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Abstract

Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably
defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to
be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand,
DPTAS- and Poly-DAPX-completeness have not been studied until now. We first prove in this paper
the existence of natural Poly-APX- and Poly-DAPX-complete problems under the well known PTAS-
reduction and under the DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and
V. Th. Paschos, Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal
with PTAS- and DPTAS-completeness. We introduce approximation preserving reductions, called FT
and DFT, respectively, and prove that, under these new reductions, natural problems are PTAS-complete,
or DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions
and we partially answer this question showing that the existence of NPO-intermediate problems under
Turing-reduction is a sufficient condition for the existence of intermediate problems under both FT-
and DFT-reductions. Finally, we show that MIN coLoRING is DAPX-complete under the DPTAS-
reduction. This is the first DAPX-complete problem that is not simultaneously APX-complete.

1 Introduction

Many NP-complete problems are decision versions of natural optimization problems. Since, unless P = NP,
such problems cannot be solved in polynomial time, a major question is to find polynomial algorithms
producing solutions “close to the optimum” (in some prespecified sense). Here, we deal with polynomial
approximation of NPO problems, i.e., of optimization problems the decision versions of which are in NP. A
polynomial approximation algorithm A for an optimization problem II is a polynomial time algorithm that
produces, for any instance x of I1, a feasible solution y = A(z). The quality of y is estimated by computing
the so-called approximation ratio. Two approximation ratios are commonly used in order to evaluate the
approximation capacity of an algorithm: the standard ratio and the differential ratio.

By means of these ratios, NPO problems are then classified with respect to their approximability prop-
erties. Particularly interesting approximation classes are, for the standard approximation paradigm, the
classes Poly-APX (the class of the problems approximated within a ratio that is a polynomial, or the in-
verse of a polynomial when dealing with maximization problems, on the size of the instance), APX (the
class of constant-approximable problems), PTAS (the class of problems admitting a polynomial time ap-
proximation schemata) and FPTAS (the class of problems admitting a fully polynomial time approximation
schemata). Analogous classes can be defined under the differential approximation paradigm: Poly-DAPX,
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DAPX, DPTAS and DFPTAS (sce section 2 for formal definitions), are the differential counterparts of
Poly-APX, APX, PTAS and FPTAS, respectively. Note that FPTAS ¢ PTAS ¢ APX ¢ Poly-APX, and
DFPTAS ¢ DPTAS & DAPX ¢ Poly-DAPX; these inclusions are strict unless P = NP.

During last two decades, several approximation preserving reductions have been introduced and, using
them, hardness results in several approximability classes have been studied. Consider two classes C1 and Cg
with C; C Cg, and assume a reduction preserving membership in Cy (i.e., if IT reduces to IT" and IT" € Cq,
then IT € Cy). A problem Ca-complete under this reduction is in Cy if and only if C2 = C; (for example,
assume C; = P and C3 = NP).

Consider, for instance, the P-reduction defined in [6]; this reduction, extended in [4, 7] (and renamed
PTAS-reduction), preserves membership in PTAS. Natural problems, such as maximum independent set in
bounded degree graphs (called MAX INDEPENDENT SET-B in what follows!), or MIN METRIC TsP, are APX-
complete under the PTAS-reduction (see, respectively, [15, 16]). This implies that such problems are not in
PTAS unless P = NP (since, as we have mentioned previously, provided that P # NP, PTAS ¢ APX).

In differential approximation, analogous results have been obtained in [1], where a DPTAS-reduction,
preserving membership in DPTAS, is defined and natural problems such as MAX INDEPENDENT SET-B, or
MIN VERTEX COVER-B are shown to be DAPX-complete.

In the same way, the F-reduction of [6] preserves membership in FPTAS. Under this reduction, only
one (not very natural) problem (derived from MAX VARIABLE-WEIGHTED SAT) is known to be PTAS-
complete. Despite some restrictive notions of DPTAS-hardness presented in [1], no systematic study of
DPTAS-completeness has been done until now.

Finally, another well known reduction is the E-reduction ([12]). It preserves membership in FPTAS and,
using it, the existence of Poly-APX-PB-complete problems has been shown in [12] (informally, Poly-APX-
PB is the class of problems of Poly-APX, the solution-values of which are bounded above by a polynomial
of the size of their instances), but the existence of Poly-APX-complete problems has been left open.

Reductions provide a structure in approximation classes, and are very useful in obtaining hardness ap-
proximability results. As in the case of NP-completeness with the result of [13], one can try to refine the
study of this structure by determining if there exist intermediate problems. For two complexity classes Cq
and Cz, C; C Cg, and a reduction R preserving membership in Cy, a problem is called Ca-intermediate, if it
is neither Ca-complete under R, nor it belongs to Cy. In [6], the existence of APX- and PTAS-intermediate
problems under P- and F-reductions, respectively, is proved.

The main results of this paper deal with the existence of complete problems for the following standard
and differential approximation classes:

e Poly-APX and Poly-DAPX under the PTAS- and DPTAS-reductions, respectively (the first one is
defined in [7] while the second one in [1]);

e FPTAS and DFPTAS under two new reductions called FT and DFT, respectively.

Finally, for reductions FT and DFT, we try to apprehend if they allow existence of intermediate problems and
we partially answer this question by proving that such problems do exist provided that there exist intermediate
problems in NPO under the seminal Turing-reduction.

Let us note that no problem was known to be Poly-APX-complete until now, since the results in [12]
only prove the existence of Poly-APX-PB-complete problems. On the other hand, the question about
the existence of Poly-DAPX-complete problems has not, to our knowledge, been handled until now. The
existence of PTAS-complete problems is proved here by means of a FPTAS-preserving reduction (called FT-
reduction). It is somewhat weaker than the F-reduction of [6], but it has the merit that natural problems are
shown to be PTAS-complete under it (while this seems to be not true for the F-reduction). Indeed, we show
that, under FT-reduction, any polynomially bounded NP-hard problem of PTAS is PTAS-complete. Next,
we propose a reduction preserving membership in DFPTAS and show that, under it, natural problems as

'All the problems mentioned in the paper are defined in Appendix A.
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MIN VERTEX COVER, O MAX INDEPENDENT SET, both in planar graphs, are DPTAS-complete. Here also,
we use another notion of polynomial boundness, called diameter polynomial boundness, and show that any
diameter polynomially bounded NP-hard problem of DPTAS is DPTAS-complete.

The paper is organized as follows: in Section 2, we recall some basic definitions and present the two
new reductions. In Sections 3 and 4, we show Poly-APX and Poly-DAPX-completeness, respectively. In
Sections 5 and 6, we present our completeness results for PTAS and DPTAS. The results on intermediate
problems are given in Section 7. Finally, in Section 8, it is proved that MIN coLORING is DAPX-complete
under DPTAS-reduction. This is the first problem that is DAPX-complete but not APX-complete. Defini-
tions of problems used and/or discussed in the paper, together with specifications of their worst solutions are
given in Appendix A.

2 Preliminaries

2.1 Polynomial approximation

We firstly recall some useful definitions about basic concepts of polynomial approximation that will be used
in the sequel.

Definition 1. A problem IT in NPO is a quadruple (Z, Sol, m, opt) where:
e 7 is the set of instances (and can be recognized in polynomial time);

e givenz € Z, Sol(x) is the set of feasible solutions of x; the size of a feasible solution of x is polynomial
in the size |x| of the instance; moreover, one can determine in polynomial time if a solution is feasible
or not;

e Givenz € Zandy € Sol(x), m(x,y) denotes the value of the solution y of the instance x; m is called
the objective function, and is computable in polynomial time; we suppose here that m(z,y) € N;

e opt € {min, max}; in what follows, we will use notations opt(II) = max, or min to denote that II
is a maximization, or a minimization problem, respectively. il

Given a problem II in NPO, we distinguish the following three different versions of it:

e the constructive version denoted also by II, where the goal is to determine a solution y* € Sol(z)
satisfying m(z, y*) = opt{m(z,y),y € Sol(x)};

e the evaluation problem II., where we are only interested in determining the value of an optimal
solution;

e the decision version I of IT where, given an instance = of II and an integer k, we wish to answer the
following question: “does there exist a feasible solution y of = such that m(x,y) > k, if opt = max,
orm(x,y) < k, if opt = min?”.

Given an instance z of an optimization problem II, let opt(z) be the value of an optimal solution, and w(z)
be the value of a worst feasible solution. This value is the optimal value of the same optimization problem
(with respect to the set of instances and the set of feasible solutions for any instance) defined with the opposite
objective (minimize instead of maximize, and vice-versa) with respect to II. We now define the two ratios
the most commonly used for the analysis of approximation algorithms, called standard and differential in the
sequel. For y € Sol(x), the standard approximation ratio of y is defined as r(z,y) = m(z,y)/ opt(z). The
differential approximation ratio of y is defined as 0(x, y) = |m(z,y) — w(z)|/| opt(z) — w(x)|.

Following the above, standard approximation ratios for minimization problems are greater than, or equal
to, 1, while for maximization problems these ratios are smaller than, or equal to 1. On the other hand,
differential approximation ratio is always at most 1 for any problem.
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Let A be a function mapping the instances of a problem I to [0, 1], or to [1, +00). An algorithm A guar-
antees standard (resp., differential) ratio A if and only if, for any instance x of II, r(x, A(x)) > A(x),
or 7(x,A(z)) < A(x), depending whether II is a maximization or a minimization problem (resp.,
d(z, A(z)) > A(x)). A problem II is standard (resp., differential) A-approximable if and only if there
exists a polynomial algorithm that guarantees standard (resp., differential) ratio A.

We now formally define the approximation classes Poly-APX, APX, PTAS and FPTAS with which we
deal in this paper.

o Poly-APX is the class of NPO problems approximable within ratios O(|x|"), for some n > 0, if
opt(II) = min, or n < 0, if opt(II) = max.

o APX is the class of constant-approximable NPO problems, i.e., for which there exist polynomial
algorithms guaranteeing ratio A for a A that does not depend on any parameter of the instance.

e PTAS is the class of NPO problems admitting polynomial time approximation schemata; such
schemata are families of polynomial algorithms A., € €]0, 1], any of them guaranteeing approximation
ratio 1 — ¢ (if opt(II) = max), or 1 + ¢ (if opt(II) = min).

e FPTAS is the class of NPO problems admitting a fully polynomial time approximation schemata; such
schemata are polynomial time approximation schemata (A:).¢jo,1], where the complexity of any A is
polynomial in both the size of the instance and in 1/e.

Classes Poly-DAPX, DAPX, DPTAS and DFPTAS for the differential approximation paradigm can be de-
fined analogously (recall that differential approximation ratio is always less than, or equal to, 1; so, differential
approximation classes are defined analogously to the standard ones for maximization problems).

We now recall what is called a polynomially bounded problem and introduce a notion of diameter bound-
ness, very useful and intuitive when dealing with the differential approximation paradigm.

Definition 2.  An NPO problem II is polynomially bounded it and only if there exists a polynomial ¢
such that, for any instance  and for any feasible solution y € Sol(x), m(x,y) < q(|z|). It is diameter
polynomially bounded if and only if there exists a polynomial ¢ such that, for any instance z, | opt(x) —
w(z)| < q(|z/)- B

The class of polynomially bounded NPO problems will be denoted by NPO-PB, while the class of diameter
polynomially bounded NPO problems will be denoted by NPO-DPB. Analogously, for any (standard or
differential) approximation class C, we will denote by C-PB (resp., C-DPB) the subclass of polynomially
bounded (resp., diameter polynomially bounded) problems of C.

We also need the following definitions, introduced in [12], that will be used later.

o A problem II € NPO is said additive if and only if there exist an operator @ and a function f, both
computable in polynomial time, such that:

— @ associates with any pair (x1, z2) € Zy1 X Zy an instance 1 @ x2 € Iy with opt(z; @ x2) =
opt(z1) + opt(z2);

— with any solution y € solyj(xz1 @ x2), f associates two solutions y; € solp(z1) and yo €
solp(z2) such that m(xy ® x2,y) = m(z1,y1) + m(za, y2).

e Let Poly be the set of functions from N to N bounded by a polynomial. A function F' : N — N is
hard for Poly if and only if for any f &€ Poly, there exist three constants &, ¢ and ng such that, for any
n = ng, f(n) < kF(n°).
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e A maximization problem II € NPO is canonically hard for Poly-APX if and only if there exist a
transformation 7" from 3sArt to 11, two constants ng and ¢ and a function F', hard for Poly, such that,
given an instance = of 3SAT on n > ng variables and a number N' > n€, instance 2/ = T'(z, N)
belongs to Zy1 and verifies the following properties:

1. if z is satisfiable, then opt(z’) = N;
2. if x is not satisfiable, then opt(z') = N/F(N);

3. given a solution y € solrr(z’) such that m(z,y’) > N/F(N), one can polynomially determine
a truth assignment satisfying .

Note that, since 3saT is NP-complete, a problem II is canonically hard for Poly-APX if and only if any
decision problem IT" € NP reduces to II along Items 1 and 2 just above.

2.2 Reductions

First, let us recall that, given a reduction R and a set C of problems, a problem II € C is C-complete
under R if and only if any problem in C R-reduces to II. If R preserves membership in C' C C, then IT is
C-intermediate under R if and only if it is neither C-complete nor in C’ (provided that P # NP). Moreover,
we will say that a problem II € NPO is NP-hard if its decision version 11 is NP-complete.

Five basic and two new reductions will be used in this paper. Among the former, the first one is the
seminal Turing-reduction between optimization problems as it appears in [10]. It preserves optimality of
solutions and hence membership in PO (the optimization problems solvable in polynomial time; obviously,
PO C NPO).

Let IT and II' be two problems in NPO. Then, II reduces to II" under Turing-reduction (denoted by
IT <7 II') if and only if, given an oracle [J optimally solving II’, we can devise an algorithm optimally
solving II, in polynomial time if [J is polynomial.

The other four basic reductions, PTAS, E, DPTAS and F that will be discussed or used in what follows,
are defined in [7, 12, 1, 6], respectively, and mentioned here for reasons of readability.

Let IT and II' be two maximization NPO-problems (the case of minimization is completely analogous).
Then, IT PTAS-reduces to 11’ (denoted by I <ptag II'), if and only if there exist three functions f, g and ¢
such that:

e forany x € Zyy and any € €]0, 1[, f(x,€) € Zyy; f is computable in time polynomial with |z|;

e forany x € Iy, any ¢ €0, 1[ and any y € solr (f(z,¢)), g(x,y,€) € soli(z); g is computable in
time polynomial with |z| and |y|;

e c:]0,1[—]0,1];
e forany x € Zyy and any € €]0, 1, riy (f(x,€),y) = 1 — c(e) = rn(z, g(x,y,e)) > 1 —e.

PTAS-reduction preserves membership in PTAS. Using it, natural problems as MAX INDEPENDENT SET-13,
or MIN VERTEX COVER-B are shown APX-complete.

As we have already mentioned, the E-reduction has been defined in [12] in an attempt to be applied
uniformly at all levels of approximability. It is slightly weaker than the L-reduction of [15] and preserves
membership in FPTAS. We say that a problem 11 E-reduces to 1 (II <g IT) if and only if there exist two
polynomially computable functions f and g and a constant ¢ such that:

e for any v € Iy, f(z) € Zir; moreover, there exists a polynomial p such that opt(f(z)) <
p(lz]) opt(z);
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e for any x € 7y and any y € solyy(f(z)), g(z,y) € solm(z); furthermore, €(z,g(x,y)) <
ce(f(x),y) where for z € 7y and z € solip(z), €(z,2) = r(x,z) — 1, if opt(II) = min and
e(z,z) = (1/r(z, 2)) — 1, if opt(II) = max.

As it is proved in [12], if a problem II is additive and canonically hard for Poly-APX, then any problem in
Poly-APX-PB E-reduces to II. As MAX INDEPENDENT SET is additive and canonically hard for Poly-APX, it
is Poly-APX-PB-complete, under the E-reduction.

The DPTAS-reduction has been introduced in [1] in order to provide DAPX-completeness results. It
preserves membership in DPTAS. For two NPO problems IT and IT', IT <pptas II" if and only if there exist
three functions f, g and ¢, computable in polynomial time, such that:

o Yz € Iy, Ve €]0,1[NQ, f(x,e) € Zyy; f is possibly multi-valued;
e Vz € Iyy, Ve €]0,1[NQ, Vy € sol (f(x,¢€)), g(x,y, &) € soly(x);
e ¢:]0,1/0Q =0, 1[NQ;

o Va € Iy, Ve €]0,1[NQ, Yy € soliy (f(z,¢)), o (f(x,e),y) = 1 —c(e) = on(z, g(x,y,€)) >
1 — ¢g; if f is multi-valued, i.e., f = (f1,..., fi), for some i polynomial in |z|, then the former
implication becomes: V€ Iy, Ve €]0,1[NQ, Yy € sol ((f1, ..., fi)(z,€)), there exists j < @
such that o (fj(z,€),y) > 1 —c(e) = dn(z,g(z,y,¢)) > 1 —€.1

One of the basic features of differential approximation ratio is that it is stable under affine transformations
of the objective functions of the problems dealt. In this sense, problems for which the objective functions
of the ones are affine transformations of the objective functions of the others are approximate equivalent
for the differential approximation paradigm (this is absolutely not the case for standard paradigm). The
most notorious case of such problems is the pair MAX INDEPENDENT SET and MIN VERTEX COVER. Affine
transformation is nothing else than a very simple kind of differential-approximation preserving reduction,
denoted by AF, in what follows. Two problems IT and II’ are affine equivalent if IT <af II" and IT" < IL.
Obviously affine transformation is a DPTAS-reduction.

Finally, the F-reduction has been introduced in [6] and, as the E-reduction, it preserves membership
in FPTAS. For two NPO problems IT and IT', IT F-reduces to IT" if and only if there exist three polynomially
computable functions f, g and ¢ such that:

o VYV € IH, f(.%') S IH/;
o Yz € I, Yy € Solir (f(z)), g(z,y) € Soln(x);

o c: 711 x(]0,1[NQ) —]0, 1[NQ; there exists a polynomial p such that,foralle > 0 and forall z € Zyj,
c(xz,e) = 1/p(|z|,1/e); moreover, Vx € Iy, Ve €]0,1[NQ, Yy € Solir(f(x)), e(f(x),y) <
c(x,€) = e(x,9(x,y)) < e.

Under F-reduction, MAX LINEAR VARIABLE-WEIGHTED SAT-B has been proved PTAS-complete in [6].

We now introduce two new reductions, denoted by FT and DFT, preserving membership in FPTAS and
DEFPTAS, respectively.

Let IT and IT" be two NPO maximization problems. Let (I be an oracle for II' producing, for any
o €]0,1] and for any instance 2’ of IT', a feasible solution (I’ (') of z' that is an (1 — «)-approximation
for the standard ratio.

Definition 3. IT FT-reduces to II' (denoted by IT <gt II') if and only if, for any € > 0, there exists an
algorithm A, (2, ') such that:

e for any instance x of II, A, returns a feasible solution which is a (1 — ¢)-standard approximation;
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e if 0 (') runs in time polynomial in both |2’| and 1/a, then A, is polynomial in both || and 1/. I

For the case where at least one among IT and II’ is a minimization problem it suffices to replace 1 — & or/and
1 —aby1l+ ¢ or/and 1 + @, respectively. Reduction DFT, dealing with differential approximation, can be
defined analogously.

Clearly, FT- (resp., DFT-) reduction transforms a fully polynomial time approximation schema for II'
into a fully polynomial time approximation schema for I, i.e., it preserves membership in FPTAS (resp.,
DFPTAS). Observe also that AF-reduction, mentioned above, is also a DF T-reduction.

The F-reduction is a special case of FT-reduction since the latter explicitly allows multiple calls to ora-
cle OJ (this fact is not explicit in F-reduction; in other words, it is not clearly mentioned if f and g are allowed
to be multi-valued). Also, FT-reduction seems allowing more freedom in the way II is transformed into IT';
for instance, in F-reduction, function g transforms an optimal solution for IT’ into an optimal solution for IT,
i.e., F-reduction preserves optimality; this is not the case for FT-reduction. This freedom will allow us to
reduce non polynomially bounded NPO problems to NPO-PB ones. In fact, it seems that FT-reduction is
larger than F. This remains to be confirmed. Such proof is not trivial and is not tackled here.

In what follows, given a class C C NPO and a reduction R, we denote by CR the closure of C under R,
i.e., the set of problems in NPO that R-reduce to some problem in C.

3 Poly-APX-completeness

As mentioned in [12], the nature of the E-reduction does not allow transformation of a non-polynomially
bounded problem into a polynomially bounded one. In order to extend completeness in the whole Poly-APX
we have to use a larger (less restrictive) reduction than E. In what follows, we show that PTAS-reduction can
do it. The basic result of this section is the following theorem.

Theorem 1. If1I € NPO is additive and canonically hard for Poly-APX, then any problem in Poly-APX
PTAS-reduces to I1.

Proof. Let I be a maximization problem of Poly-APX and let A be an approximation algorithm for II
achieving approximation ratio 1/¢(-), where ¢ € Poly (the case of minimization will be dealt later in Re-
mark 1). Let II be an additive problem, canonically hard for Poly-APX, let F' be a function hard for Poly
and let k and ¢ be such that (for n > nyg, for a certain value ng) ne(n) < k(F(n®) —1). Let, finally,
x €Iy, € €]0,1]and n = |x|.

Construction of f(x,€)

Set m = m(x,A(x)); then m > optyy(z)/c(n). If we try to reproduce identically the analogous proof

of [12], we would be faced to the problem that quantity mc(n) is not always polynomially bounded; in other

words, transformation f might be not-polynomial. In order to remedy to this, we will uniformly partition

the interval [0, mc(n)] of possible values for optyy () into ¢(n) = 2¢(n) /e sub-intervals (remark that ¢ is

a polynomial). Consider, fori € {1,...,q(n)}, the set of instances Z; = {x : optyy (z) = ime(n)/q(n)}.
Set N = n¢. We construct, for any ¢, an instance X; of Il such that:

o ifx € Z;, then optyy(xs) = N;
e otherwise, opty(x;) = N/F(N).

Define f(z,€) = X = @1<igq(n)Xi and observe that ¢(n)/q(n) = /2. Then,

{iioptnf(x) > "’;5}’ 4 F‘é\]fv) (q(n) - Hiioptnf(x) > %}D 1)

optrr(x) = N x
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Construction of g(x, y, )

Let y be a solution of x and let j be the largest ¢ for which m(x;, y;) > N/F(N), where y; is the track of y
on ;. Then, one can compute a solution )’ of x such that:

m (2, ¢') > jmg b))
Furthermore, by definition of j, we have:
. ~ N
m(x,y) <NJ+(Q(n)—J)m (3)

We define ¢ = g(z,y, e) = argmax{m(x,v’), m(z,A(x))}. Note that m(x, 1)) > max{m, jme/2}.

Transfer of approximation ratios

Using (1) and (3), we get:

_|_
r(xy) <
m Ng(n
(I{é - optyy () > 3= }) (N F(N)) + F[(IN)
J+ F(q](v?_l
: ime q(n) “)
{4+ opty () > 5=} + F(N)—1
Since q(n) = 2¢(n)/e < (2k(F(N) —1))/(en), we obtain from (4):
J ot itE it
T(X’ y) < ., >€im5 2k 20pt /(33) < 2% ~ QOpt /(m)€ (5)
{i:optiy () > 2} + 52~ 2opmeled g 26 - Zopne(e) g
We now consider two cases, namely, j < 2/e and j > 2/e.
When j < 2/¢, taking into account that 7(x, 1) = m/ optyy (x), we have from (5):
14+ f—L r(x, ) (1+ %
r(x,y) < — - < 1_(§ ) 6)
r(zad) 2 2
For case j > 2/¢, observing that, from (2), (x, 1) > jme/(2opty (z)), we get from (5):
it _i0+h) ) ()
T(X?y)< 2opt /($)_1< b _1< 1_% (7)

me T(w,w)

Assuming n > 4k /e (otherwise, II' can be solved in time polynomial with |z|) and combining (6) and (7),
we finally get:

1—¢ I3 3e
> 2 > _Z ~ ) > _ 2
r(@9) 206y <2 r(x;y) (1 ) (1 ) > r(x,y) (1 1 )
In other words, reduction just described is a PTAS-reduction with ¢(¢) = /(4 — 3¢). The proof of the

theorem is complete. Il

Remark 1. For the case where the problem II’ (in the proof of Theorem 1) is a minimization problem, one
can reduce it to a maximization problem (for instance using the E-reduction of [12], p. 12) and then one can
use the reduction of Theorem 1. Since the composition of an E- and a PTAS-reduction is a PTAS-reduction,
the result of Theorem 1 applies also for minimization problems. Il

Combination of Theorem 1, Remark 1 and of the fact that MAX INDEPENDENT SET is additive and canoni-
cally hard for Poly-APX ([12]), produces the following concluding theorem.

Theorem 2. MAX INDEPENDENT SET is Poly-APX-complete under PTAS-reduction.
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4 Poly-APX-completeness under the differential paradigm

We now deal with the existence of Poly-DAPX-complete problems. This section consists of two parts. The
former is about Poly-DAPX-PB-completeness, while the latter one deals with Poly-DAPX-completeness.
Let us note that the former, studied in Section 4.1, will not be used for proving the existence of Poly-DAPX-
complete problems. We include it just for showing that Poly-APX-PB-completeness is natural also for the
differential paradigm.

4.1 Poly-DAPX-DPB-completeness

The main result of this section is the following theorem proving a sufficient condition for a problem to be
Poly-DAPX-DPB-hard.

Theorem 3. If'a (maximization) problem 11 € NPO is canonically hard for Poly-APX, then any problem in
Poly-DAPX-DPB DPTAS-reduces to 11.

Proof. Let II be a problem canonically hard for Poly-APX, for some function F' hard for Poly. Let
II" € Poly-DAPX-DPB be a maximization problem (the minimization case is analogous), let A be an
approximation algorithm for II' achieving differential approximation ratio 1/¢(+), where ¢ € Poly. Let
finally  be an instance of IT" of size n, and p be a polynomial such that p(] - |) < opt(-) — w(+).

Consider the set of NP-instances Z; = {z € Zyp : optyy(z) —wr(x) = i}, i = 1,...,p(n). Let k
and ¢ be such that (for n > ng, for some n9) nc(n) < kF(n®). In the sequel, we consider, without loss of
generality, that n > k (and hence c¢(n) < F(n)).

Construction of f(x, )

Set N = n¢. One can build, for any i, an instance x; of II such that, if © € Z;, then optyy(xi) = N,
otherwise, opty(xi) = N/F(N). We define f(x,e) = (xi, 1 < @ < p(n)). In other words, f is
multi-valued (and does not depend on €).

Construction of g(z, y, €)

Lety = (Y1, -, Yp(n)) be a solution of f(x,e). Set Ly = {i : m(xs,y:;) > N/F(N)}. Foranyi € Ly,
one can determine a witness of the fact that z € Z;, i.e., two solutions 1} and 14 of z such that

m (z,91) —m (2,43) > i ®)
Define 1) = g(, y, ) = argmax;c , {m(, A(z)), m(, ¥)}.
Transfer of differential ratios
Set ¢ = |opt(z) — w(x)|. Then, € Z; hence opt(x4) = N. Consider the two following cases:
o if ¢ € Ly, then, using (8), we get:
m (a,¢f) —m (z,1;) > ¢ = opt(z) — w(x) )
Y (and hence v) is necessarily an optimal solution for x;
o if m(xq,yq) < N/F(N), then, since opt(xq) = N (and w(x4) = 0), we get:

1 1
<——— << —K <
5(anyq) ~ F(N) ~ c(n) ~ (S(Z‘,A(IE)) X 6($7¢) (10)
From (9) and (10), the reduction just described is a DPTAS-reduction with ¢(¢) = € and the proof of the
theorem is complete. il
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4.2 Poly-DAPX-completeness
We now generalize Theorem 3 to the whole Poly-DAPX by proving the following theorem.

Theorem 4. If'a (maximization) problem 11 € NPO is canonically hard for Poly-APX, then any problem in
Poly-DAPX DPTAS-reduces ro 11.

Proof. Let IT be canonically hard for Poly-APX, for some function F" hard for Poly, let II" € Poly-DAPX be
a maximization problem and let A be an approximation algorithm for I1" achieving differential approximation
ratio 1/¢(+), where ¢ € Poly. Finally, let 2 be an instance of IT’ of size n. As in the case of the standard
approximation paradigm, we cannot directly use the proof of Theorem 3 because quantity opt(z) — w(x)
may be non-polynomially bounded.

We will use the central idea of [1] (see also [2] for more details). We will define a set Hg ; of problems
derived from IT'. For any pair (4,1), IT; ; has the same set of instances and the same solution-set as IT'; for
any instance  and any solution y of x, 7

S

Note that, for some pairs (4, 1), IT; , may be not in Poly-DAPX (hence, use of an algorithm for IT’, supposed
to be in Poly-DAPX, may be in{possible for II; ;). Next, considering = as instance of any of the prob-
lems H; ;» we will build an instance x;; of II, obtaining so a multi-valued function f. Our central objective
is, infor}nally, to determine a set of pairs (4, 1) such that we will be able to build a “good” solution for IT'
using “good” solutions of X ;.

Lete €]0,1[; set M. = 1+ |2/e] and let ¢ and k be such that (for n > ng for some ng) nc(n) <
EF(n®) (both ¢ and k may depend on €). Assume finally, without loss of generality, that 7 > k and set
N =n?. Then, 1/F(N) < 1/c(n). Set m = m(x, A(x)). In [1], a set F of pairs (i, 1) is built such that:

e |F| is polynomial with n;
e there exists a pair (ig, lp) in F such that:

5i0,lo($,y)>1—€:>5($,y)21—35 (11)
Optio,lo (‘T?y) g M€ (12)

Construction of f(x, )
Let ¢ be an integer. Consider, for any pair (¢,1) € F, the set of instances 7, = {x € T/ ,opty () = g}

More precisely, consider these instance-sets for ¢ € {0,...,M.}. For any pair (i,l) € F and for any
q € {0, ..., M.}, one can build an instance X, of I such that:

; ( q ) N ifopt, ;(x) > ¢
o 1) = i ;
P Xi g % ifopt; ;(7) < q

We have just defined the function f : f(z,¢) = (X;'Z,v (1,0) € F,q €{0,..., M.}).

Construction of g(x, y, )

Lecy = (v}, (i,1) € F,q € {0,..., M.}) be a solution of f(z,¢). Set Ly = {(i,1,q) : m(x{;,4{;) >
N/F(N)}. For each (i,l,q) € Ly, one can determine a solution d)zl of x (seen as instance of II} ;) with
value at least q.

Deﬁne Tﬂ = g($7y7€) = argmax{m(x7A(‘T))7m(x7wgl)a (Z7 la Q) € Ly}

10
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Transfer of differential ratios

Consider a pair (ig, lg) verifying (11) and (12) and set g9 = opt;, ;. (). Consider a solution y of f(z,¢)

and the following two cases:

10,lo

o if (0,10, q0) € Ly, then m(wig 10, Vi, ;) = 0Pty 1, (%); by (11), we get: (z, ) > 1 — 3

e if (ig,lo,q0) & Ly, then m(ng,lmyg?,lo) < N/F(N); since Opt(ng,lO) = N (and W(X;‘]g,lo) > 0),
we have: (X0, y, ) <1/F(N) < 1/c(n) < d(z,y).

i0,lo?

In both cases, if (5()(?8 lo? ygoolo) > 1— 3¢, then §(z, 1)) > 1 — 3e. Considering &’ = 3¢ and ¢(¢’) = £/, the
reduction just described is a DPTAS-reduction, completing so the proof of the theorem. il
Using the fact that MAX INDEPENDENT SET is canonically hard for Poly-APX, Theorem 4 directly

exhibits the existence of a Poly-DAPX-complete problem.
Theorem 5. MAX INDEPENDENT SET is Poly-DAPX-complete under the DPTAS-reduction.

Note that we could obtain the Poly-DAPX-completeness of canonically hard problems for Poly-APX even if
we forbade DPTAS-reduction to be multi-valued. However, in this case, we should assume (as in Section 3)
that IT is additive (in this case, the proof of Theorem 4 would be much longer).

5 PTAS-completeness

We now study PTAS-completeness under FT-reduction. The basic result of this section (Theorem 6) follows
immediately from Lemmata 1 and 2. Lemma 1 introduces a property of Turing-reduction for NP-hard
problems. In Lemma 2, we transform (under certain conditions) a Turing-reduction into a FT-reduction.
Proofs of the two lemmata are given for maximization problems. The case of minimization is completely
analogous.

Lemma 1. [fan NPO problem 11 is NP-hard, then any NPO problem Turing-reduces to 11'.

Proof. Let IT be an NPO problem and ¢ be a polynomial such that |y| < g(|z|), for any instance x of IT and
for any feasible solution y of . Assume that encoding n(y) of y is binary. Then 0 < n(y) < 24(=) — 1.
We consider the following problem II (see also [4]) which is the same as IT up to its objective function that
is defined by mp (2, y) = 2900+ (2, y) + n(y).

Clearly, if mp (x,y1) = mpg(x,y2), then my(x, y1) = mu(x, y2). So, if y is an optimal solution for x
(seen as instance of I1), then it is also an optimal solution for x (seen, this time as instance of II).

Remark now that for II, the evaluation problem II, and the constructive problem II are equivalent.
Indeed, given the value of an optimal solution y, one can determine n(y) (hence y) by computing the
remainder of the division of this value by 2¢(17D+1,

Since I is NP-hard, we can solve the evaluation problem I1. if we can solve the (constructive) prob-
lem IT'. Indeed,

e we can solve I, using an oracle solving, by dichotomy, the decision version II; of II;

° fId reduces to the decision version IT); of II" by a Karp-reduction (see [3, 10] for a formal definition
of this reduction);

e finally, one can solve IT/; using an oracle for the constructive problem IT'.

So, with a polynomial number of queries to an oracle for IT’, one can solve both IT, and II, and the proof of
the lemma is complete. I

We now show how, starting from a Turing-reduction (that only preserves optimality) between two NPO
problems IT and IT" where IT’ is polynomially bounded, one can devise an FT-reduction transforming a fully
polynomial time approximation schema for I’ into a fully polynomial time approximation schema for II.

11
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Lemma 2. LetII' € NPO-PB. Then, any NPO problem Turing-reducible ro I is also FT-reducible to 11'.

Proof. Let IT be an NPO problem and suppose that there exists a Turing-reduction between IT and IT'.
Let O be an oracle computing, for any instance ' of II' and for any @ > 0, a feasible solution 3/ of 2
such that r(2/,3) > 1 — a. Moreover, let p be a polynomial such that for any instance 2’ of II' and for any
feasible solution 3’ of 2/, m(2’,y’) < p(|2’|).

Let 2 be an instance of II. The Turing-reduction claimed gives an algorithm solving II using an oracle
for II'. Consider now this algorithm where we use, for any query to the oracle with the instance ' of T,
the approximate oracle O ('), with @ = 1/(p(|#’|) + 1). This algorithm produces an optimal solution,
since a solution ¢’ being an (1 — (1/(p(|2’|) + 1)))-approximation for z’ is an optimal one (recall that we
deal with problems having integer-valued objective functions, cf., Definition 1). Indeed,

mw(hy) L y N
optyy: (2) z p(lz']) +1 = mr (x ,y) > optyy (a:) 1
= m (¢/,y') = opt ()

It is easy to see that this algorithm is polynomial when OV (') is polynomial in |2/| and in 1/cv. Further-
more, since any optimal algorithm for II can be a posteriori seen as a fully polynomial time approximation
schema, we immediately conclude IT <gt II" and the proof of the lemma is complete. i

Combination of Lemmata 1 and 2, immediately derives the basic result of the section expressed by the
following theorem.

Theorem 6. Let II' be an NP-hard a problem of NPO. If1I" € NPO-PB, then any NPO problem FT-reduces
to 11,

From Theorem 6, one can immediately deduce the two corollaries that ensue.

Corollary 1. PTAS ' = NPO.

Corollary 2. Any polynomially bounded problem in PTAS is PTAS-complete under F T-reduction.

For instance, MAX PLANAR INDEPENDENT SET and MIN PLANAR VERTEX COVER are in both PTAS ([5])
and NPO-PB. What has been discussed in this section concludes then the following result.

Theorem 7. MAX PLANAR INDEPENDENT SET a72d MIN PLANAR VERTEX COVER are PTAS-complete under

FT-reduction.

Remark that the results of Theorem 7 cannot be trivially obtained using the F-reduction of [6].

6 DPTAS-completeness

We study in this section DPTAS-completeness under DFT-reduction. The results we shall derive are analo-
gous to the case of the PTAS-completeness of Section 5: we show that any NPO-DPB NP-hard problem in
DPTAS is DPTAS-complete. The basic result of this paragraph (Theorem 8) is an immediate consequence
of Lemma 1 and of the following Lemma 3, differential counterpart of Lemma 2.

Lemma 3. [f1I' € NPO-DPB, then any NPO problem Turing-reducible to 11 is also DF T-reducible to T1'.

Proof. Let IT € NPO and suppose that IT <t II'. Let (0!’ be an oracle computing, for any instance 2
of I and for any v > 0, a feasible solution 3’ such that §(2’,3") > (1 — a). Let p be a polynomial such
that for any instance 2’ of IT', | opt(2’) — w(2')| < p(|2']).

In the same way as in Lemma 2, we modify the algorithm of the Turing-reduction between II and II’
using the approximate oracle O with & = 1/(p(|2’|) + 1). This algorithm computes, as in Lemma 2,
an optimal solution and it is polynomial if the oracle is polynomial in |2’| and in 1/cv. This algorithm is
obviously a differential fully polynomial time approximation schema, and hence, IT <pgr IT'. 1

12
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Theorem 8. Let II' € NPO-DPB be NP-hard. Then any problem in NPO is DF T-reducible to T1'.

Corollary 3. DPTAS" ' = NPO.
Corollary 4. Any NPO-DPB problem in DPTAS is DPTAS-complete under DF T-reductions.

The following concluding theorem deals with the existence of DPTAS-complete problems.

Theorem 9. Problems MAX PLANAR INDEPENDENT SET, MIN PLANAR VERTEX COVER a7d BIN PACKING
are DPTAS-complete under DF T-reductions.

Proof. For DPTAS-completeness of MAX PLANAR INDEPENDENT SET, just observe that, for any instance G,
w(G) = 0. So, standard and differential approximation ratios coincide for this problem; moreover, it is in
both NPO-PB and NPO-DPB. Then, inclusion MAX PLANAR INDEPENDENT SET in PTAS suffices to
conclude its inclusion in DPTAS and, by Corollary 4, its DPTAS-completeness.

MAX PLANAR INDEPENDENT SET and MIN PLANAR VERTEX COVER are affine equivalent; hence
MAX PLANAR INDEPENDENT SET <AF MIN PLANAR VERTEX COVER. Since AF-reduction is a particular
kind of DFT-reduction, the DPTAS-completeness of MIN PLANAR VERTEX COVER is immediately con-
cluded.

Finally, the DPTAS-completeness of BIN PACKING is concluded from the facts: (i) BIN PACKING €
DPTAS ([8]) and (ii) BIN rackING € NPO-DPB (since, for any instance L of size n, w(L) = n and
opt(L) > 0).1

7 About intermediate problems under FT- and DFT-reductions

FT-reduction is weaker than the F-reduction of [6]. Furthermore, as mentioned before, this last reduction
allows existence of PTAS-intermediate problems. The question of existence of such problems can be posed
for FT-reduction too. In this section, we partially answer this question via the following theorem.

Theorem 10. If there exists an NPO-intermediate problem for the Turing-reduction, then there exists a problem
PTAS-intermediate for F T-reduction.

Proof. Let II be an NPO problem, intermediate for the Turing-reduction. Suppose that II is a maximization
problem (the minimization case is completely similar). Let p be a polynomial such that, for any instance z
and any feasible solution y of z, m(z,y) < 2902, Consider the following maximization problem IT where:

e instances are the pairs (2, k) with 2 an instance of IT and k an integer in {0, ... 29017 };
e for an instance (x, k) of II, its feasible solutions are the feasible solutions of the instance = of II;
e the objective function of I is:

@R ey >k
(z,k)] —1 otherwise

mer((z.k),y) = { |

We will now show the three following properties:
1. II € PTAS;
2. if T were in FPTAS, then II would be polynomial;
3. if II were PTAS-complete, then IT would be NPO-complete under Turing-reductions®.

If Properties 1, 2 and 3 hold, then since II is supposed to be intermediate, one can conclude that I is
PTAS-intermediate, under FT.

*We emphasize this expression in order to avoid confusion with usual NPO-completeness considered under the strict-

reduction ([14]).

13
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Proof of Property 1

Remark that Il is clearly in NPO-PB. Consider ¢ €]0, 1] and the algorithm A, which, on the instance (x, k)
of II, solves exactly (, k), if |(z, k)| < 1/&; otherwise, it produces some solution. Algorithm A. is polyno-
mial and guarantees standard approximation ratio 1 — €. Therefore, II is in PTAS.

Proof of Property 2

Remark that IT <t II. Indeed, let = be an instance of II. We can find an optimal solution of = solving
log(2P(2D) = p(||) instances (z, k) of Il (by dichotomy). Note that if IT were in FPTAS, it would
be polynomial since the fully polynomial time approximation schema A, applied on instance (x, k) with
e = 1/(|(x, k)| 4+ 1) is an optimal and polynomial algorithm. The fact that II <t II would imply in this
case that II is polynomial.

Proof of Property 3

Assume that II is PTAS-complete (under some FT-reduction). Then, MAX PLANAR INDEPENDENT SET
FT-reduces to II. Let U be an oracle solving II. Then, we immediately obtain an optimal algorithm
for II, polynomial if [ is so. Clearly, this algorithm can be considered as a fully polynomial time approx-
imation schema for II. Reduction MAX PLANAR INDEPENDENT SET <pT II provides a fully polynomial
time approximation schema for MAX PLANAR INDEPENDENT SET and, since it is in NPO-PB, we get
an optimal (and polynomial, if [J is so) algorithm for it. In other words, if II is PTAS-complete, then
MAX PLANAR INDEPENDENT SET < II. To conclude, MAX PLANAR INDEPENDENT SET is NPO-complete
under Turing-reduction, since it is NP-hard (cf., Lemma 1). Therefore, if II were PTAS-complete, II would
be NPO-complete under Turing-reduction. The proof of Property 3 and of the theorem are now completed. I

We now state an analogous result about the existence of DPTAS-intermediate problems under DFT-
reduction.

Theorem 11. [f there exists an NPO-intermediate problem under Turing-reduction, then there exists a problem
DPTAS-intermediate, under DF T-reduction.

I:roof. The proof is analogous to one of Theorem 10, up to modification of definition of I (otherwise,
IT ¢ DPTAS, because the value of the worst solution of an instance (, k) is |(z, k)| — 1; we have to change
it in order to get w((z, k)) = O for any instance (z, k)). We define II as follows:

e instances of II are, as previously, the pairs (x,k) where x is an instance of II and % is an integer
between 0 and 24(121);

e for an instance (z, k) of I, its feasible solutions are the feasible solutions of the instance = of II, plus
a solution y2;

o the objective function of I is:

0 if y = o2
mi((z, k), y) = § (2, k)] if m(z,y) > k
|(x,k)| —1 otherwise

Then, the result claimed is get in exactly the same way as in the proof of Theorem 10.

8 A new DAPX-complete problem not APX-complete

All DAPX-complete problems given in [1] are also APX-complete under the E-reduction ([12]). An interest-
ing question is if there exist DAPX-complete problems that are not also APX-complete for some standard-
approximation preserving reduction. In this section, we positively answer this question by the following
theorem.

14
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Theorem 12. MIN COLORING is DAPX-complete under DP TAS-reductions.

Proof. Consider problem MAX UNUSED cOLORS and remark that standard ratio for it coincides with differ-
ential ratio of MIN COLORING. In fact, these problems are affine equivalent; so,

MAX UNUSED COLORS <AF MIN COLORING (13)

MAX UNUSED COLORS is MAX-SNP-hard under L-reduction ([11]) that is, as mentioned already, a

particular kind of the E-reduction. On the other hand, MAX-SNPE = APX-PB ([12]). Since
MAX INDEPENDENT SET-B € APX-PB, MAX INDEPENDENT SET-B <g MAX UNUSED COLORS. Fur-
thermore, E-reduction is a particular kind of PTAS-reduction; hence, MAX INDEPENDENT SET-B <pTas
MAX UNUSED COLORS. Standard and differential approximation ratios for MAX INDEPENDENT SET-I3, on
the one hand, standard and differential approximation ratios for MAX UNUSED COLORS, and differential ratio
of MIN COLORING, on the other hand, coincide. So,

MAX INDEPENDENT SET-B <ppTas MAX UNUSED COLORS (14)

Reductions (13) and (14), together with the fact that the composition DPTAS o AF is obviously a DPTAS-
reduction, establish immediately the DAPX-completeness of MIN COLORING and the proof of the theorem
is complete. I

As we have already mentioned, MIN COLORING is, until now, the only problem known to be DAPX-
complete but not APX-complete. In fact, in standard approximation paradigm, it belongs to the class Poly-
APX and is inapproximable, in a graph of order n, within n'=¢, Ve > 0, unless NP coincides with the class
of problems that could be optimally solved by slightly super-polynomial algorithms ([9]).

9 Conclusion

We have defined suitable reductions and obtained natural complete problems for important approximability
classes, namely, Poly-APX, Poly-DAPX, PTAS and DPTAS. Such problems did not exist until now. This
work extends also the ones in [1, 2] further specifying and completing a structure for differential approxima-
bility. The only among the most notorious approximation classes for which we have not studied complete-
ness is Log-DAPX (the one of the problems approximable within differential ratios of O(1/log |x|)). This
is because, until now, no natural NPO problem is known to be differentially approximable within inverse
logarithmic ratio. Work about definition of Log-DAPX-hardness is in progress.

Another point that, to our opinion merits particular studies, is the structure of approximability classes
beyond DAPX that are defined not with respect to the size of the instance but to the size of other param-
eters as natural as |z|. For example, dealing with graph-problems, no research is conducted until now on
something like A-APX-, or A-DAPX-completeness where A is the maximum degree of the input graph.
Such works miss to both standard and differential approximation paradigms. For instance, a question we
are currently trying to handle is if MAX INDEPENDENT SET is, under some reduction, A-APX-complete, or
A-DAPX-complete. Such notion of completeness, should lead to achievement of inapproximability results
(in terms of graph-degree) for several graph-problems.

Finally, the existence of natural PTAS-, or DPTAS-intermediate problems (as BIN PACKING for APX
under AP-reduction) for F-, FT- and DFT-reductions remains open.
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Maximum variable-weighted satisfiability.

Given a boolean formula ¢ with non-negative integer weights w () on any variable x appearing in ¢,
MAX VARIABLE-WEIGHTED SAT consists of computing a truth assignment to the variables of ¢ that
both satisfies ¢ and maximizes the sum of the weights of the variables set to 1. We consider that the
assignment setting all the variables to 0, even if it does not satisfy ¢, is feasible and represents the
worst-value solution for the problem. MAX LINEAR VARIABLE-WEIGHTED SAT-B denotes the version
of MAX VARIABLE-WEIGHTED SAT, where the variable-weights are polynomially bounded and their
sum lies in the interval [B, (n/(n — 1)) B]. For this problem, it is assumed that the assignment setting
all variables to 0 is feasible and that its value is B. Obviously, this assignment represents the worst
feasible value.

Maximum independent set (MAX INDEPENDENT SET).
Given a graph G(V, E), an independent set is a subset V! C V such that whenever {v;,v;} C V7,
ViV; ¢ E, and MAX INDEPENDENT SET consists of finding an independent set of maximum size. MAX
INDEPENDENT SET-B denotes MAX INDEPENDENT SET in bounded-degree graphs and MAX PLANAR
INDEPENDENT SET denotes MAX INDEPENDENT SET in planar graphs. Worst-value solution: the
empty set.

Minimum coloring (MIN COLORING) and maximum color saving (MAX UNUSED COLORS).

Given a graph G(V,, E), we wish to color V' with as few colors as possible so that no two adjacent ver-
tices receive the same color. MAX UNUSED COLORS is the problem consisting, given a a graph G(V, E)
and a set of | V| colors, of coloring G using colors from the set given, in such a way that the number
of unused colors is maximized. Clearly, both problems have the same set of feasible solutions. It can
be immediately seen that if C'is a coloring for G, |V'| — |C] is the value of C' for MAX UNUSED cOL-
oRs and vice-versa; in other words, MIN COLORING and MAX UNUSED COLORS are affine equivalent.
Worst-value solutions: V' for the former and the empty set for the latter.

Minimum vertex-covering (MIN VERTEX COVER).
Given a graph G(V, E), a vertex cover is a subset V' C V such that, Vuv € E, either u € V/,
or v € V’, and MIN VERTEX COVER consists of determining a minimum-size vertex cover. MIN
VERTEX COVER-B denotes MIN VERTEX COVER in bounded-degree graphs and MIN PLANAR VERTEX
COVER denotes MIN VERTEX COVER in planar graphs. Worst-value solution: V.

Bin packing (BIN PACKING).
Given a finite set L = {x1,...,2,} of n rational numbers and an unbounded number of bins, each
bin having a capacity equal to 1, we wish to arrange all these numbers in the least possible bins in such
a way that the sum of the numbers in each bin does not violate its capacity. Worst solution: L.

Minimum traveling salesman problem (MIN TSP).
Given a complete graph on n vertices, denoted by K, with positive costs on its edges, MIN Tsp
consists of minimizing the cost of a Hamiltonian cycle (an ordering (v1,v2, ..., vy) of V such that
vpv1 € Eand, for 1 < @ < n, vjvi41 € E), the cost of such a cycle being the sum of the costs of
its edges. We denote by MIN METRIC TSP the version of MIN Tsp where edge distances satisfy triangle
inequalities. Worst-value solution: the total distance of the longest Hamiltonian cycle (determination

of which is also NP-hard).
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