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Abstract

We revisit in this paper the probabilistic coloring problem (PROBABILISTIC COLORING) and focus
ourselves on bipartite and split graphs. We first give some general properties dealing with the optimal
solution. We then show that the unique 2-coloring achieves approximation ratio 2 in bipartite graphs
under any system of vertex-probabilities and propose a polynomial algorithm achieving tight approxima-
tion ratio 8/7 under identical vertex-probabilities. Then we deal with restricted cases of bipartite graphs.
Main results for these cases are the following. Under non-identical vertex-probabilities PROBABILIS-
TIC COLORING is polynomial for stars, for trees with bounded degree and a fixed number of distinct
vertex-probabilities, and, consequently, also for paths with a fixed number of distinct vertex-probabilities.
Under identical vertex-probabilities, PROBABILISTIC COLORING is polynomial for paths, for even and
odd cycles and for trees whose leaves are either at even or at odd levels. Next, we deal with split graphs
and show that PROBABILISTIC COLORING is NP-hard, even under identical vertex-probabilities. Finally,
we study approximation in split graphs and provide a 2-approximation algorithm for the case of distinct
probabilities and a polynomial time approximation schema under identical vertex-probabilities.

1 Preliminaries

In minimum coloring problem, the objective is to color the vertex-set V' of a graph G(V, E) with as few colors
as possible so that no two adjacent vertices receive the same color. Since adjacent vertices are forbidden to be
colored with the same color, a feasible coloring can be seen as a partition of V' into independent sets. So, the
optimal solution of minimum coloring is a minimum-cardinality partition into independent sets. The decision
version of this problem was shown to be NP-complete in Karp’s seminal paper ([13]). The chromatic number
of a graph is the smallest number of colors that can feasibly color its vertices.

In the probabilistic version of minimum coloring, denoted by PROBABILISTIC COLORING, we are given:

e a graph G(V, E) of order n, and an n-vector Pr = (p1,...,p,) of vertex-probabilities; in other
words, an instance of PROBABILISTIC COLORING is a pair (G, Pr);

e a modification strategy M, i.e., an algorithm that when receiving a coloring C' = (S, ..., Sk) for V,
called « priori solution, and a subgraph G’ = G[V’] of G induced by a sub-set V! C V as inputs, it

modifies C' in order to produce a coloring C’ for G'.

The objective is to determine a coloring C* (called optimal a priori solution) of G minimizing the quantity
(commonly called functional) E(G,C,M) = > .y Pr[V’']|C(V',M)| where C(V',M) is the solution
computed by M(C, V') (i.e., by M when executed with inputs the a priori solution C and the subgraph of G
induced by V') and Pr[V'] =[],y ps HieV\V’(l — p;) (there exist 2" distinct sets Vs therefore, explicit
computation of E(G, C,M) is, a priori, not polynomial). The complexity of PROBABILISTIC COLORING is
the complexity of computing C*.



In this paper, we study PROBABILISTIC COLORING under the following simple but intuitive modification
strategy M: given an a priori solution C, take the set CNV as solution for G[V'], ie,
remove the absent vertices from C. Let us note that motivation of PROBABILISTIC COLORING by two real-
world applications, the former dealing with timetabling and the latter with planning, is given in [17]. Since
the modification strategy M is fixed for the rest of the paper we will simplify notations by using E(G, C)
instead of E(G, C,M) and C(V’) instead of C'(V', M). Set k' = |C(V")|, and consider the facts Fj: color S;
has at least a vertex and I_:J-: there is no vertex in color S;. Then, denoting by 1F, and 1,-:j, respectively,

their indicator functions, &’ can be written as k' = Z?:l 1f, = SR (- 1), and E(G,C) can be

written as: -
BGo) = eV (Y (1-1p)
VIcV J=1
k k
= DY Pr[V]) 1- > Pr{V]> 15nvg
VICy =1 VICV =1
k k k
= S Y PV - Y Pr[V)1sove = k-3 [ A-m)
j=1V'CV j=1V'CV J=1v;€S;
k
= 1-— H (1—pi) (1)
j=1 v; €S

It is easy to see that computation of E(G,C) can be performed in at most O(n?) steps, consequently,
PROBABILISTIC COLORING € NP. On the other hand, from (1), we can easily characterize the optimal
a priori solution C* for PROBABILISTIC COLORING: if the value of an independent set S; of G'is 1 —
[1,.c s (1 — p;) then the optimal a priori coloring for G is the partition into independent sets for which the sum
of their values is the smallest over all such partitions.

PROBABILISTIC COLORING has been originally studied in [17, 18], where complexity and approxima-
tion issues have been considered for general graphs and several special configuration graphs such as bipartite
graphs, complements of bipartite graphs and others.

Besides PROBABILISTIC COLORING, restricted versions of routing and network-design probabilistic min-
imization problems defined on complete graphs have been studied in ([2, 4, 5, 6, 8, 9, 10, 11]). In [16] the
minimum vertex covering problem in general and in bipartite graphs is studied, while in [14, 15] the longest
path and the maximum independent set, respectively, are tackled.

Dealing with PROBABILISTIC COLORING in bipartite graphs, it is shown in [17] that it is NP-hard even
if the input has only four distinct vertex-probabilities with one of them being equal to 0. Moreover, a poly-
nomial algorithm was devised, achieving approximation ratio bounded above by 2.773. The NP-hardness
result of [17] left, however, several open questions. For instance, “what is the complexity of PROBABILISTIC
COLORING when we further restrict inputs, say in paths, or trees, or cycles, or stars, ...?”, etc. In this paper,
we prove that, under non-identical vertex-probabilities, PROBABILISTIC COLORING is polynomial for stars
and for trees with bounded degree and a fixed number of distinct vertex-probabilities and we deduce as a
corollary that it is polynomial also for paths with a fixed number of distinct vertex-probabilities. Then, we
show that, assuming identical vertex-probabilities, the problem is polynomial for paths, for even and odd
cycles and for trees all leaves of which are either at even or at odd levels. We finally focus ourselves on split
graphs and show that, in such graphs, PROBABILISTIC COLORING is NP-hard, even assuming identical
vertex probabilities.

Let A be a polynomial time approximation algorithm for an NP-hard minimization graph-problem II,
let m(G, S) be the value of the solution S provided by A on an instance G of IT, and opt(G) be the value of
the optimal solution for G (following our notation for PROBABILISTIC COLORING, opt(G) = E(G, C¥)).



Graph-classes | Complexity Approximation ratio

Bipartite 4 2
Bipartite, p; = 0.5 Polynomial

Bipartite, p; identical ? 8/7
Trees ?

Trees, bounded degree, k distinct probabilities Polynomial

Trees, all leaves exclusively at even or odd level, identical p;’s || Polynomial

Stars Polynomial

Paths 2

Cycles ?

Even or odd cycles, p; identical Polynomial

Split NP-complete 2
Split, p; identical NP-complete 1+ ¢, foranye >0

Table 1: Summary of the main results of the paper.

The approximation ratio pa(G) of the algorithm A on G is defined as pa(G) = m(G, S)/opt(G). An
approximation algorithm achieving ratio, at most, p on any instance G of II will be called p-approximation
algorithm. A polynomial time approximation schema is a sequence A¢ of polynomial time approximation
algorithms which when they run with inputs a graph G (instance of II) and any fixed constant € > 0, they
produce a solution S such that py_ (G) < 1 +e.

Dealing with approximation issues, we show that the unique 2-coloring (where all nodes of each par-
tition share the same color) achieves approximation ratio 2 in bipartite graphs under any system of vertex-
probabilities. Furthermore, we propose a polynomial algorithm achieving approximation ratio 8/7 under
identical vertex-probabilities. Both results importantly improve the 2.773 bound of [17]. We also pro-
vide a 2-approximation polynomial time algorithm for split graphs under distinct vertex-probabilities and a
polynomial time approximation schema when vertex-probabilities are identical.

Table 1 summarizes the main results and open questions arising from the paper. Obviously, some of
these results have several important corollaries. For instance, the fact that PROBABILISTIC COLORING is
polynomial in trees with bounded degrees and a fixed number of distinct probabilities, has as consequence
that it is also polynomial in paths with a fixed number of distinct probabilities. Also, since PROBABILISTIC
COLORING is approximable within ratio 2 in general (i.e., under any system of vertex-probabilities) bipartite
graphs, it is so in general trees, paths and even cycles, also.

2 Properties

2.1 Properties under non-identical vertex-probabilities

We give in this section some general properties about probabilistic colorings, upon which we will be based
later in order to achieve our results. In what follows, given an a priori k-coloring C' = (S1, ..., Sk) we will

se: f(C) = E(G,C), where E(G, C) is given by (1), and, fori = 1,..., k, f(S5;) = 1 ][, g, (1= 1))

Property 1. Let C = (51, ..., Sk) be a k-coloring and assume that colors are numbered so that f(.S;) <
f(Six1), i = 1,...,k — 1. Consider a vertex x (of probability p;) colored with S; and a vertex y (of
probability py) colored with S}, j > 1, such that p, > py. If swapping colors of = and y leads to a new
feasible coloring C’, then f(C”") < f(C).

Proof. Between colorings C' and C” the only colors changed are S; and S;. Then:
F(C") = F(C)=f(Si) = £(Si) + £ (S)) — £(S;) )



Set now

Sio= (Si\{z}h) u{y}
5 = (5\ U ) 5
S¢o= Si\{z} = S\ {y}
S = Si\{y} = S;\{z}
Then, using notations of (3), we get:
F(S)—f(S) = 1-(1-p,) (Q—pn)—1+1—p) J] @-pn)
vpESY vpE€SY
= (y—p) [[ 0 =pn) (4)
v, €SY
F(S5) = f(S) = 1=(=p) [T Q=m)=1+0=py) [T @ —pn)
vheS§’ v €SY

= (e—py) [[ L—pn) 5)

Using (4) and (5) in (2), we get:

FO) =) =y—p) | TI C=p)— T] (1 —pn) 6)

Vp, ESII-/ Uhesg-/

Recall that, by hypothesis, we have f(S;) < f(S;) and p, > p,; consequently, by some casy algebra,
we achieve thes;'(l — pn) — thesg’(l — pr) = 0 and, since py — p; < 0, we conclude that the
right-hand-side of (6) is negative, implying that coloring C” is better than C, ged. I

With very similar arguments and operations as for Property 1, the following property, that is a particular
case of Property 1, also holds.

Property 2. Let C = (S1,...,Sk) be a k-coloring and assume that colors are numbered so that f(.S;) <
f(Sit1),i=1,...,k—1. Consider a vertex x colored with color S;. If it is feasible to color z with another
color Sj, j > 14, (by keeping colors of the other vertices unchanged), then the new feasible coloring C' !

verifies f(C') < f(CO).

Property 3. In any graph of maximum degree A, the optimal solution of PROBABILISTIC COLORING contains
at most A -+ 1 colors.

Proof. If an optimal coloring C' uses A + k colors, k > 0, then, by emptying the least-value color (thing
always possible as there are at least A + 1 colors) and due to Property 2, we achieve a A + 1-coloring feasible
for G with value better than the one of C'. I

2.2 Properties under identical vertex-probabilities

Properties seen until now in this section work for any graph and for any vertex-probability system. Let us
now focus ourselves on the case of identical vertex-probabilities. Remark first that, for this case, Property 2
has a natural counterpart expressed as follows.

Property 4 Let C = (51, . .., Sk) bea k-coloring and assume that colors are numbered so that |S;| < [Si+1],
i =1,...,k— 1. If it is feasible to inflate a color S} by “emptying” another color S; with ¢ < j, then the
new coloring C”, so created, verifies f(C") < f(C).



Proof. Simply remark that if |\S;| < |Sj], then f(.S;) < f(S;) and apply the same proof as for Property 1. i
Since, in the proof of Property 4, only the cardinalities of the colors intervene, the following corollary-
property consequently holds.

Property 5. Let C = (S1,...,Sk) be a k-coloring and assume that colors are numbered so that |S;| <
|Sit1], ¢ = 1,...,k — 1. Consider two colors S; and Sj, i < j, and a vertex-set X C S; such that,
|Si| + |X| = |S;|. Consider (possibly unfeasible) coloring C’ = (S1,...,S; UX,...,S;\ X,...,Sk).
Then, £(C") < J(C).

From now on we define those colorings C' such that Properties 1, or 2, or 4 hold, as “balanced colorings”.
In other words, for a balanced coloring C, there exists a coloring C’, better than C, obtained as described
in Properties 1, or 2, or 4. On the other hand, colorings for which transformations of the properties above
cannot apply will be called “unbalanced colorings”.

From the above definition, the following Proposition immediately holds.

Proposition 1. For any balanced coloring, there exist an unbalanced one dominating it.

Let us further restrict ourselves to bipartite graphs. Remark first that the cases of vertex-probability 0 or 1 are
trivial: for the former any a priori solution has value 0; for the latter, PROBABILISTIC COLORING coincides
with the classical (deterministic) coloring problem where the (unique) 2-coloring is the best one.

Consider a bipartite graph B(U, D, E) and, without loss of generality, assume |U| > |D|. Also, denote
by a(B) the cardinality of a maximum independent set of B. Then the following property holds.

Property 6. If a(B) = |U/|, then 2-coloring C' = (U, D) is optimal.

Proof. Suppose a contrario that C' is not optimal, then the optimal coloring C" uses exactly k > 3 colors
and its largest cardinality color S’ has cardinality 3. Consider the following exhaustive two cases:

a(B) = 3: then, it is sufficient to aggregate all the vertices not belonging to S| into another color,
say Sb; this would lead to a — possibly unfeasible — solution C” which improves upon C” (due to
Proposition 1) and whose value coincides with the value of C;

a(B) < B: assume adding to color S| exactly a(B) — [3 vertices from the other colors neglecting possible
unfeasibilities; the resulting solution C” dominates C” (due to Proposition 1); but then, the largest
cardinality color S} has in solution C" exactly «(B) vertices; hence, as for case a(B) = [3, the
2-coloring C' is feasible, and dominates both C” and C’. I

3 General bipartite graphs

We first give an easy result showing that the hard cases for PROBABILISTIC COLORING are the ones where
vertex-probabilities are “small”. Consider a bipartite graph B(U, D, E') and denote by pmin its smallest
vertex-probability.

Proposition 2. If pmin > 0.5, then the unique 2-coloring C' = (U, D) is optimal for B.

Proof. If prin > 0.5, then, for any color S; of any coloring C" of B, 1 > f(S;) > 0.5. Hence, for any
feasible coloring C’' of B, f(C") = 0.5|C’| > 0.5. On the other hand, as f(C') < 2, the optimal coloring
can never use more than 3 colors. So, at a first time, an optimal coloring of B uses either 2, or 3 colors.
Consider any 3-coloring C” of B. Due to Properties 1 and 2, the best 3-coloring ever reachable (and
possibly unfeasible) is coloring C” = (SY, S%, S%) assigning color S’ to a vertex of B with lowest probability
(denote by v such a vertex), color S4 to a vertex with the second lowest probability (denote by p/ .. this



probability and by v’ such a vertex) and color S5 to all the other vertices of B. It is easy to see that

F(SY) > f(S5) = f(S7). More precisely,

(SH) = Pmin (7)
f(53) = Pupin = Pumin (8)
(S3 ) > pinin P Pmin
Using (7) and (8) and the fact that pryin > 0.5, we get:
F(ST) + £ (55) = 2pmin > 1 ©)

We will prove that f(U) + f(D) < f(S7) + f(SY) + f(S5). For this, we distinguish the following four
exhaustive cases, depending on the fact that v and v belong to U, or to D:

1. v e Uandv' € D;
2. ve Dand v € U;
3. v, € U;
4. v,v' € D.

We will examine Cases 1 and 3 as Case 2 is exactly specular to the former and Case 4 to the latter.
For Case 1, using (7), (8) and (9), one has to show that

1+1— 11 (I—pi) =2- I1 (1—pi)

v;€(UUD)\{v,v'} v;€(UUD)\{v,v'}
>1-JJa-p)+1-J[ Q=-p)=2-J] 0=p)— [] O -p) (10)
v, €U v, €D v, €U v, €D

or, equivalently,

I1 (1=p) = (I =pmn) [[ O=p)=(-pun) [] (-p)<0 (D

v;€(UUD)\{v,v'} v;eU\{v} vie D\{v'}
SetI'y = HvieU\{v}(l —pi)and 'y = HvieD\{v’}(l — pi). Then, (11) becomes:
D172 = (1 = pmin) T1 = (1 = plyin) T2 <0 (12)

Taking into account that 1 — ppi, > I't and 1 —pf . > I'a, (12) becomes F% + F% — Iy = (T —
['2)?2 + 1Ty > 0, that is always true. The proof of Case 1 is complete.
We now analyze Case 3. By analogy with (11), we have to show that

11 (1=p) = (1=pmin) 1= Phw)  [[ Q=p)— [[ Q=p)<0 (3

'Uz'e(UUD)\{'U?U/} UZ'EU\{’U,’U’} v; €D
Set this time I'] = HviEU\{v,v/}(l —pi)and 'y = HvieD(l — p;). Then, (13) becomes:
[0 — (1 = pmin) (1 — plojn) F1 — T2 <0 (14)

or, equivalently ' (T'1 — 1) < (1 — pmin)(1 — pl;,)T'1, which is always true since the left-hand quantity is
negative and right-hand one is positive. This completes the proof of Case 3 and of the proposition. Il



Figure 1: A tree with a 3-coloring of better value than the one of its 2-coloring,

When vertex-probabilities are generally and typically smaller than 0.5, the situation completely changes
with respect the result of Proposition 2. Indeed, in this case, it is possible to provide instances, even with
identical vertex-probabilities, where the 2-coloring does not provide the optimal solution. For instance,
consider the tree 1" of Figure 1, where vertex 1 (the tree’s root) is linked to vertices n + 1,...,2n and
vertex 2n is linked to vertices 1,. .., n.

Assume that vertex-probabilities of the vertices of T" are all equal to p < 0.5. Then, the 2-coloring
{{1,...,n},{n+1,...,2n}} has value fo = 2(1 — (1 — p)"), while the 3-coloring {{1},{2,...,2n —
1},{2n}} has value f3 = 2(1 — (1 —p)) + (1 — (1 — p)?"~2). For p small enough and n large enough, we
have fo =~ 2 and f3 =~ 1.

The example of Figure 1 generalizes the counter-example of [17], dealing only with bipartite graphs, and
shows that not only in general bipartite graphs but even in trees (that are restricted cases of bipartite graphs)
the obvious 2-coloring is not always the optimal solution of PROBABILISTIC COLORING .

In [17], it is shown that the natural 2-coloring is a 2.773-approximation of PROBABILISTIC COLORING
in bipartite graphs. In the following proposition, based upon Property 1, we improve this bound to 2.

Proposition 3. In any bipartite graph B(U,D,E), its unique 2-coloring C = (U, D) achieves approximation
ratio bounded by 2. This bound is tight.

Proof. Consider a bipartite graph B(U, D, E). A trivial lower bound on the optimal solution cost (due to
Property 1) is given by the unfeasible 1-coloring U U D with all the vertices having the same color. Hence,
denoting by C*, an optimal coloring of B, we have:

fUUD) < f(C) (15)

Assume that f(U) < f(D). Then, since D C U U D, f(D) < f(UU D). Therefore, using (15)
f(C)=fU)+ f(D) <2f(D) <2f(UUD)<2f(C*), ged.

For tightness, consider the 4-vertex path of Figure 2. The 2-coloring has value 2 — 2¢ 4 2¢2, while the
3-coloring {1,4},{2}, {3} has value 1 + 2¢ — €2. For ¢ — 0, the latter is the optimal solution and the
approximation ratio of the two coloring tends to 2. lI

From the tightness of the bound provided in Proposition 3, the following corollary holds immediately.

Corollary 1. The natural 2-coloring is not always optimal even when dealing with paths (or trees), under distinct
vertex-probabilities. This coloring constitutes a tight 2-approximation for all these graph-families.

We now restrict ourselves to the case of identical vertex-probabilities and consider the following algorithm,
denoted by 3-COLOR in what follows:

1. compute and store the natural 2-coloring Cy = (U, D);

2. compute a maximum independent set S of B;



1—€¢ ¢

Figure 2: Ratio 2 is tight for the 2-coloring of a bipartite graph.

3. output the best coloring among Cjy and C = (S,U \ S, D\ S).

Obviously, 3-COLOR is polynomial, since computation of a maximum independent set can be performed in
polynomial time in bipartite graphs ([7]).

Proposition 4. Algorithm 3-COLOR achieves approximation ratio bounded above by 8/7 in bipartite graphs with
identical vertex-probabilities. This bound is asymprotically tight.

Proof. Consider an optimal solution C* = (57,55, ... 5), and assume that [ST| > |S5]| > ... > |S{|.
Setn = |U U D|,n; = |S| and ng = n — |S| = n — ny. Obviously, ny > na.

Based upon Property 4, the worst case for Cy is reached when it is completely balanced, i.e., when
|U| = |D]|. In other words,

f(Co) = f0)+ f(D) <2 (1-(1-p) 777 (16
By exactly the same reasoning,
F(C) = 1(8) + U\ + FD\S) <1—(1=py +2(1-(1=p)%F)  (7)

Remark also that [S7| < |S1| = ny. If this inequality is strict, then, applying Property 4, one, by emptying
some colors S}, j > 1, can obtain a (probably infeasible) coloring C* such that f(C’) < f(C*) and the
largest color of C' is of size n1; in other words,

feH=fC)z1-1-pm+1-(1-p™ (18)

Setting 8 = (1 — p)"1/2, a=(1- p)”2/2 and using (16), (17) and (18), we get (omitting, for simplicity,
to index p by 3-COLOR):

(19)

LI G f(C) L 201—aB) 3—f5°—2

CONCOT AR PR AR
Since ng < 1, 0 < B < a < 1. We now show that function fi(z) = 2(1 — Bz)/(2 — 2% — §%) is
decreasing with z in [3, 1], while function fa(x) = (3 — 8% — 22)/(2 — 2% — 3?) is increasing with  in
the same interval. Indeed, by elementary algebra, one immediately gets:

)

p(B) =

file) = P (20)
, —2(z —1) (x— (Q—ﬂg))
f2(x) = (2 2 ﬁ2)2 (21)

8



In (20), (2 — 3%)/B > 1; so, f{(x) is positive for = € [3, 1] and, consequently f; is increasing with  in
this interval. On the other hand, in (21), sincex < land 3 < 1,z —1 < 0and z — (2 — 3%) < 0. So,
14(z) is negative for = € |3, 1] and, consequently fo is decreasing with « in this interval.

In all, quantity min{ f1 («), f2(«)} achieves its maximum value for a verifying f1(a) = fa(«), or when
2(1 — af) = 3 — 32 — 2a, i.e., when @ = (1 + 3)/2. In this case (19) becomes (for 3 < 1):

2(1- (4%2) ) 84846 _8
2_(#)2_52_7—26—562 ST

p(B) <

and the claim about the approximation ratio is proved.
For tightness, fix an n € N and consider the following bipartite graph B(U, D, E) consisting of:

. . 2
e an independent set S on 2n2 vertices; n2 of them, denoted by vzlj, ..., vy belongto U and the n2
ini denoted by v} "% bel D;
remaining ones, denoted by vp,, ..., v}, belong to D;

e n paths P, ..., P, of size 4 (i.e. on 3 edges); set, fori = 1,...,n, P, = (p},p?,pg’,pf); S7 and
the n paths P; are completely disjoint;

e two vertices t € U and v € D; w is linked to all the vertices of D and v to all the vertices of U;
e foranyv; e UUD,p; =p=1n2/n.

The graph so-constructed is balanced (i.e., |U| = |D|) and has size 2n? + 4n + 2. Figure 3 shows such a
graph forn = 2.

v (1] v?] U(?} Ué p% p:f p %
‘ ’/
\ ‘ =
wa——
oS <<
—F ="K
S
vh vy v v} pi p? %

Figure 3: An 8/7 tightness instance with n = 2.

Apply algorithm 3-COLOR on the so-constructed graph B. Coloring Cy = (U, D) has value
f (CO) —9 (1 _ (1 _ p)n2+2n+1> (22)

On the other hand, one can see that a maximum independent set of B consists of the 2n? vertices of Sp plus
two vertices per any of the n paths P;, ¢ = 1,...,n. Assume without loss of generality that the maximum
independent set computed in Step 2 of algorithm 3-COLOR is S = S Uij=1,..n {p}, pf‘}. In this case,
|S| = 2n%+2n,and |U \ S| = |D \ S| = n + 1; hence, the value of the coloring C; = (S, U\ S, D\ S)

examined in Step 3 has value
F(C)=1—(1—p)+2 4 2(1—(1-p)"H) (23)

Finally, consider the coloring C' = (S, 92, S3) of B where:



o S1= 5 Uit a {p} 03}
° 5’2 = {U} Ui:l,...,n {p?’p;l};
° 33 = {u}.

Obviously,
oy A 2n242n 2n+1
F(C) =1-(=p 2 41— (1= p)"* 4p 4

One can easily see that, for n — 00 and for p = In2/n, (22), (23) and (24) give respectively: f(Cp) — 2,
f(C1) — 2and f(C*) < f(C) — 7/4. This proves the statement about tightness of 3-COLOR and
completes the proof of the proposition. I

Algorithm 3-COLOR is a simplified version of the following algorithm, denoted by MASTER-SLAVE!:

1. compute and store the natural 2-coloring (U, D);
2. set B1(U1,D1) = B(U,D);

3. set1 = 1;

4. repeat the following steps until possible:

(a) compute a maximum independent set S; of B;;
(b) set (Uit1, Dit1) = (Ui \ Si, Di \ Si);
(c) compute and store coloring (S1, . ..,S;, Uit1, Dit1);

5. compute and store coloring (51, S2, .. .), where S;’s are the independent sets computed during the
executions of Step 4a;

6. output C, the best among the colorings computed in Steps 1, 4c and 5.

This algorithm, obviously provides solutions that are at least as good as the ones provided by 3-COLOR.
Therefore its approximation ratio for PROBABILISTIC COLORING is at most 8/7. We prove that it cannot
do better. Indeed, consider the counter-example of Proposition 4. After computation of .S the surviving
graph consists of the vertex-set U¢:17.,,7n{pg, pg’ } U {u,v}. In this graph, the maximum independent set
is of size n + 1 (say the vertices of the surviving subset of U). In other words, colorings C; computed, for
i > 2 by MASTER-SLAVE are the same as coloring C'y computed by 3-COLOR. So, the following corollary is
immediately concluded.

Corollary 2. Algorithm MASTER-SLAVE achieves approximation ratio bounded above by 8/7 in bipartite graphs
with identical vertex-probabilities. This bound is asymptotically tight.

Notice that the tightness of the bound 8/7 can be shown for algorithm 3-COLOR also on trees by means
of the following instance T presented in Figure 4, for n = 2. There, the root-vertex ag of 1" has n?+1
children a1, ..., a,z2,by. Vertices {ai,...,a,2} have no children, while vertex by has n? + 1 children
bi,...,,b,2, co. Again, vertices by, ..., b,2 have no children, while vertex ¢y has 2n children ¢q, . . ., c2y.
Finally, vertex c2y, has no children while any vertex ¢;, with ¢ = 1,...,2n — 1, has a single child-vertex d;.

The tree T so-constructed gives, as in the previous example, a balanced bipartite graph (i.e., |U| = | D|)
and has size 2n? + 4n + 2. Apply algorithm 3-COLOR to T'. The 2-coloring C}y = (U, D) has the same
value of before:

F(ch) =2 (1~ (1 —pye2met) (25)

"This kind of algorithms approximately solving a “master” problem (COLORING in this case) by running a subroutine for a
maximization “slave” problem (MAX INDEPENDENT SET here) appears for first time in [12]; appellation “master-slave” for these
algorithms is due to [19].
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di  dy ds

Figure 4: Lower bound 8/7 is attained for 3-COLOR even in trees (n = 4).

Also in this case, a maximum independent set of 1" consists of 2n2 + 2n vertices and we can assume,
without loss of generality, that the maximum independent set computed in Step 2 of algorithm 3-COLOR is

S'={a1,...,an2,b1,...,bp2,Cnt1, ..., Con,d1,- .., dp}. Then the coloring C' = (S, U\ ', D\ &)

examined in Step 3 has value
¥ (C'/) —1_ (1 . p)2n2+2n +9 (1 . (1 . p)n+1) (26)

Besides, coloring Cr = (5"1, S”Q, 5”3) with

o 5y = {ay,...,ap2,b1,...,bp2,¢1,...,Con}s
o S5 ={ag,co,di,...,don_1},
o 53 ={b},
has value
F(C)=1- =" 11— (1 —p)** 4 p @7)

and, as all values in (25), (26) and (27) correspond to those related to the example of Figure 3, we get the
same 8/7 tight bound. Notice, however, that the proposed example does not guarantee the same tightness if
algorithm MASTER-SLAVE is applied instead of algorithm 3-COLOR.

4 Particular families of bipartite and “almost” bipartite graphs: trees and cycles

Let us first note that for “trivial” families of bipartite graphs, as graphs isomorphic to a perfect matching, or
to an independent set (i.e., collection of isolated vertices), PROBABILISTIC COLORING is polynomial, under
any system of vertex-probabilities. In fact, for the former case, the optimal solution is given by a 2-coloring
where for each pair of matched vertices, the one with largest probability is assigned to the first color, while
the other one is assigned to the second color. For the latter case, trivially, the 1-coloring is optimal.

11



4.1 'Trees

Recall that the counter-example of Figure 2 shows that the natural 2-coloring is not always optimal in paths
under distinct vertex-probabilities. In what follows, we exhibit classes of trees where PROBABILISTIC COL-
ORING is polynomial. As previously, we assume, that |U| > | D).

Proposition 5. PROBABILISTIC COLORING is polynomial in trees with bounded degree and with bounded
number of distinct vertex-probabilities.

Proof. Consider a tree T'(N, E) of order n and denote by A its maximum degree. Let p1,...,px be
the k distinct vertex-probabilities in 7', n; be the number of vertices of 1" with probability p; and set M =
Hle{O, ..., n;i}. Recall finally that, from Property 3, any optimal solution of PROBABILISTIC COLORING
in T uses at most A + 1 colors.

Consider a vertex v € N with 6 children and denote them by v1,...,vs. Letc € {1,..., A+ 1} and
Q={q1,...,qa+1} € MA ! where, forany j € {1,...,A+1},¢; = (¢j,,- - -, qj,) € M. We search if
there exists a coloring of T'[v], i.e., of the sub-tree of T" rooted at v verifying both of the following properties:

e v is colored with color ¢;
® gi; vertices with probability p; are colored with color j.

For this, let us define predicate P, (c, Q) with value true if such a coloring exists. In other words, we consider
any possible configuration (in terms of number of vertices of any probability in any of the possible colors)
for all the feasible colorings for T'[v].

One can determine value of P, if one can determine values of P,,,, i = 1,...,d. Indeed, it suffices that
one looks-up the several alternatives, distributing the g;, vertices (of probability p; colored with color j) over
the ¢ children of v (g;; may be q;; — 1if p(v) = p; and ¢ = j). More formally,

Pv(CaQ): \/ \/ (Pvl (Clan)/\'--/\Pvg (CéaQa)) (28)
(e1,¢5) (Q1,..,Q°%)
where in the clauses of (28):
o forj=1,...,9, c; # c(in order that one legally colors v with color ¢),
o fors=1,...,6,Q° € MAt! and
e for any pair (7, j):
° s qi; —1 ifp(v) =pjandc=j
qui =
s=1

i otherwise

Observe now that [ M| < (n+1)* and, consequently, [M2F1| < (n+ 1)@+ For any vertex v, there ex-
ist at most n| M 21| values of P, to be computed and for any of these computations, at most (1| M2+1])?
conjunctions, or disjunctions, have to be evaluated. Hence, the total complexity of this algorithm is bounded
above by n(n|MATI)OH < (n + 1)AEATEDH Ty conclude it suffices to output the coloring corre-
sponding to the best of the values of predicate P, (¢, @), where r is the root of T'. I

Corollary 3. PROBABILISTIC COLORING can be optimally solved in trees with complexity bounded above by
(n + 1)AEATEAD+L here k denotes the number of distinet vertex-probabilities.

Since paths are trees of maximum degree 2, we get also the following result.

Proposition 6. PROBABILISTIC COLORING #s polynomial in paths with bounded number of distinct vertex-
probabilities. Consequently, it is polynomial for paths under identical vertex-probabilities.
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Let us note that for the second statement of Proposition 6, one can show something stronger, namely that 2-
coloring is optimal for paths under identical vertex-probabilities. Indeed, this case can be seen as an application
of Property 6. The maximum independent set in a path coincides with U as any vertex of D is adjacent (and
hence cannot have the same color) to a distinct vertex of U. This suffices to prove the proposition.

Consider now two particular class of trees, denoted by 7 and 7o, where all leaves lie exclusively either
at even or at odd levels, respectively (root been considered at level 0). Obviously trees in both classes can
be polynomially checked. We are going to prove that, under identical vertex-probabilities, PROBABILISTIC
COLORING is polynomial for both 7 and 7. To do this, we first prove the following lemma where, for a
tree T', we denote by N (resp., Np) the even-level (resp., odd-level) vertices of T'.

Lemma 1. Consider T' € 1o (resp. in Tg). Then No (resp., NE) is a maximum independent set of T'.

Proof. We prove the lemma for T € 7p; case T' € T is completely similar. Set n, = |No|, ne = |Ng|
and remark that n, > 0 (otherwise, T' consists of a single isolated vertex). We will show ab absurdo that
there exists a maximum independent set S* of T" such that S* = Ng (resp., S* = Ng).

Suppose a contrario that any independent set S* verifies |S*| > n,. Then the following two cases can
occur.

S* C NEg. This implies | S*| < ne. Since any vertex in Ng has at least a child, n, < n,, hence |S*| < n,,
absurd since NV, is also an independent set and S* is supposed to be the maximum one.

S§* C Nop U NEg. In other words, S* contains vertices from both Np and Ng. Then, for any vertex
e € Ng N S* that is parent of a leaf, e has at least a children with no other neighbors in S*. We
can then switch between S* and its children, obtaining so an independent set at least as large as S™.
We can iterate this argument with the vertices of this new independent set (denoted also by S* for
convenience) lying two levels above e (i.e., the great-grandparents of the leaves). Let g be such a vertex
and assume that g € S*. Obviously, all its children are odd-level vertices and none of them is in S*
(a contrario, S* would not be an independent set). Furthermore, none of these children can have a
child ¢ € §* because e is an even-level vertex previously switched off from S*, in order to be replaced
by its children. Thus, we can again switch between g and its children, getting so a new independent
set S* larger than the previous one. We again iterate up to the root, always obtaining a new “maximum
independent set” larger than the older one. Moreover, at the end, the independent set obtained will

verify S* = No. 1l
Proposition 7. Under identical vertex-probabilities, PROBABILISTIC COLORING is polynomial in To and Tg.

Proof. By Lemma 1, trees in 7o and 7 fit Property 6. So, for these trees, 2-coloring is optimal. il
To conclude this paragraph, we deal with stars and show that PROBABILISTIC COLORING is polynomial
there, under any probability system.

Proposition 8. Under any vertex-probability system 2-coloring is optimal for stars.

Proof. Remark first that the center of the star constitutes a color per se in any feasible coloring. Then,
Property 2 applied on star’s leaves suffices to conclude the proof. I

4.2 Cycles

In what follows in this section, we deal with cycles C, of size n with identical vertex-probabilities. We will
prove that in such cycles, PROBABILISTIC COLORING is polynomial.

Proposition 9. PROBABILISTIC COLORING 75 polynomial in even cycles with identical vertex-probabilities.
Proof. Remark that in even cycles, Property 6 applies immediately; therefore, the natural 2-coloring is

optimal. Il
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Proposition 10. PROBABILISTIC COLORING 7s polynomial in odd cycles with identical vertex-probabilities.

Proof. Consider an odd cycle Cyx41, denote by 1,2, ..., 2k + 1 its vertices and fix an optimal solution C*
for it. By Property 3, |C*| < 3. Since Coy1 is not bipartite, we can immediately conclude that |C*| = 3.
Set C* = (57, 55,55) and denote by S* a maximum independent set of Ca1; assume S* = {27 : i =
1,...,k}, e, |S*| = k. By Property 2,

FEC)2f(S)+fr=1-1=p)"+ [ (29)

where f is the value of the best coloring in the rest of Coy1, i.e., in the sub-graph of Coj11 induced by
V(Cox1)\S*. This graph, of order k+ 1 consists of edge (v1, vk+1) and k — 1 isolated vertices. Following,
once more Property 2, in a graph of order k£ + 1 that is not a simple set of isolated vertices, the ideal coloring
would be an independent set of size k and a singleton of total value 1 — (1 — p)¥ + p. So, using (29), we get:
F(C*) =2 —2(1 — p)¥ + p. But the coloring C' = (8*, {2 — 1 :4 =1,...,k}, {2k + 1}) attains this
value; therefore it is optimal for Cox 41, qed. I

5 Split graphs

We deal now with split graphs. This class of graphs is quite close to bipartite ones, since any split graph of
order n is composed by a clique K,,, on n; vertices, an independent set S of size no = n — n; and some
edges linking vertices of V' (K, ) to vertices of S. These graphs are, in some sense, on the midway between
bipartite graphs and complements of bipartite graphs. In what follows, we first show that PROBABILISTIC
COLORING is NP-hard in split graphs even under identical vertex-probabilities. For this, we prove that
the decision counterpart of PROBABILISTIC COLORING in split graphs is NP-complete. This counterpart,
denoted by PrOBABILISTIC COLORING (K) is defined as follows: “given a split graph G(V, E) a system of
identical vertex-probabilities for G and a constant K < |V, does there exist a coloring the functional of
which is at most K?”.

Proposition 11. PROBABILISTIC COLORING (K) is NP-complete in split graphs, even assuming identical
vertex-probabilities.

Proof. Inclusion of PROBABILISTIC COLORING (K) in NP is immediate. In order to prove completeness,
we will reduce 3-ExacT cOVER ([7]) to our problem. Given a family S = {S1, 52, ..., Sm} of subsets of
a ground set I' = {71,792, ..., 7} (we assume that Ug,csS; = I') such that |S;| = 3,i =1,...,m, we
are asked if there exists a sub-family S C S, |S’| = n/3, such that &’ is a partition on I". Obviously, we
assume that n is a multiple of 3.

Consider an instance (S,I") of 3-ExacT cover and set ¢ = n/3. The split graph G(V, E) for PrOBA-
BILISTIC COLORING will be constructed as follows:

o family S is replaced by a clique K, (i.e., we take a vertex per set of S); denote by s1, ..., 5y, its
vertices;

e ground set I is replaced by an independent set X = {v1,...,vp};

o (si,v5) € Eiffy; ¢ S5

e p>1-—(1/g);

K =mp+q(1—p)—q(1—p)_
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Figure 5 illustrates the split graph obtained, by application of the three first items of the construction above,
on the following 3-EXACT COVER-instance:

' = {7,7%2,73,7,75 76}

S = {51,592,853,54,55}

St = {77273}

Sy = {1,727} (30)
Sz = {73,7,75}

Sy = {v4,75,7%}

S5 = {73,757}

U1 V2 U3 (%! Us (%3

Figure 5: The split graph obtained from 3-ExacT cover-instance described in (30).

Suppose that a partition 8" C S, |S’| = ¢ = n/3 is given for (S,T',¢). Order S in such a way that
the ¢ first sets are in . Forany S; € S', set S; = {iy» Via, Vis }- Then, subset {s;, v;,, vi,, vis } of V isan
independent set of G. Construct for G the coloring C' = ({s;, i, Viy, Vi }i=1,...qs {Sq+1}s - - -» {Sm}). It
is easy to see that f(C) =q(1— (1 —p))+(m—q)p=mp+q(1—p) —q(1 —p)* =K.

Conversely, suppose that a coloring C' is given for G with value f(C) < K. There exist, in fact, two
types of feasible coloring in G

1. C'is as described just above, i.c., of the form: C' = ({;, Vi, , Viy, Vis i=1,....q: {Sq+1}:---» {Sm})s

2. up to reordering of colors, C'is of the form:

Cc = (S17 SRR Sq47 Sq4+17 s 7SQ4+(137 Sq4+q3+17 EERE) Sq4+q3+q27
!
{UQ4+(13+Q2+1} PR {’Um} , X ) (31)
where:
o the gy first sets are of the form: {s;, vi;, Viy, Vig }, 1 = 1,...,q4,
e the g3 next sets are of the form: {s;,vi,,vi, }, i =qa + 1,...,q1 + g3,

e the g9 next sets are of the form: {s;,vi, 1, i=q+q3+1,...,q4+ q3 + qo,

o the m — (qa4 + g3+ ¢2) singletons are the remaining vertices of K, which form a color per such
vertex and

e X' is the subset of X not contained in the colors above;

remark that coloring C' = ({s1},...,{sm}, X) is a particular case of (31) with g1 = g2 = ¢35 = 0.
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If C is of Type 1, then for any color {s;, vi,, vi,, vig }, # = 1,...,q, we take set S; in S’. By construction
of G, set S; covers elements 7;,, Vi, and 7, of the ground set I'. The g sets so selected form a partition on I'
of cardinality q.

Let us now assume that C'is of Type 2 (see (31)). Note first that, for coloring C’ mentioned at the end
of Item 2 above, and for p > 1 — (1/q):

F(C)=mp+(1—(1-p)")>mp+q(l—p)—q(l—p*=K (32)

Remark first that color X’ (see Item 2) can never satisfy | X’| > 4; a contrario, using the unbalancing
argument of Property 4, since X " is the largest color, coloring C' " would have value smaller than the one
of C; hence the latter value would be greater than K (see (32)). Therefore, we can assume | X'| < 3. In this
case, one can, by keeping the g4 colors of size 4 unchanged, progressively unbalance the rest of the colors
in order to create new (possibly unfeasible) 4-colors. This can be done by moving vertices from the smaller
colors to the larger ones and is always possible since n — 3¢y is a multiple of 3. Therefore, at the end of this
processus, one can obtain exactly ¢ (possibly unfeasible) 4-colors, the remaining vertices been colored with
one color by vertex. Denoting by C" the “coloring” so obtained, we have obviously, f(C") = K < f(C).

Therefore, by the discussion above, the only coloring having value at most K is the one of Type 1, qed. I

Split graphs are particular cases of larger graph-family, the chordal graphs (graphs for which any cycle of
length at least 4 has a chord ([3])).

Corollary 4. PROBABILISTIC COLORING s NP-hard in chordal graphs even under identical vertex-probabi-
lities.

For the rest of this section we deal with approximation of PROBABILISTIC COLORING in split graphs.
Let G(K, S, E) be such a graph, where K is the vertex set of the clique (| K| = m) and S is the independent
set (|S| = n). Fix an optimal PROBABILISTIC COLORING -solution C* = (57, 55,...,5;) in G(K, S, E).

Lemma2 m <k<m+ 1.

Proof. Since vertex-set K forms a clique, any solution in G will use at least m colors. On the other hand,
if C* uses more than m colors, this is due to the fact that there exist elements of S that cannot be included in
any of the m colors associated with the vertices of K. If at least two such colors are used, then, since both of
them are proper subsets of S (recall that S is an independent set), the unbalancing argument of Property 1,
would conclude the existence of a solution better than C*, a contradiction. I

Consider now the natural coloring, denoted by C, consisting of taking an unused color for any vertex
of K and a color for the whole set S (in other words C' uses m + 1 colors for G).

Proposition 12. Coloring C' is a 2-approximation for split graphs under any system of vertex-probabilities.

Proof. Denote by C* = (57, 55,...,5}), an optimal solution in G and assume that colors are ranged in
decreasing-value order, i.e., f(S;) > f(S{ 1), =1,...,k — 1. From Lemma 2, m < k < m + 1. If
k = m + 1 and ST is the color that is a subset of S, then unbalancing arguments of Property 2 conclude
that C' is optimal. Hence, assume that S is a color including a vertex of K and vertices of S. For reasons
of facility assume also that, upon a reordering of vertices, vertex v; € K is included in color S}'; also denote
by pi, the probability of vertex v; € K and by g; the probability of a vertex v; € S. Then,

ZP:’ + (1 - H (1- %’)) (33)
i=1 i=1

sz'—i-(l— 1—p1H1—qz> (34)
i=2 =1
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where (34) holds thanks to unbalancing arguments leading to Property 2, when we charge color S} with all
vertices of S. Observe also that:

n

1-JT0-a) < 1-0-p)]]0-a) (35)

i=1 =1

1-(1-p) [0 -a)>n (36)
=1

Combining (33) and (34), and using also (35) and (36), we get:

M S (1a-mfTa-w) St (1-a-mHa-w)
— 14— p1 _ (Sg) 14 plm < 2
;me (1—(1—101)1:[1(1—%)) p1+l;pz'

and the proof of the proposition is complete. I

We now restrict ourselves in the case of identical graph probabilities. We will devise a polynomial time
approximation schema for PROBABILISTIC COLORING in split graphs. For this we first need the following
lemma.

Lemma 3. Given a split graph G(K, S, E), if there exists a vertex in S with degree m, then coloring C using
m + 1 colors, one color per vertex of K and one color for the whole of vertices of S is optimal.

Proof. Obviously, if the condition of the lemma is verified, any feasible coloring of G will have no less than
m + 1 colors. Then, using either Property 4, either Property 5, one can immediately prove that any coloring
of at least m + 1 colors has value at least f(C), qed. I

Assume now that we deal with split graphs that do not verify condition of Lemma 3, i.e., that any vertex
in S has degree strictly smaller than m. Then the following lemma holds (recall that S is an independent
set).

Lemma 4. Any subset of 'S the vertices of which have all the same neighbors in K, will be colored with the same
color in any optimal coloring of G.

Proof. Suppose a contrario that the statement of the lemma is false. Let X = {x1,2,...,2;} be a subset
of S the vertices of which have the same neighbors but are colored with different colors. Let S; be the largest
color containing one of the vertices of X. Then, it is feasible to add the rest of the vertices of X in S; by
“improving” (by Properties 4, or 5) the value of the optimal solution. Il

We are ready now to prove the following proposition that is the central part for the devising of our
approximation schema. It affirms that if the size of the clique in G is fixed, then PROBABILISTIC COLORING
can be solved in polynomial time.

Proposition 13. I[fm, the size of K in G(K, S, E), is fixed, then PROBABILISTIC COLORING can be solved
in linear time.

Proof. Recall that we deal with the case where vertices of S have degree at most m — 1. We will count the
number of all the distinct-value colorings of G. For this, we will construct a bipartite graph B(U, D, E’)
with:

o U =K,
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e D is in bijection with all the subsets of S, each such subset consisting of vertices of .S having the
same neighbors ; in other words, we contract any set of Lemma 4 into a single vertex; note that

DI < X Gy < 27

e for any subset S’ of S for which the neighbors of its vertices are {v;,,...,v;, }, the vertex of D
corresponding to S’ is linked to vertices v;, , ..., v;, in U.

The graph B just built has at most m + 2™ vertices. The number of all the possible m-colorings of its

vertices is then bounded by m™+2™

which bounds also the number of the possible m-colorings of D, and
this bound is a constant if m is so.

So, one can choose the best among the m + 1-coloring of Lemma 3 and the m-colorings discussed just
above, in order to produce an optimal solution for PROBABILISTIC COLORING in linear time, since for any
such coloring, its storing can be performed in linear time. The proof of the proposition is now complete. lI

Consider now the following algorithm for PROBABILISTIC COLORING , denoted by SCHEMA:
1. fixan e > 0;

2. if m < 1/¢, then optimally solve PROBABILISTIC COLORING by exhaustive look-up of all the feasible
m-colorings as well as of coloring C' of Proposition 13;

3. if m > 1/, then output coloring C' of Proposition 12.

Proposition 14 Algorithm SCHEMA is a polynomial time approximation schema for PROBABILISTIC COLORING
in split graphs, under identical vertex-probabilities.

Proof. By Proposition 13, if Step 2 is executed, the solution computed, in polynomial time since € is a fixed
constant, is optimal for PROBABILISTIC COLORING . We deal now with Step 3 and the coloring C' produced
at this step. Denote by C* an optimal coloring of . Taking into account Property 4 (for (38) below), the
following expressions hold:

f(C) = mxp+(1-(1-p") (37)
f(C*) = (m—=Dp+ (1—(1—p"t (38)

Combination of (37) and (38), we get:

f(€) . mxp+(A->1=-p)") _m+1
FC) " m=1p+(1-01-pn") =~ m

So, one can fix any arbitrarily small € and then SCHEMA can solve PROBABILISTIC COLORING in polynomial

<1l+e

time within ratio 14€; hence, this algorithm is a polynomial time approximation schema for PROBABILISTIC
COLORING, qed. Il

6 Concluding remarks and open problems

The problem dealt in this paper is quite different from the ones studied in [15, 16]. There, when strategies
consisted of dropping absent vertices out of the a priori solution, the optimal a priori solutions were a
maximum weight independent set, or a minimum weight vertex-covering, of the input graph considering
that vertices are weighted by their probabilities. Here, as we have seen, the weight of an independent set
is not an additive function and this makes that PROBABILISTIC COLORING becomes very particular with
respect to the probabilistic problems mentioned just above.

There exists a list of interesting open problems dealing with the results of this paper. For example, the
complexity of PROBABILISTIC COLORING remains open, notably for natural graph-families as: bipartite
graphs with identical vertex-probabilities, paths and cycles with distinct vertex-probabilities, trees, etc.
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In another order of ideas, an interesting approximation strategy for solving hard minimization problem is
the so-called “master-slave” approximation. It consists of solving a minimization problem (the master one) by
iteratively solving a maximization one (the slave problem) (for more details on this technique, cf., [1, 12, 19]).
This kind of technique has a very natural application in the case of minimum coloring where the slave
problem is the maximum independent set. It consists of iteratively computing an independent set in the
graph, of coloring its vertices with the same unused color, of removing it from the graph and of repeating
these stages in the subsequent surviving subgraphs until all vertices are colored. The slave independent set
problem for PROBABILISTIC COLORING is the one of determining the independent set S* maximizing
quantity |S[/(1 — [, .c5(1 — pi)) over any independent set of the input graph. Obviously, this problem
is NP-hard in general graphs since for p; = 1 for any vertex of the input graph we recover the classical
maximum independent set problem. However, approximation of it in general graphs and complexity and,
eventually, approximation results in graph-families as the ones dealt in this paper seem us interesting to be

studied.

References

[1] L. Alfandari and V. Th. Paschos. Master-slave strategy and polynomial approximation. Compuz. Opti.
Appl., 16:231-245, 2000.

[2] L. Averbakh, O. Berman, and D. Simchi-Levi. Probabilistic a priori routing-location problems. Naval
Res. Logistics, 41:973-989, 1994.

(3] C. Berge. Graphs and hypergraphs. North Holland, Amsterdam, 1973.

[4] D. ]. Bertsimas. On probabilistic traveling salesman facility location problems. Transportation Sci.,

3:184-191, 1989.
[5] D.]. Bertsimas. The probabilistic minimum spanning tree problem. Networks, 20:245-275, 1990.
[6] D.]. Bertsimas, P. Jaillet, and A. Odoni. A priori optimization. Oper. Res., 38(6):1019—1033, 1990.

[7]1 M. R. Garey and D. S. Johnson. Computers and intractability. A guide ro the theory of NP-completeness.
W. H. Freeman, San Francisco, 1979.

[8] P Jaillet. Probabilistic traveling salesman problem. Technical Report 185, Operations Research Center,
MIT, Cambridge Mass., USA, 1985.

[9] P Jaillet. A priori solution of a traveling salesman problem in which a random subset of the customers

are visited. Oper. Res., 36:929-936, 1988.
[10] P, Jaillet. Shortest path problems with node failures. Nesworks, 22:589-605, 1992.

[11] P Jaillet and A. Odoni. The probabilistic vehicle routing problem. In B. L. Golden and A. A. Assad,
editors, Vehicle routing: methods and studies. North Holland, Amsterdam, 1988.

[12] D.S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System Sci., 9:256—
278, 1974.

[13] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of computer computations, pages 85—103. Plenum Press, New York, 1972.

[14] C. Murat and V. Th. Paschos. The probabilistic longest path problem. Networks, 33:207-219, 1999.

[15] C. Murat and V. Th. Paschos. A priori optimization for the probabilistic maximum independent set
problem. Theoret. Comput. Sci., 270:561-590, 2002.

19



(16]

(17]

C. Murat and V. Th. Paschos. The probabilistic minimum vertex-covering problem. Inz. Trans. Opl
Res., 9(1):19-32, 2002.

C. Murat and V. Th. Paschos. The probabilistic minimum coloring problem. In H. L. Bodlaender,
editor, Proc. 29th International Workshop on Graph Theoretical Concepts in Computer Science, WG'03,
volume 2880 of Lecture Notes in Computer Science, pages 346—357. Springer-Verlag, 2003.

C. Murat and V. Th. Paschos. The probabilistic minimum coloring problem. Annales du LAMSADE 1,
LAMSADE, Université Paris-Dauphine, 2003. Available on http://www.lamsade.dauphine.fr/
cahdoc.html#cahiers, submitted.

H. U. Simon. On approximate solutions for combinatorial optimization problems. SIAM ]. Disc.
Math., 3(2):294-310, 1990.

20



