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Abstract

We present differential approximation results (both positive and negative) for optimal satisfiability,
optimal constraint satisfaction, and some of the most popular restrictive versions of them. As an impor-
tant corollary, we exhibit an interesting structural difference between the landscapes of approximability
classes in standard and differential paradigms.

1 Introduction and preliminaries

In this paper we deal with the approximation of some of the most famous and classical problems in the
domain of the polynomial time approximation theory, the MIN and Max saT as well as the MIN and Max
DNF and some of their restricted versions, namely Max and MIN k and EksAT and mMAxX and MIN k and
ekDNE. We study their approximability using the so-called differential approximation ratio which, informally,
for an instance = of a combinatorial optimization problem II, measures the relative position of the value of an
approximated solution in the interval between the worst-value of @, i.e., the value of a worst feasible solution of x,
and optimal-value of , i.e., the value of a best solution of .

Given a set of clauses (i.e., disjunctions) C1, ..., Cy, on n variables 1, ..., Z,, MAX SAT (resp., MIN
SAT) consists of determining a truth assignment to the variables that maximizes (minimizes) the number of
clauses satisfied. On the other hand, given a set of cubes (i.e., conjunctions) C', ..., Cy, on n variables
Z1,...,Tpn, MAX DNF (resp., MIN DNF) consists of determining a truth assignment to the variables that
maximizes (minimizes) the number of conjunctions satisfied. For an integer £ > 2, MaX kSAT, MAaX EDNF,
MIN KSAT, MIN KDNF (resp., MAX EKSAT, MAX EKDNE, MIN EKSAT, MIN EEDNE) are the versions of MAx
SAT, MAX DNF, MIN SAT, MIN DNE where each clause or conjunction has size at most (resp., exactly) k; we
denote by MAX SATj, MIN SATj, MAX DNFj and MIN DNFy, the problems variants where clauses or cubes
have size at least k. Finally, let us quote two particular weighted satisfiability versions, namely, MAXx wsAT and
MIN WSAT. In the former, given a set of clauses C1, . .., Cy, on n variables 21, . .., zp, with non-negative
integer weights w(x) on any variable ;, we wish to compute a truth assignment to the variables that both
satisfies all the clauses and maximizes the sum of the weights of the variables set to 1. We consider that the
assignment setting all the variables to 0 (even if it does not satisfy all the clauses) is feasible and represents
the worst-value solution for the problem. The latter problem is similar to the former one, up to the fact that
we wish to minimize the sum of the weights of the variables set to 1 and that feasible is now considered the
assignment setting all the variables to 1.

A problem IT in NPO is a quadruple (Zyg, Solry, mir, opt(II)) where:

e Tjj is the set of instances (and can be recognized in polynomial time);



e given x € Zyy, Solrr(x) is the set of feasible solutions of x; the size of a feasible solution of x is
polynomial in the size |z| of the instance; moreover, one can determine in polynomial time if a solution
is feasible or not;

e givenz € Zryand y € Solr(z), mu(x, y) denotes the value of the solution y of the instance ;5 myq is
called the objective function, and is computable in polynomial time; we suppose here that my(z,y) €

N;
e opt(II) € {min, max}.

Given an instance = of an optimization problem II and a feasible solution y € Solp(x), we denote
by opti(x) the value of an optimal solution of z, and by wri(x) the value of a worst solution of z. The
standard approximation ratio of y is defined as ri1(z, y) = mu(x,y)/ opty(x), while the differential approx-
imation ratio of y is defined as or1(x, y) = |mu(x,y) — wn(z)|/| opty(x) — win(z)].

For a function f of |z|, an algorithm is a standard f-approximation algorithm (resp., differential f-
approximation algorithm) for a problem II if, for any instance x of II, it returns a solution y such that
r(,9) < f((a]), #opt(IT) = min, or r(z,4) > f(|a]), ¥ opt(IT) = max (resp. 8(z,y) > f(|z]).

With respect to the best approximation ratios known for them, NPO problems can be classified into
approximability classes. The most notorious among them are the following:

APX or DAPX: the class of problems for which there exists a polynomial algorithm achieving standard
or differential approximation ratio f(|x|) where function f is constant (it does not depend on any
parameter of the instance);

PTAS or DPTAS: the class of problems admitting a polynomial time approximation schema; such a schema
is a family of polynomial algorithms A., ¢ €]0, 1], any of them guaranteeing approximation ratio
1 — € (under the differential approximation paradigm and under the standard one in the case where
opt(I) = max), or 1 + ¢ (under the standard approximation paradigm in the case where opt(Il) =
min);

FPTAS and DFPTAS: the class of problems admitting a fully polynomial time approximation schema; such
a schema is a polynomial time approximation schema (Ac)¢jo,1)> where the complexity of any A is
polynomial in both the size of the instance and in 1/e.

We now define a kind of reduction, called affine reduction and denoted by AF, which, as we will see, is very
natural in the differential approximation paradigm.

Definition 1. Let IT and IT' be two NPO problems. Then, IT AF-reduces to IT" (IT <af IT'), if there exist
two functions f and g such that:

1. forany = € Iy, f(z) € I3
2. forany y € Solir(x), g(z,y) € Solm(x); moreover, Solir(z) = g(z, Soliy (f(x)));

3. forany x € ZIyy, there exist K € Rand k € R* (k > 0 if opt(II) = opt(Il'), k < 0, otherwise) such
that, for any y € Solyy/ (f()), mm (f(z),y) = kmu(z, g(z,y)) + K.

IfIT <af II" and II" <af II, then I and II’ are called affine equivalent. This equivalence will be denoted by
H =AF H,. I

It is easy to see that differential approximation ratio is stable under affine reduction. Formally, i, for I1, Il €
NPO, R = (f,qg) is an AF-reduction from 11 to IU, then for any x € Iy and for any y € Soliy (f(x)),
oz, g(x,y)) = o (f(x),y). Indeed, by Condition 2 of Definition 1, worst and optimal solutions in =
and f(x) coincide. Since the value of any feasible solution of II" is an affine transformation of the same
solution seen as a solution of II, the differential ratios for y and g(z, y) coincide also. Hence, the following

holds.



Proposition 1. IfI1 =ag IT, then, for any constant v, any r-differential approximation algorithm for one of
them is an r-differential approximation algorithm for the other one.

Optimization satisfiability problems as MIN saT and MAX SAT are of great interest from both theoretical
and practical points of view. On the one hand, the satisfiability problem (saT) is the first complete prob-
lem for NP and mMax sAT, MIN sAT have generalizations or restrictions that are the first problems proved
complete for numerous approximation classes under various approximability preserving reductions ([4, 19]).
For instance, Max 3sat is APX-complete under the AP-reduction and Max-SNP-complete under the L-
reduction ([17]), MAX wsAT and MIN wsAT are NPO-complete under the AP-reduction ([8]), etc. In
general, many optimal satisfiability problems have for the polynomial approximation theory the same status
as SAT for NP-completeness theory. On the other hand, many problems in mathematical logic and in arti-
ficial intelligence can be expressed in terms of versions of SAT; constraints satisfaction is one such version.
Also problems in database integrity constraints, query optimization, or in knowledge bases can be seen as op-
timization satisfiability problems. Finally, some approaches to inductive inference can be modelled as Max
Sart problems ([13, 14]). The interested reader can be referred to [5] for a survey on standard approximability
of optimization satisfiability problem:s.

Let us note that differential approximability of the problems dealt here, has already been studied in [6].
There, among other results, it was shown that Max saT and MIN DNF, as well as MIN sAT and MAX DNEF
are equivalent for the differential approximation, that all these problems are not solvable by polynomial time
differential approximation schemata, unless P = NP, and, finally, that MIN sAT cannot be approximately
solved within differential approximation ratio 1/m!~¢, for any € > 0 (where m is the number of the clauses
in its instance), unless NP = co-RP. Finally, let us mention here that both MAX wsAT and MIN wsAT belong
to 0-DAPX, the class of the problems for which no algorithm can guarantee differential approximation ratio
strictly greater than 0, unless P = NP ([16]). This class has been also introduced in [6].

| Approximation ratios | Inapproximability bounds
MAX SAT 4.34/(m + 4.34) ¢ DAPX
MAX E2SAT 17.9/(m + 19.3) 11/12
MAX 3SAT 4.57/(m + 5.73) 1/2
MAX E3SAT 8/(m + 8) 1/2
MAX EkSAT 2F /(m + 2F) 1/p, p the largest prime such that 3(p — 1) < k
MIN SAT 2/(m+2)
MIN (B)ksaT || 28/((281 — 1)m + 2%) | 1/p, p the largest prime such that 3(p — 1) < k
MIN 2SAT 4/(m +4) 11/12

Table 1: Summary of the main results of the paper.

In this paper, we further study differential approximability of MAX SAT, MIN SAT, MIN DNF and MAX
DNF, and give approximation results and inapproximability bounds for several versions of these problems. A
summary of the main results obtained is presented in Table 1. As one can see from the second column of the
first line of this table, MAX SAT is not approximable within a constant approximation ratio, unless P = NP.
This result is very interesting since it indicates that Max-NP ([17]) is not included in DAPX. This is an
important difference with the standard approximability classes landscape where Max-NP C APX. Another
assessment with respect to our results is that the gap between lower and upper approximation bounds for the
problems dealt is still large. However, this paper undertakes a systematic study of satisfiability problems in
the differential paradigm, it extends the results of [6] and shows that none of the most classical satisfiability
problems is in 0-DAPX. This approximability class has been introduced in [6] and represents the worst



possible configuration for differential approximation since it includes the problems for which no polynomial
time approximation algorithm can guarantee differential ratio greater than 0. Inclusion of the problems dealt
here in 0-DAPX or not, was a major question we handled since [6].

2 Affine reductions between optimal satisfiability problems

Let us first note that there does not exist general technique in order to transfert approximation results from
differential (resp., standard) paradigm to standard (resp., differential) one, except for the case of maximization
problems and for transferts between differential and standard paradigms. Proposition 2 just below deals with
this last case.

Proposition 2.  If a maximization problem 11 can be solved within differential approximation ratio §, then it
can be solved within standard approximation ratio 6, also.

Proof. Consider any differential polynomial time approximation algorithm A guaranteeing differential-
approximation ratio 0 for any instance  of a maximization problem II. Denote by A(x), a solution computed
by A when running on . Then,

5<1

w(z)>0 m(z,A(x))

m(z,A(z)) — w(z) > 6 = m(z,A(r)) = dopt(z) + (1 - d)w(z) = opt(x)

opt(z) — w(x)

>0

and the claim of the proposition is proved. lI

Corollary 1. Any standard inapproximability bound for a maximization problem 11 is also a differential
inapproximability bound for I1.

We give in this section some affine reductions and equivalencies between the problems dealt in the paper.
These results will allow us to focus ourselves only in the study of MaX sAT, MIN sAT and their restrictions
without studying explicitly Mmax and M1N DNF. We first recall a result already proved in [6].

Proposition 3. (/6]) MAX SAT =aAfF MIN DNF and MIN SAT =AfF MAX DNEF.

The following proposition shows that one can affinely pass from mMax eksat to max E(k + 1)sar. This,
allows us to transfert inapproximability bounds from MAX E3SAT to MAX EKSAT, for any k > 4.

Proposition 4. Max EkSAT <af MAX E(k + 1)saAT.

Proof. Consider an instance ¢ of MAX EkSAT on n variables 1, ..., x, and m clauses C1, ..., C,,. Con-
sider also a new variable y and build formula ¢’, instance of Max E(k + 1)sar as follows: for any clause
Ci = (biy,...,4,) of ¢, where, for j = 1,... k, ¢;; is a literal associated with ;;, ¢’ contains two
new clauses (¢;y,..., %4, ,y) and (€;y,..., 4, ,y). Hence, ¢’ is the conjunction of 2m clauses of size
k 4+ 1 on n + 1 variables. Assume any truth assignment 7" on the variables of ¢ and denote by (7',1)
(resp., (T',0)) the extension of T' on ¢’ by setting y = 1 (resp., ¥ = 0). Then, it is easy to see that
’m(@/a (Ta 1)) = m((pl’ (Ta 0)) =m+ m((p, T)'

In other words, reduction just described, associating to any assignment T’ of ¢’ its restriction T" on
variables 21, . . ., &, as assignment for ¢, is affine and the proof of the proposition is complete. lI

We now show that, for £ fixed, problems k£sAT and KDNF are affine equivalent.

Proposition 5.  For any fixed k, MaX kSAT, MIN kSAT, MAX KDNF, MIN KDNEF, MAX EKSAT, MIN EKSAT,
MAX EKDNF and MIN EKDNF are all affine equivalent.



Proof. We first prove affine equivalence between Max ksaT and MIN ksaT. Given n variables z1, ..., xy,
denote by Cj, the set of clauses of size k and by Cy, the set of clauses of size at most & on the set {x1, ...,z }.
Let us remark that any truth assignment verifies the same number vy, of clauses on Ci and the same num-
ber vgj, of clauses on Cy. Note also that, since k is assumed fixed, sets C, and Cy, are of polynomial
size.

Let ¢ be an instance of MAX EKSAT on variable-set {z1,...,2,} and on a set C = {C1,...,Cp}
of m clauses. Consider instance ¢’ on the clause-set C' = Cj, \ C. Then, for any truth assignment 7" on
{z1,...,2n}: m(p,S) + m(¢’,S) = vg; in other words, reduction just described is an affine reduction
from Max EESAT to MIN EksSAT. Considering ¢ as instance of MIN EksAT this time, the above describe an
affine reduction from MIN EKSAT to MAX EKSAT.

Furthermore, if C is an instance of MAX KsAT, then we can see the clause-set C<y, \ C as an instance of
MIN ksAT and the same arguments conclude an affine reduction from the former to the latter problem.

We now prove equivalence between versions of saT and the corresponding versions of DNE. Given a
clause C = (£;; V...V ¢;,) on k literals, we build the cube (conjunction) D = (¢;, A...A¥;, ). Any truth
assignment 7" on ¢;; verifies C, if and only if it does not verify D, i.e., m(C,T) = m — m(D,T'). This
specifies an affine reduction between Max EksSAT and MIN EKDNF, MIN EKSAT and MAX EKDNF, MAX KSAT
and MIN kDNE and between MIN kSAT and MAX KDNE.

We finally show equivalence between Max ksat and Mmax Eksat. We first notice that the latter problem
being a sub-problem of the former one, direction Max EksaT <ap MAX ksaT is immediate. On the other
hand, as in Proposition 4, given an instance of MAX kSAT, one can construct, for any clause of size at most £,
a set of clauses of size exactly k, in such a way that this reduction is affine.

Combination of equivalencies shown above completes the proof of the proposition. Il

It is shown in [12], respectively (see also [4]), that MaX E3sAT is inapproximable within standard approx-
imation ratio (7/8) + €, for any € > 0, and MaX E2SAT is inapproximable within standard approximation
ratio (21/22) + €, for any € > 0 (in what follows for such results we will use, for simplicity, expression
“within better than”). Discussion above, together with these bounds leads to the following result.

Proposition 6. MAX 2SAT, MAX E2SAT, MIN 2SAT, MIN E2SAT, MAX 2DNE, MAX E2DNF, MIN 2DNF and
MIN E2DNF are inapproximable within differential approximation ratio better than 21/22. Furthermore, for any
k > 3, MAX kSAT, MAX EKSAT, MIN kSAT and MIN EkKSAT, MAX KDNF, MAX EKDNF, MIN KDNF and MIN
EKDNE, are inapproximable within differential approximation ratio better than 7/8.

Proof. Concerning MAxX 2sAT and associates, Corollary 1 extends the result of [12] to the differential
paradigm. Then, Proposition 5 suffices to conclude the proof.

For Max ksat and associates, Corollary 1 extends the result of [15] to the differential paradigm, for max
3saT and Proposition 5 transferts it to Max E3sAT. Then, Proposition 4 extends it for any k > 4. Finally,
Proposition 5 suffices to conclude the proof. i

Since the satisfiability problems stated in Proposition 6 are particular cases either of MAX SAT, or of MIN
SAT, or of MAX DNE, or, finally, of MIN DNE, application of Proposition 6 and of Proposition 3 concludes the
following corollary.

Corollary 2. MAX SAT, MIN SAT, MAX DNF and MIN DNE are inapproximable within differential approxima-
tion 7/8.

Results of Corollary 2 are not the best ones. In Section 4, we strengthen the one for max sat. On the
other hand, as it is proved in [6], MIN sAT is inapproximable within differential ratio better than m¢~1,
for any € > 0. Proposition 5 has to be used with some precautions in order to yield positive or negative
approximation results. Indeed, if one of the problem stated in it is approximable within constant differential
approximation ratio (i.e., within ratio that does not depend on an instance parameter), then this ratio is
naturally transferred to all the other problems. A contrario, one can see in the proof of Proposition 5 that in

many cases the number of the clauses for the derived instance can be much larger that the one for the initial



instance. In such cases, if we deal with ratios functions of m the form of these ratios is certainly preserved
but not their value. For instance, assume that some problem II among the ones stated Proposition 5 is
approximable within ratio f(|¢|), where || denotes the number of clauses, or cubes, in ¢, and f decreases
with |p|. Assume also that there exists another problem IT" (among the ones stated in Proposition 5) such
that II' <af II and, furthermore, that this affine reduction transforms a formula ¢’ of II’ into a formula ¢
for II. Then, it transforms an approximation ratio f(||) for the latter into an approximation ratio f(|¢’|)
for the former but, if the values || and |¢'| are very different the one from the other, then the values of the
corresponding ratios do so.

In fact, one can easily observe that affine reductions of Proposition 5 perform the following differential
ratio transformations:

e reduction from MAX EASAT to MIN EkSAT transforms ratios f(m,n) into f((2n)* —m,n);

e reduction from MAX kSAT to MIN ksaT transforms ratios f(m, n) into f((2n + 1)¥ —m,n);
e reductions between sAT and DNF are invariant for approximation ratios;

e reduction from MaX kSAT to Max EESAT transforms ratios f(m,n) into f(28"'m,n +k —1).

In other words, dealing with common approximability of the problems stated in Proposition 5, the following
remarks hold:

o if one of these problems is in DAPX, then all the other ones are so;

e problems MAX kSAT,MAX EKSAT, MIN k DNF and MIN EXDNF are approximable within differential
ratios of O(f(m)) for a function f strictly decreasing with m if and only if one of them is O(f(m))
differentially approximable for f(m) = O(m®), for some & > 0, or f(m) = O(logm); the same
holds for the quadruple MIN ksAT,MIN EkSAT, MaX k& DNF and MAX EKDNEF;

e all problems are in Log-DAPX (the class of problems differentially approximable within ratios
of O(1/log |x|)) if and only if one of them is so (observe that reductions dealt transform differ-
ential ratios of O(logm) into ratios of the form O(logm) or of O(logn), and ratios of O(logn)
into ratios of the same form).

Finally, reduction of Proposition 4 transforms ratios f(m,n) into f(2m,n + 1).

3 DPositive results

3.1 Maximum satisfiability

Consider an instance ¢ of an optimal satisfiability problem, defined on n variables 1, . . . , 2, and m clauses
C1, ..., Cy; consider also algorithm RSAT assigning at any variable value 1 with probability 1/2 and, obvi-
ously, value 0 with probability 1/2.Then, denoting by Sol(¢), the set of the 2™ possible truth assignments
for ¢, and by E/(RSAT(y)) the expectation of a solution computed by RSAT when running on ¢, the follow-

ing holds: E(RSAT()) = 3 _regoip) M T)/2™.
Algorithm RSAT can be derandomized by the following technique denoted by DSAT. Fori =1,...,n:

e compute E! = E(m(p,T)|x; = 1) and E! = E(m(p,T)|z; = 0), where T is a random assign-

ment and the values of the 7 — 1 first variables have already been fixed in iterations 1,...7 — 1;

e setx; = 1,if EZ/ > EZ(/; otherwise, set x; = 0.

Lemma 1. m(y,DSAT(y¢)) > E(RSAT(yp)).



Proof. It is easy to see that E(RSAT(¢)) = (E}/2) + (E{/2); hence max{E{, E{} > E(RSAT(y)).
Furthermore, at any of the n steps of DSAT, max{E;, E}'} = (E;,/2) + (E},,/2) < max{E; ,,E/ ,}.
We so have E(RSAT(p)) < max{FE/, E/} < max{E}, E!'} = DSAT(ip), that concludes the proof of the
lemma. il

Note finally, that DSAT is polynomial since, for any ¢ = 1,...,n, computation of E/ and E/ is per-
formed in polynomial time. Indeed, for any such computation it suffices to determine with what probability
any clause of ¢ is satisfied and to sum these probabilities over all the clauses of .

We are ready now to state and prove positive differential approximation results for the problems dealt
here.

Proposition 7. Algorithm DSAT achieves for MaX EkSAT differential approximation ratio 2% | (opt(p) + 2F).
This ratio is bounded below by 2% | (m + 2F).

Proof. Note first that we can assume that opt(¢) > w(p) (otherwise, Max EksAT would be polynomial
on ). Then,
w(p) < E(RSAT(p)) < m(ep, DSAT(p)) 1

From (1) and given that feasible values of MaX EkSAT are integer, we get:

m(, DSAT(p)) —w(p) =1 @)

Since clauses in ¢ are of size k, the expectation that any of them is satisfied equals 1 — 27, Hence,

m(p,DSAT(p)) = E(RSAT(p)) = m <1 — 2%) > opt(p) (1 — 2—1k> 3)

Using (2) and (3), we get:

1 opt(p) (1 — 5¢) — wle) } W

d(,DSAT(p)) > max { opt(p) — w(yp)’ opt(p) — w(ep)

The first term in (4) is increasing with w(y), while the second one is decreasing. Equality holds when
w(p) = (opt(p)(1 —27%)) — 1. In this case, (4) gives

ok ok

5(0, DSAT(¢)) > >
(¢, () opt(p) +2k 7 m + 2k

(5)

Last inequality in (5) holding thanks to the fact that opt(¢) < m, qed. I
Notice that the ratio claimed by Proposition 7 increases with k. This is quite natural since for k& >
logm, Max ksaT is polynomial. Indeed, using (3) with such a k, we get m(¢p,DSAT(p)) > opt(p) —
(opt(gp)/m) > opt(p) — 1, i.e., m(p, DSAT(p)) = m, since the feasible values of Max ksAT are integer.
We now propose a reduction transferring approximation results for MAX SAT problems from standard to
differential paradigm. It will be used in order to achieve differential approximation results for MAX SAT, MAX
3SAT and MAX 2SAT.

Proposition 8. [Ifa maximum satisfiability problem is approximable on an instance p, within standard approx-
imation ratio p, then it is approximable in  within differential approximation ratio p/((1 — p)w(p) + 1).

Proof. Fix any maximum satisfiability problem II, sharing the ones dealt until now, and assume that there
exists a polynomial time algorithm achieving standard approximation ratio p for II. Consider an instance ¢
of II, run both A and DSAT on ¢ and retain assignment 7’ satisfying the maximum number of clauses



between A(p) and DSAT(y). Obviously, m(p,T') > popt(y). Hence, the differential approximation ratio
of T'is

I —w
s(p.1) > e D) — ) ©
()
Since, as we have seen in the proof of Proposition 7, m (¢, T') = w(p) + 1, (6) becomes
1 p
5(p,T) > - ?)
wleltl _ wlp) A —=pwlp)+1

p

The proof of the proposition is now complete. I

From the result of Proposition 8, we can deduce several corollaries by specifying values for w(y) and p.
The main such corollaries are stated in the propositions that follow. Before stating and proving them, let us
remark that, in the case of MaX ksaAT

mmnwnng—_> (8)

Then (1) and (8) yield:

Proposition 9. MAX SAT is approximable within differential approximation ratio 4.34/(m + 4.34).

Proof. We can assume w(p) < m — 1, otherwise (w(yp) = m) all feasible solutions of ¢ have the same
value. Since 1 — p > 0, the differential ratio of (7) decreases with w([I). So, it suffices to substitute m — 1
for w(y), to use the fact that MAX SAT is approximable within standard ratio 1/1.2987 ([3]), and the proof
of the proposition is complete. I

Proposition 10. MAX E2SAT is approximable within differential approximation ratio 17.9/(m + 19.3), and
MAX 3SAT within 4.57/(m + 5.73).

Proof. For Max 2sAT, remark first that, using (3), the expectation of the solution computed by the random
algorithm RSAT is, using (9), less than, or equal to, 3m/4. Consequently, w(y) < 3m/4. Next, the fact
that MAX sAT is approximable within standard ratio 1/1.0741 ([10]) suffices to conclude the proof.

For Mmax 3sAT, w(p) < 7m/8 and p = 1/1.249 ([18]).11

3.2 Minimum satisfiability

We finish this section by studying MIN saT and some of its versions. Before stating our results, we note that
algorithm RSAT can be derandomized in an exactly symmetric way, in order to provide a solution for MIN
ksat with value smaller than expectation’s value.

Proposition 11.  If a minimum satisfiability problem is approximable on an instance p, within standard
approximation ratio p, then it is approximable in  within differential approximation ratio

p
(p=1) (1—g5)m+p

Proof. As in the proof of Proposition 7, since we deal with a minimization problem, (1) becomes:

opt(p) < m(p,DSAT(p)) < E(RSAT(p)) < w(ep) (10)

Consequently, (2) becomes:
m(p,DSAT(p)) —w(p) < 1 (11)



Considering the best among the solutions computed by DSAT and A (the p-standard approximation algorithm
assumed for MIN ksaT in the statement of the theorem), denoting it by 7" and using (10) and (11), we get:

1 ww)—pwﬂw)wW)—mC“—%)}

S(9) —opi(p) w(p) —optlp) " w(p) —opi(p) 12

0(p,T) > max {

where the third term in (12) is due to the fact that T" has a better value than the value of algorithm RSAT.
The first term in (12) is decreasing with w(¢y), while the second and third ones are increasing. We
distinguish two cases depending on the relation between these terms.
If the second term is greater than the third one, i.e., if popt(p) < m(1 — 27]“), then equality of the
first two terms of (12) is achieved when w(y) = 1 + popt(¢). In this case, (12) gives:

p
(p—1m(1— %) +p
If, on the other hand, second term is smaller than the third one, i.e., if popt(y) = m(1 — 2_k), then

equality of the first and the third term in (12) is achieved when w(p) = m(1 — 27%) 4 1. In this case
also, (¢, T') verifies (13). The proof of the proposition is now complete. I

8, T) > (13)

The best standard approximation ratios known for MIN ksat and MIN saT are 2(1 — 27%) and 2,
respectively ([7]). With the ratio just mentioned for MIN ksAT, the result of Proposition 11 can be simplified
as indicated in the following corollary.

Corollary 3. MIN kSAT is approximable within differential ratio 2F /(281 — 1)m + 2).
Proposition 12. MIN SAT is approximable within differential ratio 2 /(m + 2).

Proof. Use Proposition 11 with p = 2 ([7]). I
Also, using Corollary 3 with & = 2 and k = 3, the following corollary holds and concludes the section.

Corollary 4 MIN 2SAT and MIN 3SAT are approximable within differential ratios 4/ (m~+4) and 8 /(3m+8),
respectively.

4 Inapproximability

We first recall some basics about Mmax E3LIND that will be used for deriving our results. In this problem, we
are given a positive prime p, n variables x1, . .., &, in Z/pZ, m linear equations of type o;,x;, + aj,z;, +
o, 2k, = (B¢ and our objective is to determine an assignment on 1, . . ., Tp, in such a way that a maximum
number among the m equations is satisfied.

As it is proved in [12] (see also [9] for the case where all the coefficients equal 1), for any p > 2 and
for any € > 0, Max E3LIND cannot be approximated within standard approximation ratio (1/p) + €, even
if coeflicients in the left-hand sides of the equations are all equal to 1. Note that, due to Corollary 1, this
bound is immediately transferred to the differential paradigm.

Finally, let us quote the following GAP-reduction (see [2] for more about this kind of reductions), proved
in [12], that will be used in order to yield our results.

Proposition 13. ([12]) Given a problem I1 € NP and a real 6 > 0, there exists a polynomial transformation g
from any instance I of 11 into an instance of MAX E3LIN2 such that:

o if ] is a yes-instance of 11 (we use here classical terminology from [11]), then opt(g(I)) = (1 — §)m;
o if I is a no-instance of 11, then opt(g(I)) < (1 + 6)m/2.

Proposition 13 shows, in fact, that MaX E3LIN2 is not approximable within standard ratio 1/2 + ¢, for any
€ > 0, because an algorithm achieving it would allow us to distinguish in polynomial time the yes-instances
of any problem IT € NP from the no-ones. Devising of such reductions is one of the most common strategies
for proving inapproximability results in standard approximation.



4.1 Bounds for MAX E3SAT

We first prove a GAP-reduction analogous to the one of Proposition 13 from any problem II € NP to
Max E3saT. Note that this is the first time that a GAP-reduction is used in the differential approximation
paradigm.

Proposition 14. Given a problem 11 € NP and a real § > 0, there exists a polynomial transformation f from
any instance I of 11 into an instance of MAX E3SAT such that:

o if' ] is a yes-instance of 11, then opt(f(I)) — w(f(I))
1

> (1—-28)m/4;
o if I is a no-instance of 11, then opt(f(I)) — w(f(I)) < dm/4

Proof. We first prove that the reduction of Proposition 13 can be translated into differential paradigm also.
Consider an instance I’ = ¢(I) of max E3LIN2 and a feasible solution & = (x1,x9,...,2,) for I (we
will use the same notation for both variables and their assignment) verifying k among the m equations of I’.
Then, vector T = (1 —z1,...,1 — xy,), verifies the m — k equations not verified by Z. In other words,
opt() + w(I) = m; hence, function g claimed by Proposition 13 is such that:

e if I is a yes-instance of II, then opt(I") — w(I") = (1 — 26)m;
e if I is a no-instance of II, then opt(I’") — w(I') < dm. 1

We are ready now to continue the proof of the proposition. Consider an instance I of MAX E3LIN2 on 1
variables x;, © = 1,...,n and m equations of type x; + x; + x;, = ( in Z/2Z, i.e., where variables and
second members equal 0, or 1. In the same spirit as in [12], we transform I into an instance ¢ = h(I) of
MAX E3SAT in the following way:

e for any equation z; + 2 + x; = 0, we add in h([) the following four clauses: (Z; V x; V ),
(l’i Vz;V l’k), (JTZ Va;V i‘k) and ({Z‘l Viz;V J_Jk);

e for any equation z; + 2 + x; = 1, we add in h([) the following four clauses: (z; V x; V ),
(i‘i ViV l’k), (i’l Va;V i‘k) and ({L‘l Viz;V J_Jk)

It can immediately be seen that h(I) has n variables and 4m (distinct) clauses.

Given a solution y for Max E3saT on h(I), we construct a solution y’ for I by setting x; = 1 if x; = 1
in A(I) also; otherwise, we set x; = 0.

For instance, consider equation ; + x; + x; = 0 in I. It is verified if either O or 2 of the variables
are equal to 1. The several satisfaction possibilities for the clauses derived in h(I) for this equation are the
following:

e if zero, or two variables are set to 1 (true), then all the four clauses are satisfied;
e if one, or three variables are set to 1, then 3 clauses are satisfied.

As a consequence, iterating this argument for any clause set built from an equation, we conclude that solu-
tion y for Max E3saT on h(I) verifies m(h(I),y) = 3m+m(l,y’). Since transformation between ' and y
is bijective, we get w(h(I)) = 3m + w(I) and opt(h(I)) = 3m + opt(I). In other words, the reduction
just described is an affine reduction from MAX E3LIN2 to MAX E3SAT.

It suffices now to remark that the composition f = h o g verifies the statement of the proposition and
its proof is concluded. I

Proposition 14 has a very interesting corollary, expressed in the Proposition 15 just below, that exhibits
another point of dissymmetry between standard and differential paradigms.

Proposition 15.  Unless P = NP, no polynomial algorithm can compute, on an instance @ of MAX E3SAT a
value that is a constant approximation of the quantity opt(p) — w(yp).

10



In view of Proposition 15, what is different between standard and differential paradigms with respect to
the GAP-reduction is that in the former such a reduction immediately concludes the impossibility for a
problem (assume that it is a maximization one) to be approximable within some ratio, by showing the
impossibility for the optimal value to be approximated within this ratio. For that, it suffices that one reads
the value of the solution returned by the approximation algorithm. In the latter paradigm such a conclusion
is not always immediate. In fact, a reasoning similar to the one of the standard approximation is possible
when computation of the worst solution can be done in polynomial time (this is, for instance, the case of
maximum independent set and of many other NP-hard problems). In this case a simple reading of the value
of the approximate solution is sufficient to give an approximation of opt(z) — w(z). A contrario, when it is
NP-hard to compute w(x) (this is the case of the problems dealt here —simply think that the worst solution
for max sar is the optimal one for MIN sAT and that both of them are NP-hard —, of travelling salesman,
etc.), then reading the value m(x, y) of the approximate solution does not provide us with knowledge about
m(z,y) — w(x) and, consequently no approximation of opt(z) — w(x) can be immediately estimated. So,
use of GAP-reduction for achieving inapproximability results is different from the one paradigm to the other.

However, for the case we deal with, we will take advantage of a combination of Propositions 5 and 15 in
order to achieve the inapproximability bound for Max E3sAT given in Proposition 16 that follows.

Proposition 16. Unless P = NP, MAX E3SAT is inapproximable within differential approximation ratio greater
than 1/2.

Proof. Assume that an approximation achieves differential ratio 6 > 1/2, for max e3sat. Then, by
Proposition 5, there exists an algorithm achieving the same differential ratio for MIN E3saT. Denote by T}
and T, respectively, the solutions computed by these algorithms on an instance ¢ of these problems. We
have:

m (¢, T1) —w(p) = 6(opt(p) —w(p)) (14)

where opt(+) and w(-) are referred to Max E3saT. By the relations between all these parameters for the two
problems specified in the proof of Proposition 5, we get:

opt(¢) —m (¢, T2) = d(opt(p) —w(p)) (15)

Adding (14) and (15) member-by-member, we get m(p, T1) — m(p, T2) = (26 — 1)(opt(¢) — w(p)). So,

simple reading of the values of 77 and 75, can provide us a constant approximation (since § has been assumed

to be a fixed constant greater than 1/2) of the quantity opt(¢) — w(), impossible by Proposition 15. I
Proposition 16 together with Proposition 5 conclude the following corollary.

Corollary 5. For any k > 3, MaX EESAT, MIN EKSAT, MAX kSAT and MIN ksSAT are differentially inapprox-
imable within ratios better than 1/2.

4.2 MAXEKSAT, k > 3
In this section, we will generalize the GAP-reduction of Proposition 14 in order to further strengthen inap-
proximability results of Corollary 5.

Proposition 17. For any prime p > 0, MAX E3LIND <AfF MAS E3(p — 1)saT.

Proof. Consider a positive prime p and an instance I of MAX E3LINpD on 7 variables and m equations.
Consider an equation x1 + x2 + 23 = [ (in Z/pZ) of I and, for any i = 1,2,3, p — 1 new variables
2!, ..., 2" € {0,1}. Consider, finally, equation

70 7

p—1  p-l p—1
Zx{—i—Zxé—l—Zxézﬁ (16)
j=1 j=1 j=1
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It is easy to see that (16) is verified if and only if the number of variables set to 1 is either 5 or 3 + p, or,
finally, 5 + 2p.

Consider now the set of all the possible clauses on 3(p — 1) literals issued from variables z}, ..., 2? -1
i = 1,2,3. Any truth assignment will satisfy all but one clause. For example, if any variable is assigned
with 1, the only unsatisfied clause is the one where all variables appear negative.

What is of interest for us is to specify when the number of variables set to 1 is either 3 or S+p, or, B+2p.
For this, denote by Cj, the set of clauses on 3(p — 1) literals issued from variables wzl, ey xf_l, 1=1,2,3
with exactly & negative literals. Then, a truth assignment setting k variables to 1, verifies |Ci| — 1 clauses
of C,, while any other truth assignment on the variables of Cj, verifies all the |Cy| clauses. So, for an equation
x1 + x2 + x3 = (3, we will add in the instance of Max E3(p — 1)sat the set Cy, for k € {0,...,3(p— 1)}
and k ¢ {3,0 + p,3 + 2p}. Hence, if a truth assignment for these clauses has 3, or 5 + p, or § + 2p
variables set to 1, it will verify all the clauses constructed, otherwise it will verify all but one of these clauses.

In all, for any of the variables x}, ... ,xf_l
of the m equations of I into an equation as in (16). Then, for any of these new equations we add in the

instance of Max E3(p — 1)sAT the set of clauses as built just above. The instance ¢ of Mas E3(p — 1)sAT

we will build one new variable and we will transform any

so constructed has n(p — 1) variables and, since the number of clauses issued from any equation is no more
than 23(P—1) ¢ will have at most m, < m23P=1) clauses.

Given a truth assignment T on the variables of ¢, we set 2; = [{z¥ : ¥ = 1 in T'}|. Discussion above
leads to m(p,T) = my, —m + m(I,S). On the other hand, it is easy to see that our reduction implies
that any solution S of I is transformed into a truth assignment 7" on the variables of ¢ such that the relation
between the values of S and 1" given just above is always satisfied. This relation confirms that the reduction
specified is an affine one from MAX E3LIND to MAX E3(p — 1)SAT.

Finally, let us remark that it is possible that formula ¢ contains many times the same clause. This, for
instance, is the case if I simultaneously contains equations say x1 + x2 + 3 = (1 and 21 + x2 + 3 = (2,
for $1 # (2. In this case, we can modify the construction described, by building the subset of Cj, or
ke{0,....,3(p—1)}and k & {51,051 + p, 51 + 2p, B2, B2 + p, P2 + 2p}. This concludes the proof of
the proposition. I

The result of Proposition 17 together with the result of [12] stated in the beginning of the section and
Proposition 1, lead to the following corollary.

Corollary 6. For any prime p, MaX 3 (p — 1)SAT is inapproximable within differential ratio greater than 1/p.
Furthermore, Propositions 4 and 5 allow us to rewrite Proposition 17 as follows.

Proposition 18.  For any k > 3, neither MAX EkSAT, nor MIN EKSAT can be approximately solved within
differential ratio greater than 1/p, where p is the largest positive prime such that 3(p — 1) < k.

Easy consequences of Proposition 18 are the following differential inapproximability bounds for several in-
stantiations of maximum and minimum k-satisfiability:

e MaX and MIN 3sAT 4sAT and 5sAr are differentially inapproximable within ratio better than 1/2;
e MAX and MIN GSAT, ..., 11saT are differentially inapproximable within ratio better than 1/3;
e MaX and MIN 128AT, ..., 17saT are differentially inapproximable within ratio than 1/5, ...

Finally, Max saT being harder to approximate than any Max ksat problem, the following result holds and
concludes the section.

Proposition 19. max sat ¢ DAPX.

12



In [17] is defined a logical class of NPO maximization problems called MAX-NP. A maximization prob-
lem IT € NPO belongs to Max-NP if and only if there exist two finite structures (U,Z) and (U, S), a
quantifier-free first order formula ¢ and two constants £ and ¢ such that, the optima of II can be logically
expressed as:

k . l
rggg(‘{er .EIyEU,@(Z,S,:L‘,y)H (17)

The predicate-set Z draws the set of instances of I1, set S the solutions on Z and ¢ the feasibility conditions
for the solutions of II. In the same article is proved that Max saT € Max-NP and that MAX-NP C APX.

It is easy to see that (17) can be identically used in both standard and differential paradigms. So, Propo-
sition 19 draws an important structural difference in the landscape of approximation classes in the two
paradigms, since an immediate corollary of this proposition is that MAX-NP ¢ DAPX. We conjecture
that the same holds for the other one of the celebrated logical classes of [17], the class MAX-SNP, i.e., we
conjecture that MAX-SNP ¢ DAPX

4.3 MAX E2SAT

We have already seen in Proposition 6 that Max E2sar is differentially inapproximable within ratio 21/22.
In this section, we improve this result by operating an affine reduction from MAX E2LIN2 to MAX E2SAT.

Indeed, consider an instance I of the former problem (on 7 variables and m equations) and an equation
21+ x2 = 0in I. Add in ¢ (the instance of MaX E2SAT under construction) clauses Z1 V 2 and 1 V Zo.
On the other hand, for an equation 1 + 22 = 1, add in ¢ clauses z1 V 22 and Z1 V Z2. Performing this
transformation for any equation in I, we finally build a formula ¢ of MaX E2SAT on n variables and 2m
clauses. Moreover, for any truth assignment 7" on the variables of ¢, one gets a solution .S for I such that
m(e,T) =m+m(1,S), qed.

It is shown in [12] that MaX E2LIN2 is inapproximable within standard approximation ratio better
than 11/12. By Proposition 2, this bound is transferred to the differential paradigm. Then, the affine
reduction just described concludes the following result.

Proposition 20. MaX E2LIN2 <AF MAX E2SAT. Consequently, MAX E2SAT is differentially inapproximable
within ratio greater than 11/12.

5 Ideas for further research

We give in this concluding section a few ideas about possible ways for further improving results of the paper
or for yielding new ones.

Consider a graph G(V, E) of order n and with maximum degree A. We construct an instance ¢ of MAX
DNF on 7 variable 21, ..., 2, and n cubes C1, ..., C), as follows: for any vertex v; € V, with neighbors
Vigs o ooy Vi, > We add in ¢ clause z; A Z;; AL A Tis. - Let T be a truth assignment satisfying k cubes, say
Cj,,...,Cj,. Then, obviously, the vertex-set V! = {v;,,...,v;,} is an independent set for G (of size k).
Conversely, given an independent set of G of size k consisting of vertices vj, , . . ., vj, , the truth assignment
setting variables zj,, ..., 2;, to 1 and any othe variable of ¢ in 0 satisfies &£ cubes. Observe finally that the
size of the cubes built for ¢ is bounded by A + 1. In all we have just exhibited an affine reduction from max
INDEPENDENT SET-A (i.e., MAX INDEPENDENT SET on graphs with maximum degree bounded by A) to
Max A + 1DNE.

On the other hand, there exists an € > 0 such that, for any A > 3, MAX INDEPENDENT SET-A is not
approximable within approximation ratio 1/A€ ([1]). Since standard and differential approximation ratios
coincide for MAX INDEPENDENT SET (the worst independent set in a graph is the empty set), the result of [1]
holds immediately for differential paradigm and can be used in order to conclude that there exists an € > 0
such that, for any k > 4, Max kDNE is not differentially approximable within ratio greater than 1/k€. This
recovers the result of Proposition 19, namely, that Mmax sat ¢ DAPX.
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If one wishes to improve this result, a possible issue is the following. Recall that transformation of max
kDNF to MAX kSAT of Proposition 5, consists of substituting any cube of size £ by 2¢ — 1 clauses of size £. We
so can affinely (but not polynomially) reduce MAX INDEPENDENT SET to MAX SAT by building an instance ¢
of the latter on 1 variabes and at most 7221 clauses. But, if A is bounded by log n, then this reduction is
polynomial. In other words, if one obtains an inapproximability bound for MAX INDEPENDENT SET-log n
(for example a bound of the type 1/ log® n, for some positive €), then one can extend it immediately to max

SAT improving so the bound of the paper.
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