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Abstract

We study the impact of positive lead times on the multi-level lot-sizing prob-
lem in a rolling schedule environment. We show how stockout situations may
arise even in a context of deterministic demand. We therefore develop a proce-
dure to avoid such stockouts and we compare its performance through a simula-
tion study to a safety stock strategy. Simulation results show the superiority of
the proposed procedure.

1 Introduction

Research on lot-sizing decisions in MRP systems has essentially focused on the de-
velopment of single-level and multi-level heuristics for solving problems with deter-
ministic demands over finite horizons. However, this static framework ignores the
common practice of using a rolling schedule. This approach consists in applying a
lot-sizing rule over a limited number of future periods, the forecast window, for which
demand is known either deterministically or probabilistically. Usually, only the first
lot size is implemented and the horizon rolls forward the next decision period. New
demands are then revealed, the lot-sizing technique is re-applied and the decision of
the first period is again enacted. This process is repeated until the final period of the
problem horizon is reached.

Optimal methods for single and multi-level problems with a fixed horizon do not
necessarily provide an optimal solution in a rolling-schedule environment. On the
contrary, several single-level studies have shown that it might be worth using compu-
tationally simple heuristics especially when the forecast window is short. Blackburn
and Millen (1980) show that the Wagner-Whitin algorithm (1958) can be outper-
formed by the Silver-Meal heuristic (1972), notably when the number of known future
demand is limited. De Bodt, Van Wassenhove and Gelders (1982), while analyzing
the effect of forecast errors within the forecast window on cost performance of sev-
eral single-level models, show that it might be worth using the ‘simplistic’ Economic
Order Quantity. Aucamp (1985) provides a comparative study of the performance of
several lot-sizing rules, also used in combination with a Look ahead/Look back strat-
egy which consists in either increasing or decreasing the lot sizes generated by any
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rule until no cost improvement can be found. The author experimentally observes the
poor performance of the Wagner-Whitin algorithm and the consistently high perfor-
mance of Least Total Cost and Silver-Meal. Bookbinder and Hn’g (1986) show that a
modified version of the Silver-Meal heuristic (to deal with sharply decreasing demand
patterns) and a heuristic by Bookbinder and Tan (which combines the Silver-Meal
and the Least Unit Cost criteria) yield the best results in most situations. However,
the Wagner-Whitin algorithm is the best method for large forecast windows and any
demand pattern other than constant demand.

Similar conclusions have been drawn based upon multi-level studies under rolling
schedule conditions. Blackburn and Millen (1982) evaluate the cost performance of
the Silver-Meal heuristic and the Wagner Whitin algorithm, also used in combina-
tion with several cost modifications designed to account for interdependencies among
stages in assembly structures. Simulation results indicate that in many situations,
the Silver-Meal heuristic outperforms the Wagner-Whitin algorithm. Gupta, Keung
and Gupta (1992) show that the Silver-Meal heuristic provides lower costs than the
Wagner-Whitin algorithm in most cases. In a recent study Simpson (1999) finds that
the Silver-Meal heuristic when combined to one of the cost modifications of Blackburn
and Millen (1982) provides the lowest cost schedules under short forecast windows.
For larger windows however, the Wagner-Whitin algorithm yields better results. This
conclusion was already drawn in earlier single-level studies (Blackburn and Millen,
1980, Bookbinder and Hn’g, 1986).

Past results make clear that forecast window length impacts cost performance,
mostly because length dramatically affects the first optimal lot size, a phenomenon
called ‘the horizon effect’. An obvious strategy to overcome this difficulty is to
lengthen the window W so as to stabilize the first lot size. In practice, future demand
data or accurate forecast are available only for a limited number of future periods.
The idea is therefore to use available demand data through W and forecast de-
mand beyond W. This strategy is only useful when combined to the Wagner-Whitin
algorithm as myopic methods ignore additional information and provide identical
schedules, be the horizon extended or not. Implementing such a strategy raises the
question of when to stop extending the horizon.

Horizon extension approaches have been widely implemented in single-level prob-
lems. Carlson, Beckman and Kropp (1982) investigate the impact of extending the
horizon on the cost performance of the Wagner-Whitin algorithm and conclude that
in some situations the more information the better. Kropp, Carlson and Beckman
(1983) propose and test 4 stopping conditions. They conclude that simpler stop-
ping rules perform better. More recently, Russel and Urban (1993) show that, with
horizon extension, the Wagner-Whitin algorithm beats the Silver-Meal heuristic for
moderate to large window values. For small W-values horizon extension does not help
the Wagner-Whitin algorithm to seek improvements over the Silver-Meal heuristic.
Refinement of the horizon extension principle has been brought by Stadtler (2000)
who proposes a cost modification to be used with the Wagner-Whitin algorithm so
as to account for the fictitious aspect of demand data beyond the forecast window.
The idea is to assign to a lot size a cost which is proportional to the periods the
order covers falling within the forecast window. Stadtler expects this modification
to favour more orders in later periods. The resultant look-beyond model yields the
best overall results when compared to the Silver-Meal technique and the heuristic of

Groff (1979).



Horizon extension is naturally discontinued when a planning horizon is found
since the first optimal lot size stabilizes in that case. But the common situation may
rarely offers this opportunity. Chand (1982) has therefore designed a simple decision
rule to select the first lot size whenever a planning horizon is not found. The rule
consists in choosing the first lot size with a minimum cost per period. The set of first
lot sizes is provided by solving optimally all ¢-period problems, with ¢t = 1,... W.
The computational study indicates that the modified algorithm exhibits a better
behaviour than the Wagner-Whitin algorithm and the Silver-Meal heuristic. Later on,
Chand (1983) has provided an adaptation of his algorithm to serial systems. Chand
is therefore the first author to design a rolling procedure for multi-stage problems
even if it is restricted to the very specific serial case.

Despite this abundant relevant literature on the rolling-schedule problem, there
is a paucity of research examining multi-level instances with general product struc-
tures and positive lead times. However, common industrial settings often involve
product structures with numerous common parts. Furthermore, the zero lead time
assumption is hardly realistic and more restrictive than it seems at first sight. Indeed,
implementing lot sizing decisions on a rolling basis becomes much more complex in
this context (i.e. positive lead time and general structures) as lot-sizing methods may
provide infeasible schedules due to a lack of component availability.

In this paper we develop a procedure to cope with stockout situations that arise
when positive lead times are introduced. This procedure is compared to a strategy
that consists in introducing safety stocks at all levels in the product structure. We
show through simulation experiments the superiority of our procedure over the safety
stock strategy.

The next section is dedicated to a detailed description of the multi-level lot-sizing
problem under rolling schedule conditions. We provide an example of a stockout
resulting from the introduction of positive lead times. Section 3 briefly presents the
safety stock strategy that may be implemented to avoid such stockout situations. The
alternative solution method, namely our repair procedure, is then described. Section 4
is dedicated to the experimental framework designed to compare the cost effectiveness
of several lot-sizing techniques when combined to either our repair procedure or the
safety stock strategy. Section 5 analyses the simulation results. We conclude in
Section 6 with the main findings of our study and limitations.

2 The multi-level lot-sizing problem under rolling sche-
dule conditions

2.1 Statement of the problem

It is common to represent product structures as directed acyclic graphs (see Book-
binder and Koch, 1990, for example). In such a graph each node corresponds to an
item and each edge (,7) between node ¢ and node j indicates that item 7 is directly
required to assemble item j. Node i (equivalently item ) is fully defined by T'~(4)
and T'(7), its sets of immediate predecessors and successors. The set of ancestors
—immediate or non-immediate predecessors— of item i is denoted by I"~1 (7). Product
structures may be categorized in terms of their complexity index, C, as defined by
Kimms (1997). Recall products are numbered in topological order by the integers
1,...,P and let P(k) be the number of products at level k, with k =0,..., K (K+1



is the depth of the structure). The total number of items obviously equals S P(k),
which by definition is also P. The most complex—in the sense of having the largest
number of product interdependencies—structure is obtained when each item enters
the composition of all the items located at higher levels in the product structure. By
contrast, the simplest structure obtains when each item enters the composition of
exactly one item belonging to a higher level. Kimms (1997) defines the complexity
of a product structure as

A— Amin (1)
Amax - Amin

where A = XX | |T(4)| is the actual number of arcs in the structure. There is of course
a minimal number of arcs such as the product structure is connected, which we denote
Amin and is equal to P—P(0). Conversely there is a maximum number of arcs denoted
Apax that the graph can contain, and which is written as Apax = Ei(:_ol{P(k) .
Ef: p4+1P(j)}. Structures for which the number of arcs equals the minimum number
of arcs (A = Apin) are necessarily assembly structures with a zero C-value, whereas
structures such as A = Apax satisfy C = 1. The C-index is therefore bounded from
below and above, whereas the traditional index of Collier (1981) is not.

C =

Let L; be the cumulative lead time of item ¢ and [; its own lead time (time required
to produce or assemble item 7). We have

L; = L;+1; 2
i jeflf}fif((i)( i 1), (2)
with L; = 0 for all 4 with no predecessor. As decision periods are the periods in which
we order and not the delivery periods, individual lead times [/; are not included in the
definition of L;.

Let W be the forecast window length and 7', the final period of the planning
horizon, with W < T. Period T is usually infinite, as a rolling problem has no
true end. But in the simulation experiments, period 1" must be set to a finite
value. For each decision period t, lot-sizing rules are applied on time interval R =
{t,...,min(t + W — 1,T)}, with t = 1,...,T and only the first lot size (that of pe-
riod t) is executed. Within interval R, demand for end items is either known with
certainty or probabilistically. In the latter case, demand forecast is subject to error
(note the word ‘forecast’ is not suitable when there is no error). The interval on
which lot-sizing rules are applied may be extended to E periods, to increase their
efficiency. Interval R becomes R = {t,...,t+ W —1,... min(t+FE —1,7T)}. Demand
in periods t+W, ... t+ FE may be generated with the same pattern as the one utilized
in periods t + 1,...,t + W — 1. This demand is always fictitious.

Gross requirements d; , for item ¢ in period s € R correspond to the demand that
must be satisfied in period s + [;. Gross requirements are either forecasted or known
with certainty for end items within the forecast window whereas they result from
planned and firm orders at deeper levels for components.

Let x;+ be a firm order for item ¢ in period ¢. Quantity x;; is the number of units
of item 7 which is ordered in period t to fill the net requirements for item ¢ in period
t+ lz



The pipeline inventory Z; s is defined as
Zis =max(0,7; —1 + x5 — d; s), (3)
where Z; o denotes the actual amount of inventory at the end of period 0.

Net requirements b; 4 result from the following definition/computation
b@s = max(O, d@s — Zz',sfl — 371',5). (4)

Once net requirements have been computed in time interval R, any lot-sizing rule
is applied on these net requirements so as to generate planned orders p; ; representing
quantities that will possibly be launched in period s and becoming available in period
s+ l;. The first planned order, p;; (recall that ¢ is the first period of time interval
R) is then transformed into a firm order z;;. In other words, we set z;; = p;¢
with x;; corresponding to a quantity that is really ordered in the current period ¢.
Planned orders and firm orders are used to compute the planned gross requirements
for components as follows

xjsiif s +1; <t
Dj,s+1; otherwise

dis= ) cij Xjspi, with Xjep, = { ()
Jer(i)
where ¢; ; denotes the production ratio (number of units of i to produce one unit of

7)-

At the end of period ¢, planned gross requirements become actual requirements,
as they do not depend on planned orders at higher levels anymore but only on firm
orders. Let D;; be the actual gross requirements to be satisfied in period ¢, we have

Dig= Y cij- Ty (6)

Jer()

Note that D; ;4 = d;; for all £.

A firm order x;; becoming available in period ¢+ ; generates a scheduled receipt
7it+1;» in that period. Put another way, we have 7;; = x; ;_,.

At the end of the current period t of the rolling horizon, we are able to compute
the actual inventory I; ; (as opposed to the pipeline inventory) for all items. We have

Liv=1Iis—1+rit — Dig. (7)

The initial value of the pipeline inventory is equal to the initial inventory. We thus
have ZZ'70 = Iz',O; V.

2.2 The occurrence of a stockout

This subsection presents a situation of stockout due to positive lead times in a multi-
level lot-sizing problem with a rolling horizon. Let us consider the example in Figure
1.

The product structure involves 5 items and the complexity index equals C =
(7—4)/(9 —4) = 0.6. We chose W = 4, which means that we apply any lot-sizing
rules on the net requirements for 4 periods of deterministic demand. Lead times are
only positive for items 3, 4 and 5 with I3 =l4 =15 =1. Weset I, 0 =0,Vi=1,...,5.



a e P=5 C=06 N=3 T=12 W=4

Item ¢ 1 2 3 4 5

S; S 35 20 32 44

e hi  0.885 0.120 0.127 0.118 0.001
l; 0 0 1 1 1

L; 3 2 2 1 0

Figure 1: Data of an example.

We have Z; g = I; 0, Vi. Scheduled receipts for items 3, 4 and 5 take the following
values in period 1: r37; = 56, r41 = 354 and 757 = 177. Due to the lead times,
scheduled receipts for these items result from ordering decisions prior to the first
period of the rolling horizon.

Table 1 exhibits the rolling procedure for the first three decision periods. In
the current period t = 1, we know the demand for end item 1 in periods 1 to 4,
{di11,...,d1 4}, and we must implement launching decisions for all items in period 1.
At the beginning of period 1, no ordering decision has been made, so we have ;1 = 0,
Vi. We first compute the pipeline inventories and the net requirements for item 1,
using formulae (3) and (4). In period s = 1, we have Z; 1 = max(0,0+0—56) = 0 and
b1,1 = max(0,56 — 0 — 0) = 56. Following the same logic, we obtain Z; s and by , for
s=2,...,4. We can now apply any lot sizing rule on the stream of net requirements
for the end item. In this example, we have applied the Wagner-Whitin algorithm in
a sequential fashion. The algorithm proposes the lot for lot solution for item 1 as
P1s = b1s, Vs = 1,...,4. We can now compute the planned gross requirements for
item 2, using formula (5). We have dy s = p1 5, Vs = 1,...,4. We then compute the
pipeline inventories and the net requirements. The Wagner-Whitin algorithm leads to
a unique lot in period 1, with pg 1 = bg 1+ --+b2 4 = 177. Planned gross requirements
for item 3 result from the following computation: d31 = p12, d32 = p1,3 etc. Note
that d34 = 0 since p15 is still set to zero. The Wagner-Whitin again proposes a
unique lot in the first period: p31 = b3 1+ --- + b3 4 = 121. Item 4 has the three first
items as successors. We have ds1 = p12 + p2,2 + p32 = 36 + 0+ 0 = 36. We follow
the same reasoning to compute the next gross requirements, the pipeline inventories
and the net requirements. The Wagner-Whitin algorithm leads to a single order in
period 1. The same holds for item 5.

At the end of period 1, we set x;1 = p;1 for all items. This means that we
actually launch in period 1 the production of 56 units of item 1, 177 units of item 2,
etc. For the first two items for which the lead time is zero, these ordering decisions
instantaneously produce scheduled receipts in period 1: 711 = 1,1 = 56 and 791 =



x91 = 177. We can also compute the actual gross requirements for all items in period
1 and the final inventories, using formulae (6) and (7). We have D1 = di1 = 56;
Doy =w11 =56; D31 = w11 =56; Dy1 =211 + 221 + 231 = 56 + 177 + 121 = 354;
D51 = 21,1 + 241 = 56 + 121 = 177. Inventories at the end of period 1 take the
following values: I11 = 04+56—56 = 0; I ;1 = 04+177—-56 = 121; I3 1 = 04+56—56 = 0;
In1=0+354—-354=0; Is 1 =0+ 177 — 177 = 0. All these values (D;, x; ¢, 75, and
I, ;) characterize the state of the system in period ¢. They are used for cost calculation
purposes but are not necessary to make ordering decisions.

In the next decision period (¢t = 2), a new demand is revealed for the end item
(that of period 5, with d; 5 = 34). To compute the net requirements and the pipeline
inventories in periods 2 to 5, we need to recompute the pipeline inventory in period
1 and the planned gross requirements in period 1. Indeed, to compute b; 5, we need
Z; s—1 which depends on d; 1 (see formulae (4) and (3)). The planned demand
d; s—1 may have changed, since some planned orders have been transformed into
firm orders as the horizon rolls forward. For the end item, we still have di 1 = 56.
Inventory Z;; = max(0,0 4+ 56 — 56) = 0. We can now compute by s and Z; 4 for
s = 2,...,5. Applying the Wagner-Whitin algorithm on {b15,...b15} leads to the
lot for lot solution. For item 2, we have da 1 = 21,1 = 56 (according to (5)). Inventory
Zy1 = max(0,0 + 177 — 56) = 121. Once dy s, by s and Zs ; have been computed, we
apply WW on net requirements which leads to an order ps 5 = 34, to cover the new
net requirement. For item 3, we also have a single net requirement in period 4 which
is covered by an order p34 = b3 4 = 34. For item 4 we have d41 = p12 +p22 +p32 =
36 + 0 + 0 = 36. Inventory Z;; = max(0,0 + 121 — 36) = 85. Applying the same
reasoning, we obtain an order of 102 units in period 3 to cover the net requirements
of periods 3 and 4. Note that in the first decision period (¢t = 1), a single order of
item 4 in period 1 was sufficient to cover the requirements of periods 1 to 3. Now the
demand has changed, the former planned order in period 1 is not large enough. A
similar remark can be made for item 5: a positive planned order in period 2 is now
necessary to cover the new net requirements.

At the end of period 2, we set x;9 = p;o for all items. We have Do = 36,
D272 =T12 = 36, D372 =T12 = 36, D472 =T12+ X022+ T32 = 36 +0+0 =36 and
D52 = 212+ 242 = 36 + 0 = 36. Scheduled receipts take the following values: 712 =
x1,2 = 36, 22 = T22 = 0, 32 = I3,1 = 121, T42 = T41 = 121 and 52 = T51 = 121.
We finally compute the ending inventories: I1 2 =0, Iog = -+ = I5 5 = 85.

In period ¢ = 3, demand in period 6 is known for the end item (d;g = 36).
As before, we recompute dq2 and Z; 3 to determine the net requirements within the
forecast window. The Wagner-Whitin algorithm suggests an order for item 1 in period
6 to cover the new demand. For item 2, the planned order in period 5 is now increased
to cover the new net requirement of period 6 (in period ¢t = 2, we had ps5 = 34 and
now, in period ¢ = 3, we have py 5 = 70). For item 3, we need to recompute ds, as
this demand depends on @1 » which has only been determined in the previous period
t = 2. We have d3; = x12 = 36. Inventory Z3; = max(0,0+ 121 — 36) = 85. In the
next period, dz 2 = p1 3 = 39 and Z3 » = max(0,85+0—39) = 46. Computing the net
requirements within the window and applying WW lead to a single order in period
4 to cover the two positive requirements of item 3. A similar reasoning is applied to
item 4. A large planned order is proposed in period 3 with ps 3 = 210 instead of 102
units which was the planned order computed in the previous period ¢ = 2. For item

5, we have d5 1 = x12+ 242 = 36 + 0 = 36 and Z5; = max(0,0 + 121 — 36) = 85.



In the next period, ds2 = p13 + pa3z = 39 + 210 = 249. We can immediately
observe that this demand cannot be satisfied as the available quantity of item 2
equals Zs51 + w52 = 85 4 136 = 221 which is inferior to dso = 249. Of course, it is
already too late to modify 5> which has been launched in period 2 that now belongs
to the past. Setting x13 = p1,3 and x4,3 = ps,3 would lead to a stockout of item 5 in
period 3, as Is 3 = I5 2+153— D5 3 = 854136 —249 = —28. Planned orders computed
for items 1 to 4 in period t = 3 are therefore infeasible since their implementation
would lead to a stockout for item 5 in period 3.

t=1 t=2 t=3

1]2 3 4] 1[2[3 4 5] 1 2[3]4 5 6|
dis | 56|36 39 46 56| 36|39 46 34 56 36|39|46 34 36
bis | 56|36 39 46 36|39 46 34 39|46 34 36
pis | 56 | 36 39 46 36|39 46 34 39|46 34 36
18 56 56 36
Zis |0 [0 0 0 0ol0o |0 0 o0 0 0 |0]0 0 0
dos | 56|36 39 46 56| 36|39 46 34 56 36 39|46 34 36
bas | 56 | 36 39 46 00 0 34 00 34 36
pos | 1710 0 0 00 0 34 00 70 0
T2 177 177 0
Zos |0 O 0 0 121/ 85|46 0 0 121 85460 0 0
dzs | 3639 46 0 36 (39|46 34 0 36 39|46|34 36 0
bys | 36|39 46 0 010 34 0 0 |34 36 0
pas | 12100 0 0 00 34 0 07 0 0
36 121 121 0
Zss |0 [0 0 0 8 [46|0 0 0 8 46|0 [0 0 0
das | 3639 46 0 36 (3980 68 0 36 39 | 116 104 36 0
bys | 36|39 46 0 0 [34 68 0 70 | 104 36 0
pas | 1200 0 0 0 (1020 0 21000 0 0
46 121 121 0
Zis |0 [O 0 0 8 [46|0 0 0 8 46|0 [0 0 0
dss | 3639 46 0 36 | 141/ 46 34 0 36 249 46 | 34 36 0
bss | 3639 46 0 56 | 46 34 0
pss | 12100 0 0 1360 0 0
5,6 121 121 136
Zss |0 |0 0 0 80 |0 0 0 85

d; s: gross requirements for item ¢ in period s, b; ;: net requirements,
Pi,s: planned orders, Z; . pipeline inventory, I'(z): set of successors.
I'(1) =0.T(2) = {1}, T'(3) = {1}, T(4) = {1,2,3}, I'(5) = {1, 4}.

lii lead time. l1 = 0, lQ = 0, l3 = 1, l4 = 1, l5 =1.

Table 1: A situation of stockout.

We are now able to provide a formal definition of the feasibility of planned orders.
Planned orders {pi, ..., pit+w—1} for all items in period t are feasible if and only if

Zz',k—l + Tk > dz’,k VZ| F(Z) 75 0 and Vk € {t — iyt — 1}. (8)



In such a case, all planned orders {p;}; in period ¢ can be transformed into firm
orders {z;¢};. On the contrary, if the previous inequality is not satisfied for one item
7 in one period k, some planned orders for some successors of item 7 should be modified
as they trigger a too large demand for item ¢ which can not be satisfied on the basis
of previous orders and stocks.

To check inequality (8), we only need to recompute the gross requirements and
the pipeline inventories in time interval {t —I;,...,t— 1}, using formulae (5) and (3).

The question is now how to get a feasible stream of orders when we face a stockout?
Past literature usually leaves aside the question of positive lead times when demand
is known with certainty as positive lead times are supposedly ‘without any effect’ in a
deterministic framework. The next section presents two methods to avoid stockouts
in this environment.

3 Avoiding stockout situations

The first subsection reviews the safety stock approach which is traditionally used in
a context of stochastic demand. Subsection 2 is dedicated to a detailed description
of our repair procedure.

3.1 Safety stock strategies

Safety stock policies are widely employed in a stochastic context. De Bodt et al.
(1982) pointed out the importance of carefully designing a safety stock policy to
reach a good service level. But the question of the location and size of these safety
stocks is awkward and remains widely open.

In several studies examining the performance of lot-sizing techniques under de-
mand uncertainty, safety stocks are computed recursively so as to reach a 100%
service level for cost comparisons purposes (see for instance Bookbinder and Heath,
1988). Safety stocks are introduced at all levels in the product structure and when-
ever a stockout is about to occur the safety stock value is increased so as to avoid
lost demands. To illustrate, let us consider our example in figure 1. We apply
the WW algorithm in a sequential fashion with a forecast window of 4 periods
and we stop the rolling horizon at period T = 8. Demand for the end item equals
{56, 36,39,46,34,36,5,57}. If we do not introduce any safety stock, we obtain the
following situation for component 5 (Table 2).

Period ¢ 1 2 3 4 ) 6 7 8
Actual gross requirements Ds; 177 36 249 46 189 41 0 57
Scheduled receipts 75 ¢ 177 121 136 116 O 9 0 0
Ending inventory I 0 8 -28 70 -119 57 57 O

Table 2: Situation for component 5 without safety stock; end of run 1.

As before (see Table 1), a stockout of 28 units appears in period 3. Another
stockout of 119 units is recorded in period 5. To set the value of the safety stock
for item 5 (SS5), we simply take the maximum stockout along the horizon. We have
S5S5 = 119. Table 3 provides the values of gross requirements (d; ), net requirements
(b;,s), planned orders (p; s) and pipeline inventories (Z; ) for item ¢ = 5 in the first



three periods of the rolling horizon when the safety stock value for this item is set to

119 units (we also have SS; = SS2 = SS3 =0 and SS4 = 31).

Period 1 2 3 4
Gross requirements ds s | 36 | 39 46 0
Net requirements b5 g 155139 46 O
Planned orders ps s 240 | 0 0 0
Lot size w5 s 0 0 0 0
Pipeline Inventory Zs, | 0 0 0 0
Period 1 2 3 4 5
Gross requirements ds s 36 141 146 34 O
Net requirements bs s 56 |46 34 0
Planned orders ps s 136 | 0 0 0

Lot size w5 s 240
Pipeline Inventory Zs, 204 | O 0 0 O

Period 1 2 3 4 5 6
Gross requirements ds , 36 249 | 46 | 34 36 O
Net equirements bs s 74 |34 36 0
Planned orders ps s 14410 0 O
Lot size w5 s 240 136

Pipeline inventory Zs s 204 91 |0 0O 0 O

Table 3: Rolling procedure for item 5 with §S5 = 119; run 2.

Computation of net requirements now includes the safety stock value. Formula
(4) simply becomes

b@s = maX(O, d@s + SSl — Zz',sfl — .’L‘i,s). (9)

In period t = 1, we have b5 ; = max(0,36 + 119 — 0 — 0) = 155. In the next periods,
net requirements equal gross requirements, as we need to order the safety stock value
only once within the forecast window. Table 4 provides the same data as Table 2 at
the end of run 2.

Period ¢ 1 2 3 4 ) 6 7 8
Actual gross requirements Ds; 208 36 249 46 220 41 O o7
Scheduled receipts 75 4 208 240 136 144 O 217 0 0
Ending inventory I5 ¢ 0 204 91 189 -31 145 145 &8

Table 4: Situation for component 5 with §S5 = 119; end of run 2.

Another stockout of 31 units is recorded in period 5 and originates in the safety
stock required by item 4 at the beginning of run 2 (SS; = 31). Safety stock for
item 5 (555 = 119) did not take into account the need for a safety stock of 31 units
for item 4. Safety stock values must be updated: we add to the previous safety
stock value the maximum stockout recorded along the horizon. In our case, we set

10



SS5 := 8§55 + 31 = 150. Another run of the rolling procedure produces the final
results for item 5 (see Table 5).

Period t 1 2 3 4 ) 6 7 8
Actual gross requirements Ds; 208 36 249 46 220 41 O 57
Scheduled receipts 75 ¢ 208 271 136 144 O 248 0 0
Ending inventory I5 ¢ 0 235 122 220 O 207 207 150

Table 5: Situation for component 5 with SS5 = 150; end of run 3.

Stockouts no longer appear. It should be noted that scheduled receipts in period
1 have switched from 177 units to 208 units to cover the first gross requirements.
This change has no incidence on cost results as scheduled receipts in period 1 are
just meant to cover exactly the first requirement; they do not incur neither a set
up cost (they do not result from ordering decisions made within the current horizon
but prior to the first period of the horizon), nor carrying costs (they never exceed
requirements). The way initial scheduled receipts are set should just be seen as a
programming trick.

3.2 A repair procedure

A more sophisticated solution to avoid shortages would be to track down the items
whose lot sizes are responsible for a stockout of a given item. In our example this
would amount to consider the successors of item 5 and then to detect the lot sizes to
be decreased. Item 5 has two successors: item 1 and item 4. As the lot for lot solution
is proposed for item 1, none of these lots may be decreased. Item 1 is therefore not
responsible for the stockout of item 5 in period 2. The lot size of 210 units of item 4
in period 3 is the only candidate to depletion. To obtain a feasible solution in period
3, it suffices to decrease the lot size of item 4 in period 3 from the demand of 36 units
in period 6 and to place an order of 36 units in period 6. In this example, the way to
proceed is straightforward but more ambiguous situations may be encountered. For
instance, if both items 1 and 4 were candidates to lot sizes depletion, the question of
how to select these items and how to decrease the corresponding orders would be open.
Of course in assembly systems the question of how to choose a candidate to depletion
does not arise. But in highly complex structures relevancy of such a question rises.
One way to get around this question is to transform the rolling schedule problem into
a ‘capacitated’ problem. This provides a natural repair procedure to obtain a feasible
schedule from an infeasible one.

3.2.1 Keynote and illustration of the procedure

To illustrate, let us consider our example in Table 1. Observe first that in period
t = 2, a planned order of 102 units of item 4 in period 3 triggers (together with an
order of 39 units of item 1 in period 3) a gross requirement of 141 units of item 5 in
period 2. This triggers in turn a net requirement for item 5 which may be covered
by a feasible order in period 2. If, in period ¢ = 3, we force the order of item 4 in
period 3 not to exceed 102 units, we can obtain a feasible schedule for all items in
period 3. But this condition is not sufficient. Gross requirements for items 3 and 4 in
period 2 should not exceed 39 units. No condition is required on gross requirements
for item 2 as its lead time is zero. Only its gross requirements in the current period

11



t may change so it is never too late to order a proper amount. For the end item,
gross requirements always keep the same value from one period to the next (in this
deterministic framework) so no stockout can be expected. One way to guarantee the
satisfaction of such conditions on gross requirements is to force, in the current period
t, all planned orders within the cumulative lead time not to exceed their previous
values (computed in period ¢ — 1). This writes

I !
> vk SZpﬁl foralll=¢,...,t+L; —1. (10)
k=t k=t

To illustrate, consider our example in Table 1. At the end of period 2 we record
the values of planned orders within the cumulative lead time. We record for item 1
{p%,37p%,47p%,5} = {39,46, 34}, for item 2 {p%,37p%,4} = {0,0}, for item 3 {p§,37p§,4} =
{0,34} and for item 4 {p3,} = {102}. In period 3, we first apply WW without
any restriction on the value of planned orders. As we face a stockout, we re-apply
WW together with conditions (10) on all items so as to obtain a feasible schedule.
For item 1, we first set pi?, = 39 which verifies inequality pi?, < pi?’. We then
evaluate two alternatives: ‘ordering in period 3 the demand for periods 3 and 4’
versus ‘ordering in period 4 the demand for period 4 and adopting the optimal policy
for the previous period’. Option 1 leads to pif,3 = 85, pill = 0 but these orders must
verify pi3 < pi?, and pi?, —{—pi4 < pi?’ +pi4. As they only satisfy the second condition,
they are abandoned and the second option (p‘i’73 =39, pi4 = 46), which verifies both
inequalities, is adopted as the optimal solution for the second period. Three options
are then evaluated: pi?, =119, p1a =0, p15 =0 or pi?, =39, p14a=280,p15=0
or pi3 = 39, p14 = 46, p15 = 34. The cheapest option that verifies pi3 < pi3 and
Pl +pia <pig+pisand pis+pla+pls < pis+pia+pis is selected as the
optimal solution for a horizon of three periods. Only the second schedule obviously
fits these criteria and is selected as the optimal plan. In the next period we evaluate
the following alternatives: ‘ordering a single lot in period 3’, ‘ordering by 4 +b15+b16
in period 4 and adopting the optimal policy for period 3’, ‘ordering b1 5 + b1 in
period 5 and adopting the optimal policy for periods 3 and 4’, ‘ordering b1 g in period
6 and adopting the optimal policy for periods 3 to 5’. The last option is selected
as the optimal plan. If we had W = 5 we would have an additional demand in
period 7 and as the optimal previous date of order is period 6 which is outside the
cumulative lead time (i.e. the interval in which capacities are considered) a ‘regular’
WW would have been applied from period 6 while keeping the optimal plan from
periods 3 to 5. This limits the number of undesirable plans to be evaluated and so
the computational requirements of the algorithm. In the following, we use a simpler
notation for capacities; we set C; s = pﬁ;l. Table 6 provides the feasible schedules for
all items in period 3, resulting from the application of the ‘capacitated” WW.

Now we have laid the basis of our repair procedure we shall present the full
procedure in a more formal way in the next paragraph.

3.2.2 Formal presentation

Table 7, while giving the initial value of the variables, provides a useful summary of
the notation employed in the paper.

Table 8 lists the operations to be performed at the first iteration for all items.
The horizon is limited to the forecast window W within which we compute the gross

12



Period 1 2 3 4 ) 6

r(1) =0 di,s 56 36 |39 |46 34 36

=0 b1, 39 |46 34 36
Pl 39 |46 34 36
Chs 39 |46 34

T1s 56 36
Zi. 0 0 |o0 0O 0 0

r2)={1} da,s 56 36 39 46 34 36

lo=0 bo,s 0 0 34 36
P2,s 0 0 70 0
Ca,s 0 0

Tos 177 0
Z.s 121 8 [46 [0 0 0

r(3)={1} ds.s 36 39 |46 |34 36 0
Is=1 b, 0 34 36 0
P3.s 0 34 36 0
Cs.s 0 |34
T3 121 0

73,5 85 46 0 0 0 0

’

r(4)={1,2,3} das 36 39 |8 | 140 36 0

lh=1 ba,s 34 140 36 O
Pa,s 34 176 0 0
Ca,s 102

5

T 121 0
Za. 85 46 |0 0 0 0
I(5)={1,4}  ds. 36 73 [ 222 |34 36 0
=1 bs.s 74 |34 36 0
Ps.s 44 |0 0 0
5. 121 136
Zs. 85 148 |0 0O 0 0

Table 6: Application of the repair procedure (‘capacitated” WW).

fori=1,...,P
fors=1,...,T

d; s =0 Gross requirements that must be satisfied in period s + [;

z; s =0 Firm order launched in period s

Z; s =0 Pipeline inventory at the end of period s
b; s =0 Net requirements that must be satisfied in period s+ [;
pi,s =0  Planned order that will possibly be released in period s
I; s =0 ‘Actual’ ending inventory in period s
r;,s =0  Scheduled receipts in period s resulting from orders

really launched in period s — I;

Table 7: Initialization of variables and summary of notation.
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requirements, then the pipeline inventory and the net requirements. Once net re-
quirements have been calculated, we apply any lot-sizing rule to determine planned
orders. Only the first planned order is transformed into a firm order that triggers
scheduled receipts l; period(s) later. We then record the capacities that will possi-
bly be used in case the solution at the next iteration is infeasible. In time interval
{1,...,1;} scheduled receipts must be considered as data for they result from lot-
sizing decision that took place before period 1. Nonetheless we set them to a value
that make feasible any solution. By doing so, all production possibilities may take
place within the cumulative lead time for each item. To smooth away the periods
in which no production may happen, some authors (e.g. Wemmerlév and Whybark,
1984) simply choose to record no statistics for a given number of periods called a
start-up period.

fore=1,...,P

efors=1,.... W
Compute d; ; using equation (5)
Compute Z; ; using equation (3)
Compute b; s using equation (4)
o Apply any rule on {b;s}s—1,..w
(we thus obtain {p; s}s=1,..w)
eset w1 =pi1
Ti1+1; = 4,1
efors=2,...,14+L;
set Cz',s = Pi,s

Initial values for scheduled receipts
fori=1,...,P
fors=1,...,[;

Table 8: First iteration (¢t = 1).

Table 9 presents the procedure at any iteration ¢ > 1 (left side of the table).
In each period t we compute the gross requirements of period ¢ — [; — 1. In this
past period, gross requirements no longer result from planned orders but from firm
orders since we have d;;_;,_1 = > ¢;j-wxj; 1 and x5, 1 for each item j has been

Jer(@)

determined in the previous period.! In time interval {t —I;,...,t — 1} demand is
recomputed as it results from planned orders in periods ¢ to t + [; — 1 but in time
interval {t —l;,...,t — 1}, orders have already been launched so demand should not
exceed the material availability. In other words, we check inequality (8). When this
inequality is not verified, we implement the repair procedure exhibited in the right

! Note that instead of period t — I; — 1 we should speak about period max(1,t —I; — 1). A similar
remark may be done for period t + W — 1, it should be period min(t + W — 1,T).
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side of Table 9. We shall comment this sub-procedure later. When the feasibility
condition is satisfied we determine the net requirements within the window and we
apply any lot-sizing rule. If all items have passed the feasibility test, we implement
the first plan order by setting x;; = p; ¢, for all items and we set the scheduled receipts
to the appropriate value. We finally record the capacities.

MAIN LOOP REPAIR

fori=1,...,P fori=1,...,P

fort=2,...,T
Recompute d; ;—1,—1
Recompute Z; ;1,1

fors=t—0—1,...,t4+W -1
Compute d;, s
Compute Z; s

fors=t—1;,...,t —1
Compute d;, s
if Zis—1 4+ 2i,s < dis
go to Repair
else
Compute Z; s
Compute b; s
fors=t, ..., t+W-1

Compute b; s
if Ly >0
Apply any rule on {bjs}o=t,.. t1w—1
with respect to the capacities {Ci s }s—t
(we obtain {pi,s}s=t,...,t4+w—1)
else
Apply any rule on {bi s}s=s, . crw_1
set xit = Pit

t+L;—1

yeeey

Compute d;, s set ri 41, = Tiyt
Compute Z; o fors=t+1,...,t+ L;
Compute b; s Ci,s = Diys

Apply any rule on {b; s}o=t, t4w—1
(we obtain {pi s}s—t,...,t4+w—1)
ifi=P
forj=1,...,P
set Tt = pjt
set 141, = Tyt
fors=t+1,...t+L;
Oj’s = Pj,s

Table 9: Main loop and repair procedure.

The repair procedure is implemented as soon as an item does not fit the feasibility
condition. For all items, we determine the net requirements and then apply any rule
which has been modified to meet conditions (10). We shall give further details on
the capacitated version of the lot-sizing rules in the next section. At the end of the
whole procedure, we compute the ending inventories I; ; for all items and all periods.
We then compute the total cost associated with a given lot-sizing rule.

4 Experimental framework

4.1 Lot-sizing procedures

We selected six single-level lot-sizing rules for use in the study. The Wagner-Whitin
algorithm (1958), the Silver-Meal technique (1972), the incremental part period algo-
rithm (1968), the Silver version of the economic order quantity (1976), the periodic
order quantity and the least unit cost method. Despite the development of heuris-
tics specifically designed to account for interdependencies among stages, the chosen
heuristics are still widely adopted in practice under rolling and multi-level conditions.
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The Wagner-Whitin algorithm (WW) provides the optimal solution to the single-
level lot-sizing problem by use of dynamic programming. The economic order quan-
tity (EOQ) is the traditional Wilson lot-sizing model which balances the inventory
carrying costs and order costs. The Silver version of this method lumps an integer
number of future demands closest to the EOQ value. The periodic order quantity
(POQ) uses the EOQ to determine the reorder time cycle and then orders what is ac-
tually forecasted for that time cycle. The incremental part period algorithm (IPPA)
increases the size of the order until carrying costs are equal or less than the set-up
cost. The Silver-Meal heuristic selects the order quantity so as to minimize the cost
per unit time over the time periods the order lasts. The least unit cost (LUC) selects
the order quantity so as to minimize the cost per unit (cumulation of the requirements
until the cost per unit starts to increase).

Each technique is either combined with a safety stock strategy as described in
paragraph 3.1 or with our repair procedure as detailed in paragraph 3.2.1. To obtain
a ‘capacitated’ version of the heuristics, we have applied the same principles as those
employed for WW in paragraph 3.2.1. Each heuristic simply lumps the demands
until the criterion is minimized unless the lot size exceeds the available capacity.

Our incentive is to compare the cost performance of our repair procedure to the
costs produced by the safety stock strategy which was specifically designed to reach
the same service as our repair, say 100% (see paragraph 3.1). From a practical
standpoint, this safety stock strategy is not ready for use, as the whole story of de-
mands for end items needs to be known to set the appropriate values of safety stocks.
Safety stocks are therefore artificially set to a minimum value for which there is not
a single lost demand for end items. In practice however, safety stocks are decided
beforehand and a 100% service level can only be achieved at the price of extremely
large amounts of safety stocks. In that respect, our peculiar implementation of the
safety stock strategy (where levels of stocks are determined retrospectively) tends to
sanction the performance of our repair procedure. However, comparing our repair
procedure to more operational safety stock policies would have led to a ticklish bicri-
teria comparison (cost and service level). To avoid this, while comparing our repair
to an existing method, we chose this specific safety stock strategy for lack of existing
operational techniques preventing stockout situations.

4.2 Demand generation

Although several end items could have been included in the present study we chose to
take only one end item per product structure for the sake of simplicity. Demand for
the end item {d,}s—¢,.. ++w—1 may follow different patterns. We chose to generate de-
mand for the end item from a uniform distribution of mean 50. We have ds ~ U[0, 2d].
Standard deviation of demands therefore equals (1/12(100 — 0)2)1/2 = 28.86. We
also chose to use a normal distribution with same average and standard deviation:

ds ~ N[50, 28.86].

4.3 Cost generation

In accordance with the assumption of value-added holding costs, carrying costs for
each item were defined as follows
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h; =e; + Z Cji hj with e; = 0.0005 + 0.02 X u,
Jer—1(i)

where u is selected from a uniform distribution between 0 and 1.

We used the TBO (time between orders) factor to determine set-up cost para-
meters. T'BO values are usually larger for components than they are for end items
and subassemblies. Indeed, successful JIT principles implementation in many com-
panies has lead to substantial set up cost reductions for these items whereas freedom
of action is still limited for components at deeper levels and purchased items. We
therefore consider TBO values of 1 and 2 for the end item and subassemblies (T'BO;)
and T'BO values of 2 and 6 for products at deeper levels (T'BOj,). We then have the
following combinations: (T'BO;, TBO;,) = {(1,2),(2,2),(1,6),(2,6)}. For the sake of
curiosity, we also examine (T'BO;,TBO},) = (4,6).

For each item we set

g _ )05 +d; - hi - TBO} if i is at level 0 or 1,
v 0.5-d; - h; - TBO}QL otherwise,
with EZ = Z Cih - Eh.

4.4 Other parameters

In our experiment, we considered structures with one end item made of 9 compo-
nents (P = 10) distributed over four levels (0,1,2,3). Product structures were
defined in terms of the complexity index C. We chose 4 values of C in the set
{0.00,0.25,0.50,0.75}. We stopped the rolling horizon at period 100 (7" = 100). Exe-
cution time of WW legitimizes the choice of instances of moderate size. For instance
to solve one rolling problem with P = 10 and 7" = 100, each single-level technique is
applied approximately P x T'= 1000 times and determination of appropriate values
for safety stocks requires on average 3 passes or runs of the full rolling procedure.
Thus, to get cost observations associated with one technique and one scenario, we
need to apply the concerned technique 3 x P x T" = 3000 times. Thus, despite the
development of ever more powerful computers, computational disadvantage of WW
is unmistakable under multi-level rolling conditions.

Two levels of lead times—low and high—were selected. In the first case, lead
times for components with no predecessor were uniformly drawn at random in the
set {1,2,3} and in the set {0, 1} for any other item. In the second case, lead times for
components were drawn in the set {2,...,6} and in the set {1, 2} for items at higher
levels. Resulting cumulative lead times were therefore higher in the latter situation.
Forecast window lengths were chosen accordingly: W = {6,...,13} for low lead
times and W = {11,...,18} for high lead times. In this way, we avoid instances in
which cumulative lead times exceed the forecast window, a situation requiring the
introduction of safety stocks even in our repair procedure since some productions can
not be launched in time within the forecast window to meet some requirements. .

Each of the 2 x 5 x 4 x 2 x 8 = 640 experiments (2 demand patterns, 5 levels
of TBO, 4 complexities, 2 types of lead times, 8 window lengths) was replicated 5
times, therefore providing 3200 cost observations per lot-sizing rule.
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5 Simulation results

Figure 2 displays the average cost deviations relative to WW when combined to our
repair procedure (namely WWRP). This technique was used as a benchmark as it
provides the best overall performance. Each rule is appended with RP when used
with the repair procedure and with SS when associated with the safety stock policy.
Cost observations for each rule and each scenario were divided by the cost of WWRP.
The resultant cost ratios were averaged over all cases with a same factor value. For
instance POQRP provides a cost that is 1.06% higher than the cost of WWRP for
all cases with assembly structures (C = 0.00).

W W IPPA POQ SM EOQ LUC
RP SS RP SS RP SS RP SS RP SS RP SS
OVERALL 0.00 1353 092 145 143 989 3.38 233 6.03 33.20 19.92 11.01

C=0.00 0.00 16.76 -0.01 280 1.06 13.33 3.86 3.30 4.31 43.78 1286 6.78
C=0.25 0.00 1564 1.28 222 1.08 1031 3.27 3.08 6.82 33.35 21.27 12.65
C=0.50 0.00 11.89 0.69 -0.37 134 820 251 059 589 2762 22.51 10.62
C=0.75 000 983 171 1.14 226 772 3.87 254 712 28.05 23.02 14.01
TBO=(1,2) 0.00 19.83 030 0.26 9.29 1496 0.62 0.33 14.36 47.09 14.77 14.85
TBO=(1,6) 0.00 14.01 2.50 2.74 7.56 17.39 2.88 220 15.77 62.36 12.48 10.48
TBO=(2,2) 0.00 945 0.71 -0.12 -3.10 1.98 4.96 3.72 -0.49 9.92 21.80 13.23
TBO=(2,6) 0.00 1047 0.87 0.53 -243 448 249 1.01 218 26.13 19.88 8.65
TBO=(4,6) 0.00 13.89 0.21 3.85 -4.14 10.66 5.94 4.63 -1.65 20.50 30.65 7.86

Unif. Dem. 0.00 12.79 137 2.00 3.18 13.43 3.92 288 744 3582 21.70 12.62
Norm. Dem 0.00 14.27 0.46 090 -0.31 6.36 2.84 1.88 4.63 30.57 18.13 9.41

Low /; 0.00 11.72 031 1.56 078 852 233 149 480 2643 17.51 10.02
High /; 0.00 1534 1.52 134 2.09 11.27 442 327 7.26 39.97 22.32 12.00
W=6 0.00 472 -499 -6.87 -4.87 -277 -578-12.65 -1.25 9.58 17.32 -3.79
W=7 0.00 1295 -533 -1.80 -470 6.89 -6.68 -7.14 -0.78 23.55 19.57 2.46
W=8 0.00 1558 -3.75 -1.20 -2.98 10.39 -3.71 -3.49 0.74 26.57 17.93 6.16
W=9 0.00 1480 -096 0.83 -0.65 893 0.45 062 3.17 29.31 16.07 9.87
W=10 0.00 11.73 134 279 084 772 388 401 524 2844 15.17 12.60
W=11 0.00 10.57 3.50 444 3.03 1030 720 7.25 7.58 29.37 15.60 15.03
W=12 0.00 11.83 562 647 635 12.22 10.43 1045 10.58 30.18 18.32 17.79
W=13 0.00 11.55 7.09 7.84 9.18 1448 12.85 12.85 13.14 34.40 20.09 20.08
W=11 0.00 6.52 -542-1097 -427 -0.36 -5.15-13.13 -1.27 20.77 1942 -4.21
W=12 0.00 16.47 -485 -5.01 -3.23 6.07 -4.57 -5.99 1.04 31.05 26.02 4.06
W=13 0.00 18.08 -2.93 -2.05 -2.00 10.13 -1.36 -1.53 2.83 37.38 24.86 8.23
W=14 0.00 1738 0.8 1.78 098 12.79 3.52 3.65 6.14 40.79 22.08 13.07
W=15 0.00 1741 377 480 3.87 13.60 742 7.51 9.15 44.69 21.96 16.37
W=16 0.00 16.46 570 6.40 5.63 14.87 10.09 10.16 11.74 47.79 21.58 18.21
W=17 0.00 15.81 7.01 7.50 719 16.35 12.02 12.05 13.68 48.49 21.41 19.62
W=18 0.00 14.61 799 826 8.60 16.67 13.43 13.44 14.82 48.82 21.23 20.68

Figure 2: Average cost deviations relative to benchmark.

Figure 2 shows the superiority of the repair procedure over the safety stock strat-
egy for all techniques, except LUC and SM. For these rules, the safety stock policy
provides better results than our repair. But the difficulties of implementing such a
policy in practice should not be forgotten. WWRP offers the best overall performance
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and the popular POQ and TPPA behave pretty well when associated with our repair.

The Kruskal-Wallis ANOVA test was used to appraise the impact of factor levels
on the relative cost performance. Performance of all techniques is affected by factor
values except in a few isolated cases. With the exception of SM, relative performance
of all rules combined with the repair tends to degrade when the level of complexity
is increased. This is probably due to the number of times the repair procedure is
applied. This number undoubtedly increases with the number of common parts and
each time the repair is applied, the ‘optimality principle’ of each rule is disrupted. It
should be noted that IPPARP produces costs as good as those of WWRP for pure
assembly structures. The ANOVA test revealed that the relative performance of
POQRP—apparently decreasing with C—is actually not affected by the complexity
(we were not able to reject the null hypothesis of equality at the 5% level). EOQRP
whose performance decreases as soon as C becomes positive is no longer affected by
positive levels of complexity (for C > 0, the critical probability equals 5.80%).

The relationship between product structures complexity and performance of the
techniques associated with the safety stock strategy is unclear: for some rules (like
WWSS, POQSS and EOQSS), relative performance continuously improves as C is
augmented, for others (like IPPASS and SMSS) the influence of this factor is unde-
fined whereas LUCSS exhibits a better behaviour for less complex product structures.

To analyze the impact of T'BO levels on cost performances, we used the Wilcoxon
test to compare pairs of cost ratio samples associated with meaningful pairs of T'BO
levels. For instance, switching from TBO = (1,2) to TBO = (1,6) corresponds to
a T'BO increase for components only. In such a situation, the Wilcoxon test will
tell, for any rule, whether cost ratios are significantly different or not under these
two configurations. To complement the analysis, we utilized a sign test whenever the
Wilcoxon test suggested to reject the null hypothesis of equality. Table 10 summa-
rizes the test results for each rule under two major cases: T'BO is augmented for
components only; T'BO is increased for end items and subassemblies only. Each case
is characterized by a subset of pairs of T'BO reported in the second row of table 10.
A TBO increase for components is defined by a change of TBO from TBO = (1, 2)
to (2,2) as well as a change from TBO = (2,2) to (2,6). Similarly, a switch of TBO
from (1,2) to (2,2) or (1,6) to (2,6) corresponds to a T'BO increase for end items and
subassemblies only. Intuitively, we would have expected a clear inverse relationship
between T'BO levels and the performance of our repair procedure as it favours more
orders and less inventory. Thus a T'BO increase (or equivalently an increase of set
up cost parameters) should then tend to degrade the performance of our repair pro-
cedure. Table 10 shows that relative performance of IPPARP and EOQRP decreases
when T'BO for components is augmented whereas it improves when T'BO for end
items is increased. The same effect is obtained for EOQSS. In most situations, the
impact of TBO increases remains indefinite. When a T'BO increase does not alter the
relative performance (this occurs for instance for IPPARP for a TBO change from
(2,2) to (2,6)), we reported the critical probability (pc) in percent resulting from the
Wilcoxon test in Table 10. A sign test performed on gross cost data revealed that
set up costs are indeed significantly higher for RP procedures than those produced
by SS methods. This only means the share of set ups costs in total cost is higher
for RP procedures. This fact however does not provide any useful information to
predict the nature of the relationship between T'BO and relative cost performance of
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RP techniques as outlined by results in Table 10.

/' TBO for components

/TBO for end items and subass.

(1,2)  (2,2) (1,2)  (1,6) (1,6) (2,6)

(1}6) (2}6) Result (2}2) (2}6) (4}6) (4}6 Result
IPPARP N\, (6997 N (25.00) / / / /
POQRP / AN indef. /! / / \ indef.
EOQRP N \ /" / /! /! /!
SMRP AN / indef. \ (20.56) AN \ \
Lucrp /7 / / N N\ N\ N N\
wwss N\, indef / /ey O\ indef
IPPASS AN (1;56) N\ & 593) / N\ \ indef.
POQSS AN AN AN e S e AN indef.
EOQSS N N N / / / / /
SMSS N\ / indef. N\ / AN \ indef.
LUCSS /! / / sy / /" /!

Table 10: Assessing the impact of T'BO increases on relative cost performances.

The choice of a particular demand pattern also has an influence on the relative
performance of the techniques. Relative performance is clearly better under the
assumption of a normal demand for all techniques except WWSS. With an average
of 50 and a standard deviation of 28.86, uniform draws of demand take more often
extreme values (farer from the average) than normal draws. WW puts up better with
this kind of demand shape than other heuristics that definitely behave better when
extreme values of demand are sporadic.

Switching from low to high levels of lead time is detrimental to relative perfor-
mance of all methods except IPPASS for which there is no significant impact (the
ANOVA test on cost ratios gives pc = 12.15%). Higher lead times imply less flexibility
to respond to production plan changes stemming from a disclosure of new demands
for end items. With higher lead times, larger safety stocks are required, the repair
procedure is applied more often therefore entailing higher total costs.

When the forecast window is increased, total costs produced by all techniques
globally decrease but not at the same pace. Figure 3 plots the average cost devi-
ations relative to WWRP over forecast window values W. Except LUCRP whose
performance is always quite poor, relative performance of all RP decreases as W
is augmented, be the level of lead times low or high (see both graphics on top of
Figure 3). For short forecast windows (W = {6,7,8} in the low lead times case
and W = {11,12,13} in the high case), IPPARP, SMRP and POQRP outperform
WWRP. For longer windows however (W > 9 in the first case and W > 14 in the
second case) WWRP becomes by far the best method. This is consistent with prior
studies claiming that more information is better for WW. The same tendency is ob-

served for SS-based methods: there exists a threshold of W below which IPPASS and

20



SMSS (but not EOQSS) behave better than WWRP (see both graphics on bottom of
Figure 3). As soon as W > 9 (low lead times) and W > 14 (high lead times), WWRP
again exhibits the best performance. It should ne noted that relative performance
of WWSS is enhanced with longer windows. This definitely confirms that WW is
positively receptive to an extension of information.
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Figure 3: Average cost ratios in percent over forecast window values W.

6 Conclusion

Many past studies have assumed zero lead times and claimed this assumption could
be done ‘without loss of generality’ under multi-level rolling horizons. By means
of a simple example, this paper shows this assumption is definitely not innocent as
the introduction of positive lead times may induce stockout situations even when
demand for end items is deterministic within the forecast window. We thus propose
a repair procedure to cope with such stockouts and we compare its performance to a
strategy that consists in introducing safety stocks at all levels in the product structure.
This safety stock strategy is borrowed from the literature examining multi-level lot-
sizing problems under rolling conditions when demand is subject to forecast errors.
Simulation results show the superiority of our procedure over the safety stock policy
in most cases. The Wagner-Whitin algorithm provides the best overall performance
when combined to our repair procedure. For short forecast windows however would
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we recommend the use of less sophisticated heuristics like SMRP, IPPARP or POQRP
as they clearly outperform WWRP. On the other hand, when more is known about
future demand, myopic behaviour of these simpler techniques is detrimental to their
performance, whereas cost effectiveness of WW ostentatiously increases.

Safety stocks-based techniques behave pretty well under short windows but were
specifically designed to provide a 100% service level for the sake of comparison with
the repair procedure. Appropriate amounts of safety inventories were computed ex-
post whereas in practice they have to be decided in advance. Thus, to avoid any lost
demand in a real setting, an operational safety stock policy would lead to impute
ez-ante extremely large values to safety inventories. To that extent, our approach
of safety policies artificially boosts its performance and thus penalizes the relative
performance of the repair procedure. In spite of all, our incentive was to compare
the repair procedure to existing methods and we faced a lack of suitable approaches
in this framework of analysis (multi-level, rolling schedule and positive lead times).
This paper is probably the first that analyses thoroughly the impact of positive lead
times in such a context, while providing an efficient procedure which guarantees a
100% service level.

In a future work, we could compare our repair procedure to more operational
safety stock policies on the basis of two criteria: the service level and the cost per-
formance. Heuristics that are specifically designed to account for interdependencies
among stages could also be included in the simulation experiment and larger product
structures could be examined.
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