQ) is the traditional Wilson lot-sizing model which balances the inventory
carrying costs and order costs. The Silver version of this method lumps an integer
number of future demands closest to the EOQ value. The periodic order quantity
(POQ) uses the EOQ to determine the reorder time cycle and then orders what is ac-
tually forecasted for that time cycle. The incremental part period algorithm (IPPA)
increases the size of the order until carrying costs are equal or less than the set-up
cost. The Silver-Meal heuristic selects the order quantity so as to minimize the cost
per unit time over the time periods the order lasts. The least unit cost (LUC) selects
the order quantity so as to minimize the cost per unit (cumulation of the requirements
until the cost per unit starts to increase).

4.2 Demand generation

Within the forecast window, demand for end items is defined as

dy=ds+esVs=1t,....t+W—1

11



repeat
fort=1,...,T
fori=1,...,P

Computation of d, Z and b
fors=t—10;—1,....t—1
recompute d; s (equation (5))
recompute Z; s (equation (3))
IncludeSS=true
fors=t,....,t+W —1
compute d;
if IncludeSS=true

set A1 = 551
else
set A; =0

if Z s+ <djs + A
bis=dis+A;—Z; 51—

Zi,s =0

IncludeSS=false
else

bi,s =0

Zis =g 1+ Tis—dis
apply any lot-sizing rule on {b; s }s=¢,.. 1+w—1
(we thus obtain {p; s}s=t,. . t+w—1)
set i+ = pit
set Tit+1; = Tit

by

Initial values for scheduled receipts

ift=1
for s=1,...,1;
Tis = Z Dj,s

JET (i)

Ending inventories and updated safety stocks

fori=1,...,P
fort=1,...,T
Iy =max(l; y—1,0) + 7154 — d;y
if I, ; <0
SOt = —1Iiy
else
S0;+=0

S5S; =588, + max_ SO;,
t=1,....T

until > < max SOM> = 0 (no more stockout)
P

i1 t=1,..,T

)
2 .

Table 3: Rolling procedure with safety stocks

where CZS is the estimated demand and e, is the forecast error. Although several end
items could have been included in the present study we chose to take only one end
item per product structure for the sake of simplicity.
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4.2.1 Demand patterns

Estimated demands may follow different patterns. We chose to generate demand for
the end item from a uniform distribution of mean 50. We have d, ~ U[0,2d|. Stan-
dard deviation of estimated demands therefore equals (1/12(100 — 0)?) 12 — 28.86.

We also chose to generate demands from a normal distribution with same average
and standard deviation: ds ~ N[50, 28.86].

4.2.2 Forecast errors

We hypothesized €5 ~ N (0,0,) and we selected two patterns for the forecast errors.
We first assumed that forecast errors have a constant variance

os=0 Vs=t,....t+W —1and o= {0.08, 0.1d, 0.2d, 0.3d, 0.48,0.58,0.68} .
Like De Bodt et al. (1982), we also considered increasing errors with time
os=(s—t)-0 Vs=t,....t+W —1,

with the same values for ¢ as above. Demand in period ¢ is known with certainty
whereas error variance equals ¢ in the next period, 20 for two periods ahead and so
son. Whenever ¢, — ds < 0, we set ds to zero and the actual demands were adjusted
so that the average actual demand was equal to the forecast mean.

4.3 Cost generation

In accordance with the assumption of value-added holding costs, carrying costs for
each item were defined as follows

hi=e;+ Y cji-h; with e; =0.0005+ 0.02 x u,
Jer-1(i)

where w is selected from a uniform distribution between 0 and 1.
We used the TBO (time between orders) factor to determine set-up cost param-
eters. For each item we set

S; =0.5- E, - hy TBO? with 81 = Z Cih -8h.
hel'(2)

Three levels of TBO were chosen: 2, 4 and 6.

4.4 Other parameters

Lead times were uniformly drawn at random in the set {1,2}. Product structures
were defined in terms of the complexity index C. We chose 4 values of C' in the set
{0.00,0.25,0.50,0.75}. In the first phase of our experiment, we involved structures
with one end item made of 9 components (P = 10), the lowest level was set to 3
throughout and the planning horizon was set to 60 periods. In the second phase,
larger problems were generated with P = 50, N = 8. The horizon length was set
to 120 periods as in earlier studies (e.g. De Bodt et al. 1982).In both phases the
forecast window length was a function of TBO values. Blackburn and Millen (1980)
reported that a forecast window of 3 TBO was appropriate for heuristic procedures
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whereas Lundin and Morton (1975) suggested that a window of 5 TBO should be
used for WW. Consequently, we set W =3 x TBO and W =5 x T'BO. Each of the
2x2xXT7x3x4x2=0672 experiments was replicated 5 times, therefore providing
3360 cost observations per lot-sizing rule.

5 Simulation results

As already mentioned, the experiment was divided into two phases. The first sub-
section presents the simulation results for problems of moderate size in which we
included the Wagner-Whitin algorithm. Execution time of WW precluded its use
for larger problems. In the first phase, WW was already greedy compared to other
techniques. For instance to solve one rolling problem with P = 10 and T = 60, each
single-level technique is applied approximately P x T = 600 times and determination
of appropriate values for safety stocks requires on average 3 passes or runs of the full
rolling procedure. Thus, to get cost observations associated with one technique and
one scenario, we need to apply the concerned technique 3 x P x T' = 1800 times.
For these small instances, it required on average 0.06 sec. for any heuristic other
than WW to solve one case (including the determination of safety stock values). Ex-
ecution time of WW was 70 times higher with an average of 4.38 sec. per scenario
(simulations were run on a Pentium III, 450 Mhz). Thus, despite the development of
ever more powerful computers, computational disadvantage of WW is unmistakable
under multi-level rolling conditions.

5.1 small instances

Table 4 gives for any lot-sizing rule the average cost decrease resulting from an error
depletion (each entry is an average of 480 observations). For instance, reducing
the error from 10% to 0% yields a cost decrease of 52.65% using the IPPA rule.
The first row clearly shows that switching from a situation of low error (10%) to a
situation of certainty leads to a cost reduction of about 50% whatever the employed
technique. Decreasing the error level yields better cost reductions when the initial
level of uncertainty is moderate: cost reduction is about 3% for an error decrease
from 20% to 10% whereas it approximates 1% for a decrease in uncertainty from 60
to 50% or 50 to 40%. Whatever the selected technique reducing the error level always
leads to a significant cost decrease.

IPPA WW EOQ POQ LUC SM

Error decrease (%)

10-0 —52.66 —50.38 —=39.72 —49.02 —-49.54 —-50.20
20—-10 -3.03 =363 -19 —447 =251 -2.59
30 —20 -248 -185 =075 —-2.26 —2.25 —2.55
40 - 30 -144 -151 -113 —-163 —-1.54 —-1.93
50 — 40 -1.06 -1.37 +022 -1.04 -1.09 —-1.05
60 — 50 -134 -118 -0.71 -1.74 -1.04 147
60 — 10 -949 -97 -503 —-11.7 —8.89 —9.57

Table 4: Average cost decrease per error decrease

Table 5 provides for each technique the average cost deviation relative to the best
overall rule namely IPPA (bold numbers). For each error level we have 2 x 2 x 3 x
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2 x 5 x 4 = 480 cost observations per rule (2 demand patterns, 2 error patterns, 3
TBO values, 2 window lengths, 4 values of the complexity index and 5 replications).
In each of these 480 situations we divided the cost of a given technique by the cost
provided by IPPA in the same situation and then averaged over the 480 scenarios.
Table 5 also gives the standard deviation computed in a similar way (regular numbers
below bold numbers). For instance, WW produces costs that are on average 6.95%
higher than the costs of IPPA with a standard deviation of 21.36% in case of no
error. The last five rows exhibit the result of testing the impact of error levels on the
relative cost performance of the heuristics using the non-parametric Kruskal-Wallis
ANOVA.

Factor Value WW EOQ POQ LUC SM
Error 0.00 6.95 34.97 11.64 12.31 10.40
(480 Obs.) 21.36 32,56 2297 797 13.32

0.10 1.63 4.51 3.54 6.34 4.69
6.81 7.39 7.27 8.30 7.13

0.20 2.28 3.38 5.32 5.78 4.14
6.09 7.53 8.20 8.33 6.88

0.30 1.62 1.66 5.20 5.63 4.16
5.35  6.96 8.18 8.47 6.53

0.40 1.72  1.38 5.63 5.89 4.66
5.37  6.91 8.31 8.62 6.57

0.50 2.04 0.12 5.72  6.23 4.67
5.32  6.73 7.42 10.14  6.95

0.60 1.88 -0.41 6.23 6.08 4.80
5.02  6.52 7.61 10.68  7.00

p.c. % c>0 4182 0.00 0.00 0.00 0.00

oc>10 43.79 0.00 0.00 5343 4447

oc>20 40.34 0.00 11.69 91.71  32.32

c>30 6096 0.00 9.07 90.47  39.60

oc>40 73.19 0.00 50.57 76.56  82.26

oc>50 59.10 27.70 26.05 64.22 58.80

Table 5: Means and standard deviations of cost increases - small instances

To highlight the results in Table 5, we chose to plot the average cost deviation
from IPPA in Figure 2 for all positive error levels (for o = 0, cost deviations were too
dispersed to be included in the Figure). This figure also provides the results of the
Wilcoxon test for paired samples we used to explore differences between lot-sizing
rules for each positive error level. The test was performed on gross cost observations
and was used to appraise the null hypothesis that the costs produced by two different
techniques come from the same distribution. A vertical line linking two points or a
squared around two points in Figure 2 means that no statistically significant difference
exists between the two concerned techniques at the 5% level.

For 0 = 0 (no error, see Table 5) IPPA is the best heuristic followed by WW
that produces on average cost that are 6.95% higher than those resulting from IPPA.
However, the Wilcoxon test revealed that there are no significant differences between
IPPA and WW. POQ, SM and LUC produce costs that deviate from IPPA by 10-12%
but these heuristics are all different. The worst technique under certainty is EOQ
with an average cost deviation of 34.97%.

As soon as uncertainty is introduced (o = 10%), cost deviations from IPPA imme-
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Figure 2: Average cost deviation relative to IPPA and Wicoxon test results - small
instances.

diately decrease and become less dispersed than they are under certainty. However,
significant differences exist between some pairs of rules. WW is the second best
heuristic after IPPA. IPPA and WW are different from each other and also from the
rest of the techniques. POQ and EOQ are not significantly different and perform
worse than ITPPA and WW. The worst heuristics are LUC and SM and they are not
statistically different from each other.

For 0 = 20% to o = 60%, POQ behaves exactly in the same way as LUC and ex-
hibits the poorest performance. SM performs better than LUC and seems to produce
better costs than POQ although there are no significant differences between SM and
POQ. From Figure 2 it can be seen that these three heuristics exhibit a very similar
behaviour for the various levels of error and differences between their cost deviations
are clearly steady over the o-values. Results of the Kruskal-Wallis ANOVA test show
that the performance of these three procedures is no longer affected by the magnitude
of errors as soon as 0 > 20% (critical probabilities in Table 5 for o > 20% to o > 50%
are all superior to 5%).

WW still appears as the second best method after IPPA for errors up to 30%.
As outlined by the ANOVA test (see Table 5) its performance is not affected at all
by the introduction of uncertainty. On Figure 2 we can easily observe that WW’s
average deviation from IPPA is always around 2% whatever the magnitude of errors.

EOQ is the only heuristic whose performance dramatically improves with the level
of uncertainty (see Figure 2). This is confirmed by the critical probabilities in Table
5: up to o = 50% there are significant differences in EOQ’s relative cost performance
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from one error level to the next. This result is consistent with prior single-level studies
(De Bodt et al., 1982 and Wemmerlov, 1984). Starting with the worst cost deviation
from benchmark under certainty, the performance of EOQ gradually improves so as
to reach that of WW for ¢ = 30% and that of IPPA for o > 50%.

Factor Valuee WW EOQ POQ LUC SM
C 0.00 3.19 6.48 5.27 5.26 5.14
(840 obs.) 10.91  22.05 12.70 8.35 8.68

0.25 3.15 712 6.31 7.03 5.53

10.07 18.41 11.41 9.75 8.64

0.50 2.86 6.03 7.33 6.91 5.39

9.45 16.06 11.15 8.37 8.06

0.75 1.16 6.44 5.82 8.38 5.39

8.47 15.50 10.78 10.12 8.01

p.c. % 0.05 0.01 0.00 0.00 31.77

Demand Uniform 2.03 6.89 7.21 7.72 5.51
pattern 9.70 1859 12.56 9.99 8.77
(1680 Obs.) Normal 3.15 6.14 5.16 6.07 5.22
9.87 17.77 10.35 8.35 7.91

pc. % 0.23 0.09 0.00 0.00 94.31

TBO 200 3.58 11.60 7.73 11.64 -0.74
(1120 obs.) 11.06 23.00 9.79 10.06 3.61
4.00 3.11 7.30 7.09 4.01 3.90

9.23 17.19 12.27 7.17 5.50

6.00 1.09 0.64 3.74 5.04 12.93

8.79 10.36 12.03 8.33 8.32

pc. % 0.03 0.00 0.00 0.00 0.00

Error constant  2.40 7.63 4.53 5.59 4.48
pattern 10.11 17.91 11.26 8.23 8.10
(1680 obs.) increasing 2.79 5.41 7.84 8.20 6.24
9.47 18.39 11.61 9.99 8.51

p.c. % 13.58 0.00 0.00 0.00 0.00

Table 6: Means and standard deviations of cost ratios for other factors and critical
probabilities - small instances

Table 6 displays the average cost deviations from IPPA for the other factors in-
cluded in the study (C,TBO,...). These average cost ratios appear in bold numbers
and standard deviations are the regular numbers underneath. Table 6 also exhibits
the critical probabilities for the Kruskal-Wallis ANOVA test which was used to ap-
praise the impact of the various factors on the performance. Product structure com-
plexity has a significant effect on the rules’ relative cost performances (apart from
SM) but the relationship between complexity and cost ratios is unclear. There is
only a tendency for WW to improve as complexity is increased. The choice of a
particular demand pattern also impacts on the cost performance except for SM. Cost
performance of all heuristics except SM tends to improve as the level of TBO is in-
creased. This is possibly due to a wider visibility as forecast windows are increasing
with TBO and usually longer windows ameliorate the cost performance. The error
pattern exerts influence on the cost performance of all techniques except WW which
was already insensitive to the error level. EOQ’s relative cost performance improves
for errors increasing in time. EOQ’s relative performance is definitely better with
more errors.
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5.2 Larger problems

Table 7 is analogous to Table 4 and displays the average cost reduction obtained by
gradually diminishing the error level.

IPPA SM _ LUC EOQ POQ
Error decrease (%)

10-0 -07.51 -58.23 -51.14 -28.98 -32.66
20-10 -3.11  -343 -239 -142 -2.99
30-20 -209 -230 -124 -1.02 -2.36
40-30 -1.25  -148 -1.29 -0.71 -0.81
50-40 -1.29  -1.06 -045 -0.66 -1.14
60-50 -0.89 -094 -124 -1.18 -1.03
60-10 -8.53 -9.07 -6.73 -5.11 -8.34

Table 7: Average cost decrease per error reduction - larger problems

As expected, reducing the error level from 10% to 0% yields the biggest cost
reductions, whatever the employed technique. This reduction approximates 50% for
IPPA, SM and LUC whereas it reaches 30% for EOQ and POQ. Again, the cost
reduction is always more important when the (initial) error level is moderate.

Like Table 5, Table 8 presents the average cost deviations relative to IPPA, the
standard deviations and the results of the Kruskal-Wallis ANOVA test for 50—item
product structures over a total number of T' = 120 periods.

Factor  Value SM LUC EOQ POQ
Error 0.00 0.78 16.75 82.69 85.55
(480 obs.) 11.79  10.74 48.70  73.13
0.10 0.77 1.99 1.24 6.88

3.87 6.91 7.00 6.01

0.20 1.10 1.18 -0.56 6.73

3.86 6.24 6.85 5.71

0.30 1.30 0.36 -1.57 7.07

3.67 6.57 7.25 6.15

0.40 1.57 0.33 -2.18 6.62

3.97 5.99 7.16 6.18

0.50 1.35 -0.54 -2.87 6.51

3.77 5.89 6.66 5.83

0.60 1.39 -0.15 -2.57 6.68

3.87 6.24 6.44 5.95

p.c. % c>0 0.00 0.00 0.00 0.00
c>10 1.31 0.00 0.00 64.69

c>20 4996 0.00 0.00 68.67

oc>30 83.54 4.46 0.54 67.82

o >40 66.50 9.73  26.11  96.70

oc>50 89.99 5864 57.01 81.85

Table 8: Means, standard deviations of cost increases and ANOVA test results -
larger problems

Figure 3 plots the average cost ratios displayed in Table 8 and summarizes the
results of the Wilcoxon test used to appraise the differences between heuristics.

Under certainty, IPPA is again the best heuristic followed very closely by SM.
LUC produces cost that are 16.95% higher than IPPA. EOQ and POQ exhibit the
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worst performance with a cost deviation superior to 80%. No significant differences
exist between these two rules.

When uncertainty is introduced (o = 10%), performance of all rules (except SM)
dramatically improves so performance differences between rules are less contrasted.
IPPA is still the best heuristic closely followed by SM, LUC and EOQ with no sig-
nificant differences between these three rules. POQ appears as the worst technique
with a cost deviation about 7%.

For 0 = 20% to o = 60%, SM exhibits a steady behaviour with an average
deviation to IPPA around 1.40%. The ANOVA test shows that POQ’s performance
is no longer affected by the error level as soon as o > 20%. POQ is the worst heuristic
and is actually not affected at all by the magnitude of error, only the existence of
uncertainty matters. LUC behaves exactly in the same way as IPPA with no more
significant differences between these two rules from o = 30 to 60%. EOQ is again
the only heuristic for which the level of error matters and EOQ clearly outperforms
IPPA for error levels superior to 30%.

¢ [PPA o SM x LUC 4 EOQ x POQ
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X X % X X X
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Figure 3: Average cost deviation relative to IPPA and Wilcoxon test results - larger
problems

Table 9 gives the average cost deviations from IPPA and standard deviations
for the other factors included in the study (C,TBO,...). Like Table 6, table 9 also
displays the results of the Kruskal-Wallis ANOVA test which was used to check the
impact of the various factors on the relative cost performances.

Every factor level seems to matter. There is a tendency of the procedures to
improve as complexity is increased. Heuristics seem to perform better when a uniform
demand pattern is considered. Generally cost performance improves with higher TBO
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Factor Value SM LUC EOQ POQ

C 0.00 2.30 2.96 18.83 22.64

(840 obs.) 773 812 55.66 57.21
0.25 1.59 3.10 7.51 16.33

4.48 942 23.98 32.27

0.50 0.63 3.22 8.46 16.72

4.88 10.19 2596 30.74

0.75 0.19 2.10 7.59 16.33

4.87 8.65 2355 30.54

p.c. % 0.00 21.56 0.00 0.00

Demand Uniform  0.87 3.44 9.39 14.75
pattern 6.55 9.21 3146 19.64
(1680 Obs.) Normal 1.49 2.25 11.81 21.26
4.67 9.02 38.76 51.98

p.c. % 0.00 0.00 0.45 0.00

TBO 200 -0.29 2.80 11.71 24.69
(1120 obs.) 293 11.20 41.52 57.01
4.00 0.41 1.87 10.00 13.54

513 737 3531 23.79

6.00 3.42 3.87 10.08 15.79

740 830 27.77 2791

p.c. % 0.00 0.00 0.00 0.00

Error constant 0.53 4.00 13.00 18.09
pattern 563 846 34.34  39.36
(1680 obs.) increasing 1.83 1.69 8.20 17.92
570 9.63 36.11 39.48

p.c. % 0.00 0.00 0.00 8.30

Table 9: Means and standard deviations of cost ratios for otherfactors and critical
probabilities - larger problems
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(except for SM as it was already the case for small instances). Again EOQ performs
better under increasing errors.

6 Conclusions

In this paper, it has been shown that error decrease (equivalently more accurate fore-
cast data) always yields significant cost reductions whatever the employed lot-sizing
technique. However, the relationship between the error decrease and the cost diminu-
tion is not linear: cost reductions are more important when the initial level of error
is moderate. This suggests that companies working on the basis of highly uncertain
demand data might be disappointed by the benefits of implementing EDI as one can
not reasonably expect an error decrease from 50% to 10%. Paradoxically companies
with moderate demand uncertainty have therefore more incentives to develop EDI.

As soon as uncertainty is introduced cost performances relative to benchmark
(IPPA) become less dispersed than they are under certainty. The presence or ab-
sence of errors really matters whereas the error magnitude itself is less important.
This does not mean that all heuristics exhibit similar performances under uncer-
tainty. Heuristics still exhibit significant performance differences but their relative
performances tend to level off as errors grow larger.

When the error level is increased heuristics’ relative performances are no longer
affected by the magnitude of error except EOQ whose relative performance dramat-
ically improves with the error level. This is consistent with prior studies and some
authors posit that EOQ exhibits a good performance because it carries its own safety
stock. As we used Silver’s version of the EOQ, this argument can hardly be valid
since orders always cover an integer number of future demands. A look at the safety
stock values we obtained for all items and each technique revealed that these values
were not lower for EOQ.

IPPA shows the best performance for small instances and larger problems up to
o = 30% (EOQ outperforms IPPA for ¢ = 30% to 60%). WW is ranked second
after IPPA whereas SM, LUC and POQ show a fairly poor performance. As outlined
by Wemmerlév and Whybark (1984) in their single-level study, EOQ seems a wise
choice when companies face wrong forecasts. The present multi-level study confirms
this finding for the largest product structures under examination and for high levels
of uncertainty.

This study is probably one of the first that thoroughly considers multi-level lot
sizing problems with many different product structures involving a reasonably large
number of components. Contrary to prior studies, we also assumed positive lead
times and showed how this affects the functioning of the rolling procedure even when
demand is known with certainty within the forecast window. Although the main
single-level lot-sizing techniques have been included here, procedures that are specif-
ically designed for the multi-level problem are available and could be included in
a future study for the sake of more complete cost comparisons. We chose not to
include these multi-level procedures in the present study because most of them are
based on the Wagner-Whitin algorithm whose computational disadvantage still deters
manufacturers especially under rolling conditions.
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