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Functional Petri Nets

Dmitry A. Zaitsev

Résumé

Nous introduisons dans ce travail les concepts de (sous-)réseaux de Petri fonctionnels et ceci afin de
diminuer la complexité temporelle des méthodes d’analyse algébriques des réseaux de Petri. Nous
montrons tout d’abord que tout sous-réseau fonctionnel s’obtient par composition de sous-réseaux
fonctionnels minimaux. Puis nous proposons deux techniques de décomposition en sous-réseaux
minimaux : via la résolution d’équations logiques ou a l’aide d’un algorithme ad-hoc dont la
complexité temporelle est linéaire. Nous étudions ensuite les propriétés des sous-réseaux fonctionnels.
Nous montrons que les invariants linéaires des réseaux de Petri s’obtiennent a partir des invariants de
ses sous-réseaux fonctionnels; des résultats similaires sont aussi valables pour 1’équation
fondamentale des réseaux de Petri. A partir de ces résultats nous développons une technique d’analyse
de réseaux de Petri par décomposition en sous-réseaux fonctionnels. Nous démontrons que le calcul
compositionnel d’invariants et de solutions de 1’équation fondamentale conduit a une accélération
importante des calculs. A ’aide d’une stratégie particuliére de composition dite « séquentielle » nous
obtenons une nouvelle accélération des calculs. La composition séquentielle est formalisée dans un
contexte de théorie des graphes et se reformule sous le nom de repliage optimal d’un graphe pondéré.
Finalement, nous appliquons nos techniques a l’analyse de modé¢les de protocoles standard de
télécommunication comme ECMA, TCP, BGP.

Mots clefs: réseaux de Petri, réseaux fonctionnels, sous-réseaux fonctionnels, composition

Abstract

Functional Petri nets and subnets are introduced and studied for the purpose of speed-up of Petri nets
analysis with algebraic methods. We show that any functional subnet may be generated by a
composition of minimal functional subnets. We propose two ways to decompose a Petri net: via
logical equations solution and with an ad-hoc algorithm, whose complexity is polynomial. Then
properties of functional subnets are studied. We show that linear invariants of Petri net may be
computed from invariants of its functional subnets; similar results also hold for the fundamental
equation of Petri nets. A technique for Petri net analysis using composition of functional subnets is
also introduced and studied. We show that composition-based calculation of invariants and solutions
of fundamental equation provides a significant speed-up of computations. For an additional speed-up
we propose a sequential composition of functional subnets. Sequential composition is formalised in
the terms of graph theory and was named the optimal collapse of a weighted graph. At last, we apply
the introduced technique to the analysis of Petri net models of such well-known telecommunication
protocols as ECMA, TCP, BGP.

Key words: Petri net, functional net, functional subnet, composition
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1 Introduction

Linear algebra methods [Diaz 01, Murata 89, Reisig 82] based on state equation and
invariants are a powerful tool for Petri net analysis. But to find linear invariants and to solve
the fundamental equation of Petri net we have to solve linear diophantine systems in
nonnegative integer numbers. All known methods of such systems solution [Colom 90,
Contejean 97, Kryviy 99, Martinez 82, Schrejver 91, Toudic 82] possess exponential
complexity with respect to space. It makes the analysis of large-scale models practically
unfeasible and requires searching of new techniques, which provide essential speed-up of
computations.

Two basic approaches were suggested [Berthelot 87] to handle large-scale nets:
decomposition and reduction. Implementations of these approaches have been designed in the
different concrete ways. Moreover, decomposition and reduction are applied not only to nets
but to state space also. Reduction provides a set of rules for decreasing the dimension of net
preserving its properties. Then usual methods of analysis are applied onto reduced net.

Decomposition and composition [Singh 86] are abstraction-based methods successfully
applied in different fields of science and engineering. On the one hand the majority of
artificial systems are composed out of its components and this process is hierarchical. So
there is a decomposition of systems provided by the rules of its construction and the set of its
components and elements [Cortadella 02, Girault 03, Jensen 97, Juhas 04]. The simplest way
assumes the usage of such decomposition. If we know the properties of components and use
special rules of composition (synthesis) preserving properties then we construct an ideal
system [Juan 98, Kotov 84]. But unfortunately, it is not a prevailing case for real-life objects.
On the other hand, the goals of concrete analysis often require tricky decomposition.
Decomposition is justified if there are techniques allowing the determination of systems’
properties on the base of properties of its components. Thus, decomposition methods always
assume the following composition of system.

Let us consider approaches to decomposition used in Petri net theory. The first attempt was
carried out by M. Hack [Hack 74] to decompose a free-choice net into state machines. The
conditions for preserving of liveness under the composition of live state machines were
studied. Berthelot [Berthelot 87] considered decomposition into S- and T- components: S-
component shares transitions with other S-components whereas T-component shares places.
Behaviour equivalence was studied. Esparza and Silva [Esparza 91] defined two special types
of composition: synchronization and fusion. They considered synchronization preserving
liveness of free- choice net. In [Best 92] the decomposition into T-components was applied
for generation of home-states for free-choice nets. Results concerning the composition of free-
choice nets were collected in the monograph of Desel and Esparza [Desel 95]. Kotov [Kotov
84] suggested composing Petri nets out of elementary nets using algebraic operations. Such
nets were named regular nets. Regular nets consider separate sets of input and output places.
Various kinds of composition preserving liveness, boundness and other properties were
studied in [Christinsen 00, Lee 02, Lee 00, Souissi 90]. An incremental verification technique
based on composition of subnets covering a formula of temporal logic was proposed in
[Haddad 02].

In spite of variety of concrete definitions of components the common idea is clear enough:
to pick out an interface of component and to hide its implementation [Peterson 81]. For T-
components composition is provided by fusion of contact places. Such a composition was
used for construction of hierarchical high-level nets [Jensen 97, Juhas 04, Latvala 04, Pomello
04]. Nets containing contact places were also called 10-net [Juan 98]. At investigation of
controllability of nets it was suggested to distinguish input and output places [Ichikawa 85].
Decomposition of reachability and coverability graphs was successfully applied for avoiding
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the state space explosion for low-level [Valmari 90] and for high-level [Haddad 96, He 91]
Petri nets. Moreover, rules of state spaces composition at composition of net components
were studied [Juan 98].

Functional Petri nets were introduced in [Zaitsev 97]. Like T-components, functional
subnets define a partition of a set of transitions. But they distinguish from T-components and
IO-nets: separate subsets of input and output places are considered and definition does not
require that a place has only one input and only one output arcs. Moreover, among various
suggested constraints for incident arcs of input and output places functional nets use the
strictest: input places have only input arcs and output places have only output arcs [Zaitsev
03b].

Composition of Petri nets out of functional subnets [Zaitsev 04e] was applied successfully
for speed-up of the processes of invariants’ calculation [Zaitsev 04b] and solution of state
equation [Zaitsev 04d]. It was shown that the majority of linear algebra methods of Petri net
properties analysis, reducing to solution of systems of linear diophantine equations and
inequalities in nonnegative integer numbers, might be efficiently realized with the aid of
composition.

Note that application of composition [Zaitsev 04b, 04d] allows the speed-up of solution of
an arbitrary linear systems, which are solved usually with the aid of methods having the
calculation complexity exceeding linear, as the complexity of decomposition and subsequent
composition equals to linear function of dimension of system [Zaitsev 03b, 04e]. However,
the most significant speed-up we obtain at solution of diophantine systems in nonnegative
integer numbers, as all known methods of such systems solution [Colom 90, Contejean 97,
Kryviy 99, Martinez 82, Toudic 82] have exponential complexity.

In works [Zaitsev 04b , 04d], the simultaneous composition of all the functional subnets of
a given Petri net was studied. However, in the cases the number of contact places exceed the
number of places for largest of minimal functional subnets we may obtain an additional
speed-up of computations at the expense of sequential organization of process of composition
[Zaitsev 04g].This task is formalized in the terms of graph theory [Berge 01, Harary 71] and
is named by collapse of weighted graph. The effective methods of its solution are proposed.
Sequential composition has been applied for acceleration of verification of telecommunication
protocols [Zaitsev 04c , 04f ].

The balance of the paper is the following: In Section 2, we introduce and discuss the
concepts of functional Petri net and functional subnet. In Section 3, we study properties of
functional subnets and consider the representation of decomposition with a net of functional
subnets and a graph of decomposition. In Section 4, two different ways of decomposition are
studied: with the aid of logical equations and using ad-hoc algorithm of linear complexity on
size of the net. In Section 5, we describe the technique of composition-based calculation of
linear invariants and show the exponential speed-up of calculations. In Section 6, we obtain
analogous results for fundamental equation of Petri net. In Section 7, we propose to use
sequential composition to provide an additional speed-up during solution of systems for
contact places. Two ways of sequential composition using subgraphs and edges are discussed.
Then we study in detail the edge sequential composition formalized as the task of edge
collapse of the weighted graph. In Section 8, we present examples of invariants calculation
via simultaneous and sequential composition of functional subnets for Petri net models of
telecommunication protocols ECMA, TCP, BGP.

2 Concepts of Functional Petri Net and Functional Subnet

Concepts of a functional Petri net and a functional subnet are introduced for ordinary Perti
nets. So they are applicable for various classes of Petri net using bipartite directed graph.



Multiplicity of arcs will be considered only at calculation of linear invariants and solution of
the fundamental equation of Petri net.

Definition 1. Petri net

A Petri net is a triple N=(P,T,F), where P={p,,p,,....,p,} 1s a finite set of places,
T ={t,t,,..t,} is a finite set of transitions and P(T =<, a flow relation F < PxTUT x P
defines a set of arcs connecting places and transitions.

Sample Petri net N, is shown in Fig. 2.1.

Fig. 2.1. Petri net N,

We use the special notations for the sets of input, output and incident nodes of a place:

"p=1it|3(t, p)eF}, p*={t|3Ap.tyeF}, " p'="pUp".

Similarly we may define the sets of input, output and incident nodes of a transition and
moreover of an arbitrary subset of places (transitions).

Definition 2. Net with input and output places

Net with input and output places is a triple Z = (N, X,Y), where N is Petri net, X < P— input
places, Y < P— output places and the sets of input and output places are disjoint: X (Y = .
Places from the set of Q= P\(XUY) we name internal. Input and output places C = X UY
are named contact ones.

There are known also definitions [Ichikawa 85, Christinsen 00] of Petri nets with contact
places which are not subdivided into input and output subsets.

Definition 3. Functional net
Functional net is a net with input and output places such that input places do not have input
arcs and output places do not have output arcs: Vpe X:"p=, VpeY:p®" =. We denote
functional net as Z=(N,X,0,Y) or Z=(X,Q,Y,T,F) with the respect to correspondent
elements of Petri net N.
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Proposition 2.1. An arbitrary Petri net N may be considered as functional net, where the
set X is formed with sources of net &, and the set Y is formed with drains of net N:

Z(N)=(X,0,Y,T,F), O="T~T*, X="T\Q, X =T"\0.

Therefore, in further statement, not limiting a generality, we shall consider functional Petri
nets only allowing the empty sets of contact places. In [Zaitsev 97] the transmission functions
of functional timed Petri nets were studied and methods of equivalent transformations based
on algebraic transformations of transmission function were investigated.

Let us consider the following concepts according to standard definitions of graph theory
[Berge 01, Harary 71]:

— aPetrinet N'=(P',T',F") is a subnet of N, iff
P cPT'cT,F'cFN(P'xT"YU(T'xP").

— the subnet induced by the specified sets of nodes B(P',T') is the subnet
N'=(P",T',F"), where F' contains all the arcs connecting nodes P',T' in the
source net:

F'={(p,t)|peP,teT, (p,t)y e F}U{(t,p)|pe P teT (t,p)eF}.

— the subnet induced by the specified set of transitions B(T') is the subnet B(P',T"),

where
P'="T'0UT".

In other words, together with the transitions from 7', subnet B(7T") contains all the incident

places and is induced by these nodes. Further we shall consider mainly all the arcs connecting
specified nodes in the source net; that is, we shall consider subnets generated by the set of
nodes. Therefore, for brevity we shall omit flow relation implying the source relation F.

Definition 4. Functional subnet
A functional net Z = (N', X,Q,Y) is a functional subnet of net N and is denoted as Z > N,
iff N’ is a subnet of N induced by aset 7': N'= B(T") and moreover Z is connected with the

residuary part of the net only by arcs incident with contact places so that input places have
only input arcs and output places have only output arcs:

Vpe X {(p,t)|[teT\T"} =D, VpeY {(t,p)|teT\T'} =D,
VpeQ:{(p,)|teT\T} =D A{(t,p)|teT\T'}=D.

These conditions may be represented also as:
X'N(T\ThY=3, Yn({T\T)=3,'0"Nn(T\Th=0J.
Notice that in the same way we may introduce the concept of dual functional subnet
induced by the specified set of places and using contact transitions. But furthermore we prefer

to consider functional subnet according to Definition 4 for dual Petri net.

A subtraction of Petri net N and its functional subnet Z' is denoted the net Z"=N-Z2",
where



Z"=B(T\T')=(,P\(XUYUQ),X,T\T').

Proposition 2.2. (Symmetry). Z'> N ifft N—Z'> N.

To prove the proposition note that N —Z' is connected with residuary part of net only by
means of contact places and moreover constraints of arcs in definition of functional subnet
correspond to constraints of arcs in definition of functional net. [

Definition 5. Minimal functional subnet

Functional subnet Z' > N is a minimal iff it does not contain any other functional subnet of
Petri net V.

Set of minimal functional subnets of Petri net N, (Fig. 2.1) is presented in Fig. 2.2. Notice
that these functional subnets have only input and output places. For example, subnet
Z,= B({tz,t3,t5 }) has X = {pz,p3}, Y= {p4,p5}. More complex examples of decomposition
are considered in Section 7.

Fig. 2.2. Decomposition of Petri net N, into minimal functional subnets

In the same way we may introduce and study various subclasses of Petri nets with contact
places. Contact places may be subdivided not only into input and output subsets. We propose
to classify such nets in the following way. At first, we consider connections of a contact place
with inside (I) of subnet and outside (O). At second, we distinguish three types of
connections: only input arcs, only output arcs, input and output arcs. In such a way it may be
introduced nine types of contact places presented in Fig. 2.3. Notice that, functional subnet
uses places of type d) as input X and places of type b) as output Y.

—( —(® —rC
(@ B D



g) h) i)

Fig. 2.3. Types of contact places

3 Properties of Functional Subnets

Lemma 3.1. Subnet B(R), RcT 1is a functional subnet iff it holds true
(RHVCR) R,

Proof. A) Sufficiency. Let’s Z = B(R) be a functional subnet. We prove that “*(R*) < R

from the contrary. Let’s 3¢:t€" (R") At ¢ R and consider place p € R® such as t€”p . In all
the cases: ge X , geY, g € O we obtain the contradiction. In the same way we may prove
(‘'R)" = R.
B) Necessity. Let’s “(R") U(*R)" < R holds true. If 1 € Q* U X* and since Q U XC"R then
te(CR)' < T. Otherwise if t€"QU'Y and since QUY cR' then te'(R")cT.
Consequently, in two above cases conditions of functional subnet ‘Q° N (T\T')=d,
X' N(T\TY=3, 'Y (T\T") = holds true. [

Remark. If we would not consider functional subnets consisting of an isolated transition
we might write the condition of Lemma 3.1 as: *(R*)U("R)" =R.

Theorem 3.1. Sets of transitions of two arbitrary minimal functional subnets Z' and Z"
of Petri net NV do not intersect.
Proof. Let Z'=B(T'") and Z" = B(T") be minimal functional subnets. We assume the

contrary, namely 7' N T" # & and consider the net induced by the set 7' N 7T".
Using the monotony of the dot operation we construct the following sequence:
I'n\T"cT'
then
T'NnT" T
thus, according to Lemma 3.1
‘(T'NTH (T )T
In analogous way we may obtain
‘(T'NT"H ) (T")T"
then
‘(T'NT"Y )T 'NnT".
Notice that also the following condition holds true
CT' AT cT'nT".
Therefore we have
(T'NTHYHYVCT' AT <cT'NnT".
That is why B(T'"T"), is a functional subnet of Petri net N, which contradict with
minimality of subnets Z'= B(T") and Z" = B(T") . ]
Corollary 1. Sets of internal places of two arbitrary minimal functional subnets Z' and
Z" of Petri net N do not intersect.



Corollary 2. Set of minimal functional nets I={Z’}, Z’ = N defines a partition of set T
into no intersected subsets 7/ suchas 7=UT’, T'NT* =@, j#k.

J

To represent the interconnection of minimal functional subnets we construct the high
level net of minimal functional subnets. Transitions of this net correspond to minimal
functional subnets. Set of places consists of contact places of decomposed net. High level net
of Petri net NV, is presented in Fig. 3.1. Let us implement the formal definition of these nets.

P

7! 73

P> D5
Py

72 > e

Fig. 3.1. Net N; of minimal functional subnets of Petri net N,

Definition 6. Net of functional subnets

Net of functional subnets of a given Petri net N is Petri net N’ such that:
P'=C,T'={t’|t" &< Z,Z~ N},
(pt"YeF' < 3eT(Z):(p,t)eF, (t’,p)eF < 3teT(Z):(t,p)eF.

Notice that the net of functional subnets may be defined for decomposition consisting of
non-minimal functional subnets.

Definition 7. Completeness
Subnet Z=B(R)=(X,0,Y,R) of Petri net N is the complete in N iff the following
conditions: X <R, ‘'Y< R, "0° R areheldin V.

Lemma 3.2. Subnet Z is the complete in Petri net N iff it is a functional subnet of V.

Proof. We start with proof of necessity of the completeness. So, let Z be a functional
subnet of N: Z > N. Then conditions of completeness are held for adjacent transitions of
places Q according to definition of internal places, while for output transitions of input places
and input transitions of output places according to constrains on arcs in definition of
functional subnet.

Let us prove the sufficiency. It is known that Z is subnet of N generated by the set of
transitions R and Z is a functional net. It is remained to prove that constrains on arcs
connecting places of subnet Z with residuary part of net are held. We denote residuary part of
net as Z'=N-B(R)=(Y,0", X,R"), where Q'=P\(XUQUY), R"'=T\R. We assume a
contrary. Let N contains one or few no legal arcs of possible six types: a) (x,7'); b) (#',y); ¢)
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(r,q); d) (¢',7); e) (¢.7); ©) (r'.q), where xe X,yeY,qeQ,qg'cQ' . reR,r R . We
shall consider each of types mentioned separately:

a) If (x,7")e F , then r' € x°, consequently X « R.

b) If (#',y) e F, then r'€"y, consequently ‘Y ¢ R.

c)If (r,q')e F ,then ¢'€Y .

d)If (¢',r)e F,then ¢'e X .

e)If (¢,r") e F ,then r' € ¢°, consequently *Q° z R.

f) If (+',q) e F , then r'€" g, consequently ‘Q° ¢ R.
Therefore, in each of enumerated cases we obtain contradiction. This fact finishes the proof of
sufficiency for subnet completeness. [

Lemma 3.3. Each contact place of the decomposed Petri net has no more than one input
minimal functional subnet and no more than one output minimal functional subnet.

Proof. Suppose the contrary. We have to consider two cases:

a) a contact place p € C that has more than one input minimal functional subnet exists;

b) a contact place p e C that has more than one output minimal functional subnet
exists.

In case a) there are minimal functional subnets Z', Z" such as

@i'eZ, t'e’p)A@t"eZ’, t"e’p).

As according to Lemma 3.2 each minimal functional subnet is complete in N so
transitions ¢',¢" according to the definition of completeness belongs to the same minimal
functional subnet. Thus we obtain a contrary.

In case b) there are minimal functional subnets Z',Z" such as

@t'eZ, tepyA@t"eZ", t"ep”).

And we obtain a contrary in such a manner as in the case a).

The contrary obtained in the both cases proves the lemma. [

The immediate conclusion of Lemma 3.3 and a marked graph definition [Diaz 01, Murata
89, Peterson 81] is the following theorem.

Theorem 3.2. The net of minimal functional subnets of a given Petri net is a marked
graph.

Described above net N° is detailed enough representation of subnets’ interconnections. It
contains parallel paths in the case a few contact places connect a pair of subnets. For more

brief representation we may hide contact places considering only interconnections of subnets.
In this case we obtain a following graph.

Definition 8. Graph of functional subnet
Graph of functional subnets of a given Petri net N is a directed weighted graph G = (3, E, W),

where set of nodes I is formed with minimal functional subnets of net N and arcs E connect
nodes in the case corresponding subnets have common contact places in such a manner that:

E={Z',Z2")|3p:peY’/,pe X"}, W(Zj,Zk):‘{q‘ElteTj,EireTk :(t,q)eF,(q,r)eF}‘.

Graph allows the scheme representation of functional subnets’ interconnections for source
net. At Fig. 3.2 a) graph of functional subnets of Petri net N, is presented.



[»

a) directed b) undirected

Fig. 3.2. Graph G, of functional subnets of Petri net N,

Furthermore we will use also undirected graph of decompositions (Fig. 3.2 b) adding
weights of arcs with contrary directions.

It should to be noted that minimality in general case does not mean a presence of a little
quantity of places and transitions but only assumes that subnet may not be divided further in
(internal) functional subnets. Moreover, non partitionable net may consist of an arbitrary
number of nodes. An example of non partitionable net is presented at Fig. 3.3. Chain of places
and transitions connected with arcs of pointed type may contain no limited number of nodes.

Fig. 3.3. Non partitionable net N,

Theorem 3.3. Any subnet of an arbitrary Petri net N is a sum (union) of a finite number of
minimal functional subnets.

Proof. Let us assume the contrary and exactly that exists functional subnet Z' of Petri net
N that is not a union of minimal subnets. As 3 defines partition of set 7, so 7" contains parts

of subsets 7. Formally it may be represented as:

T' = 'UIRi , where [ is a set of subnets’ numbers transitions of which contains in 7", R’ = T"
i€

and, moreover, there exists at least one set R/ = T’/ for any je . Let us consider set of
transitions S =77\ R’ and show that it generates functional subnet B(S) of Petri net N. As
Z' is functional subnet of V, so B(S) is connected with nodes of subnet Z’ only by means of
contact places and, moreover, since Z’ is functional subnet of N, so B(S) is connected with
nodes of subnet N —Z’ also only by means of contact places. Besides, for input and output
places B(S) are held all the constraints of functional subnet. Therefore, functional subnet Z’
contains functional subnet B(S) that contradicts with minimality of Z’. Contradiction
obtained proves the false of source assumption about that S # @& . Thus, T’ contains set T’
entirely that according to arbitrary choice of 7/ proves the theorem. [ ]
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Fig 3.4. Functional subnet Z, + Z, of Petri net N,

The above theorem may be illustrated with Fig. 3.4 showing a net that is the sum of two
minimal functional subnets of Petri net N, presented in Fig. 2.2.

Corollary. The partition of set 7 defined by the set of minimal functional subnets is the
generating family for the set of functional subnets of Petri net V.

4 Technique of Decomposition into Functional Subnets

4.1 Decomposition via Logical Equations

A functional subnet Z° = (P>, P°,P’,T") of a Petri net N =(P,T,F) will be considered.

Let N—Z°, according to Proposition 2.2, be a functional subnet Z'=(P’,P',P>,T").

Interconnection of pointed subnets is illustrated in Fig. 4.1. Let us construct equations in
predicate calculus of the first order defining what subset the place or transition belongs to. It

will be used definition of functional subnet and also that according to Proposition 2.2 net Z'
is also functional subnet of N. We have for transitions:

{(feT%E(Vpev)((peP°>v<pePz))A(Vpez'>(<peP°)v(peP3>) 4.1)
(teTH=(Vpe')((peP)v(peP)A(Vpet')(peP)v(peP?))

In the same way it may be constructed equations defining the set the places belong to:

(peP)=(Vte'p)teT)A(Vte p')teT®) (4.2)
(pePHY=\Vte'p)teTHYA(Vtep')teT")
(pePH)=(Vte'p)teTHA(Ntep*)teT)
(peP)=(Vte'p)teT’)A(Vte p*)teT")

11



Fig. 4.1. Interconnection of functional subnets

We substitute equations (4.2) into (4.1) and note, that as T°UT'=T, and also
T°NT' =@, so it is sufficient to consider only one of equations (4.1), for example, defining
what transitions belong to subset 7'. We obtain the following system:

(teT)= (43)
(Vpe" ) (Vse'p)s eTHYA(Vse p ) seTH)v((Vse'p)seT)A(Vse p )teTH) A
(Vp et (Vs p)seTHA(Vsep)seT ) v((Vse'p)seTHYA (Vs e p')teT)))

Using the finiteness of places’ and transitions’ sets, we replace the quantifiers of generality
with conjunction on corresponding subsets of elements. Besides, we introduce indicators 7,

of the belonging of transition to subsets in such a way that 7, =j<>teT’. Note that

7, €{0,1}; so, these values may by used in logical equations. And, as T°NT' =3, so

7, < (teT"), and also 7, < (teT"). Therefore, equations (4.3) may be represented in
Boolean algebra in the following form:

44

T, = &((& T, A &rs)v(&%sx\ &z‘s))/\ &((& T, A &rs)v(& T, A &%s))

pet sep sSE p et SE p SE p sep

Thus, we have proved the following theorem.

Theorem 4.1. A partition of an arbitrary Petri net into functional subnets is completely
defined with a system of logical equations (4.4).

In the process of solution system (4.4) may be replaced with one equation that is the
conjunction of equations corresponding to each transition of net. Methods of logical equations
solution are well studied, for example, in [Glushkov 62].

Let us consider an example of net N, (Fig. 2.1) decomposition. We construct the system of

logical equations of form (4.4):
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T, = (147,7, V T 0,0 (0,757, V O, T 0, (T,7,T5 V T,T,T5)
T, =(1,75T, V T,TsT, (T,0,T5 V TT0,T5 (T5T,T6 V TsToT)
T, =(1,7,7, V T,T,T, (7,7, V 7,T,)
7, = (1,7, V LT, N0,7,76 V T,T,76)

75 = (0,757, V T 75Ty (757,76 V T5T,7)

7o = (757,76 V T5T, T (117476 V T17,7¢)

Let us construct the conjunction of equations, simplify it and bring to the disjunction
perfect normal form. We obtain:

T T, T3T,TsTe NV T T, T3 T, TsTe NV T T, T30, TsT N T T, 03T, TsT

Note that first of terms corresponds to empty subnet, next three terms correspond to
minimal subnets represented in Fig. 2.2: T'={t,}, T° ={t,.t;,t;}, T’ ={t,,t,}. Residuary
terms describe the sums of minimal subnets. So, for instance, sixth term describes subnet
represented in Fig. 2.6.

It should to note that algorithmic complexity of an arbitrary Petri net decomposition in
functional subnets with logical equations described is in general case asymptotically
exponential that concerned with estimations of logical equations’ solution complexity
[Glushkov 62]. But this technique is universal and may be applied also for decomposition of
Petri net into other kinds of subnets with contact places mentioned in Section 2 (Fig. 2.3).

4.2 Decomposition with an ad-hoc algorithm
Let us consider the following algorithm.

Algorithm 4.1:

Step 0. Choose an arbitrary transition ¢ € T of net N and include it into the set of chosen
transitions R = {t}.

Step 1. Construct subnet Z that is induced by set R: Z =B(R)=(X,0Q,Y,R).

Step 2. If Z is the complete in N, then Z is subnet sought, stop.

Step 3. Create the set of absorbing transitions:

S={t|te X " AtgRVvte'YAtgRvte' Q" At & R}.
Step 4. Assign R:=RUS and go to Step 1.

Theorem 4.2. Subnet Z constructed by Algorithm 4.1 is minimal functional subnet of Petri
net V.

Proof. According to Lemma 3.2 Algorithm 4.1 creates a functional subnet. It should to
prove its minimality. We assume the contrary: let Z is not a minimal. Then, minimal
functional subnet Z' of Petri net N exists such that Z'=B(T") and T" cT'. So, subnet Z
contains Z'. Let us consider two possible variants of Algorithm 4.1 execution: a) start with
transition ¢t €7T’, such that 1 T"; b) start with transition 1 €7"’, such that 1 ¢ T". We shall
consider each of two variants mentioned separately.

a) Let t e T". We consider the first transition v of the set 7'\ 7", which was included into
set S on any pass of Algorithm’s 4.1 main loop. Thus, according to description of Step 3, one
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of three cases: v € X * or ve'Y, or ve'S" is possible. In the first case a place x € X, such
as v € x" may not be neither input, nor output, nor internal place of net Z’'. Contradiction has
been obtained. In the same way we come to contrary in second and third cases.

b) Let 1 ¢ T". We consider the first transition v of the set 7", which was included into set S
on any pass of Algorithm’s 1 main loop. Thus, according to description of Step 3, is possible
one of three cases: v € X “or ve'Y, or ve'S®. In the first case a place x€ X, such as

v € x° may not be neither input, nor output, nor internal place of net Z'. Contradiction has
been obtained. In the same way we come to contrary in second and third cases. [

Thus, Algorithm 4.1 allows the construction of minimal functional subnet Z of Petri net V.
Let us assign i:=1 u Z':=Z. Than we assign N := N —Z and repeat execution of Algorithm
1 in the case the set 7 is not empty. Continuing in such a manner and assigning i:=i+1 we
shall have constructed the set of minimal functional subnets Z',Z>....,Z" of net N which
represent the sought partition of source net.

Implementation of algorithm over net represented in Fig. 2.1 gives us the result coinciding
with one obtained in the previous section on the base of logical equations and represented in
Fig. 2.2.

Since each arc is processed by algorithm only once, the following theorem is valid.

Theorem 4.3. The complexity of Algorithm 4.1 is linear with respect to size of the net.

Described algorithm of decomposition has been implemented in command line tool
Deborah (www.geocities.com/zsoftua/softe.htm), which was developed as plug-in for Tina
system [Berthomieu 04] (www.laas.fr/tina).

S5 Compositional Analyses of Petri Nets

Further we consider Petri nets with multiply arcs [Murata 891 N =(P,T,F,W), where
P,T,F are as in Definition 1 and W : F — N defines the multiplicity of arcs, N is a set of
natural numbers.

Let us |P| =m,

T | =n and the sets of places and transitions are enumerated. We introduce

matrices 4, A" of input and output arcs of transitions correspondingly:

w(p.,t.), Lt )eEF,
4" :Ha_i,j ’ izl:mv jzl,l’l;a_i,j = (pl ./) (p j)

0, otherwise,

w(t,,p;), (&.,p; ek,
A+:a+i,j ,i:l,m,jZI,n;a+i,j= (jpl) (jp)

0, otherwise.

And finally we introduce incidence matrix A of Petrinetas A=A4" —A".
Marking of net is a mapping u: P — N, defining a distribution of dynamic elements

named tokens over places; N, is a set of nonnegative integer numbers. Marked Petri net is a
couple M = (N, u,) or a quintuple M =(P,T,F,W,u,), where , is initial marking. Further
we present markings as vectors.

5.1 Linear Invariants’ Calculation

P-invariant of Petri net is an integer nonnegative solution x (vector-row) of the system

14



Xx-A=0. (5.1)

T-invariant of Petri net is an integer nonnegative solution y (vector-column) of the system
A-y=0.

Petri net is p- or t-invariant, if it has a corresponding invariant with all positive
components.

So, according to [Murata 89], each t-invariant of Petri net is p-invariant of dual net, we
shall consider further p-invariants only. Notice that dual net has transposed incidence matrix.
In other words places of dual net correspond to transitions of source net and vice versa.
Examples of Petri net and dual net are presented in Fig. 5.1, 5.2.

p6 p4

Fig. 5.1. Petri net N, Fig. 5.2. Dual Petri net N,

Let us consider the structure of the system of equations (5.1). Every equation L,:

x-A' =0, where A’ denotes i-th column of matrix A, corresponds to the transition t,. It

contains terms for all the incident places. Coefficients are the weights of arcs. The terms for
input places have the sign minus and the terms for output places have the sign plus. So, the
system (5.1) may be represented as

L=L AL, A..AL,. (5.2)

Theorem 5.1. An arbitrary invariant x'of Petri net N is the invariant of every functional
subnet Z', Z'>~ N.

Proof. So X' is the invariant of Petri net N, then X' is a nonnegative integer solution of
(5.2) and consequently X' is nonnegative integer solution of each L,. Therefore, X' is the
solution of an arbitrary subset of the set {L.}.

A functional subnet Z', Z'> N is generated by the set of its transition 7'. Thus the
equation corresponding to transition has the same form L, as for entire net since subnet
contains all incident places of source net. Therefore, the system for invariant of a functional
subnet Z', Z' > N is subset of the set {L,} and vector X' is its solution. Consequently, x' is
the invariant of functional subnet Z'. Arbitrary choice of Z'> N in the above reasoning

proves the theorem. [
Corollary. If a Petri net is invariant, then all its functional subnets are invariant too.

Theorem 5.2. Petri net N is invariant iff all its minimal functional subnets Z/,
Z’ = N are invariant and there is a common nonzero invariant of contact places.
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Proof- We shall use only equivalent transformations to not prove separately necessary and
sufficient conditions. According to Theorem 3.1, the set of minimal functional subnets

3I=1{Z’}, Z/ = N of an arbitrary Petri net N defines the partition of the set T into
nonintersecting subsets 7. Let us the number of minimal functional subnets is k. As it was

mentioned in the proof of Theorem 5.1, equations contain terms for all incident places. So we
have

L & LU'ALP A AL,
where L’ is the subsystem for minimal functional subnet Z’/, Z’/ = N . Notice that if L/ has
no solution, then L has no solution too (except trivial, of course).
Let us R’ is the matrix of basis solutions of subsystem L’. Then we write the general
solution of the subsystem L’ in the form

s=7 .G, (53)
where z’is an arbitrary nonnegative integer vector. Thus
L & x=z'-G'=2*-G*=..=z".G".
So the system
x=z'-G'=7*.G*=..=z" .G" (5.4)

is equivalent to the source system (5.1). Further we shall demonstrate, that solution of above
system (5.4) involves enough little number of equations. Let us consider a set of places of

Petri net N with the set of minimal functional subnets {Z’ | Z/ = N} :
rP=0'UQ’U..U0"UC,

where Q’is the set of internal places of subnet Z’/ and C is the set of contact places.

According to definition, any place p € Q’ is incident only to transitions from the set T . So,

x, corresponding to this place will appear only in the one subsystem L’. That is why we

have to solve only equations for contact places from the set C'.

e Now we shall construct equation for the contact place p € Cso it is incident more than
one subnet. According to Lemma 3.3, each contact place p € C is incident not more than
two functional subnets. So we have equations

zG=z-Gl, (5.5)
where i, j is a numbers of minimal functional subnets incident to contact place p € C, R; is

a column of matrix R’ corresponding to the place p . Equation (5.5) may be transformed to

the form
il 5. —
z'-G,-z'-G, =0.
So the system
— 5. J 5.6
{xp—z G,, peQ'vpeC (5.6)
Si.Gl 5. =
z2-G,-z/-G, =0, peC
is equivalent to the source system (5.1). This fact proves the theorem. [
Conclusion 1. To calculate Petri net invariants we may to calculate invariants of its
minimal functional subnets and then to find common invariants of contact places.
Notice that in both mentioned cases according to (5.6) we have to solve a linear
homogeneous system of equation in nonnegative integer numbers.

Conclusion 2. The above theorem 5.2 is valid for an arbitrary set of functional subnets that
defines a partition of the set of the transitions of source Petri net.

Therefore, a compositional method for Petri net invariants calculation may be presented as:
e Stage 1. Decompose Petri net into functional subnets.
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e Stage 2. Calculate invariants for each of functional subnets — find general solutions
(5.3).

e Stage 3. Compose subnets — find the common solution for the set of contact places
(5.5).

Note that stages 2, 3 consist in solution of systems of linear homogeneous Diophantine
equations in nonnegative integer numbers. It ought to find common solution of a system in the
form of linear combination of basis solutions. For these purposes may be applied methods
described in [Colom 90, Contejean 97, Toudic 82].

Let us extract out of system (5.6) equations for contact places

z/.G/-z"-G/ =0.
Or in the matrix form

‘ G/
S N
Let us enumerate all the variables Z’ in such a way to obtain united vector
=" . 7Y

and assemble matrices G/, —G! in united matrix K . Then we obtain system
z-K=0.
System obtained has the form (5.1), consequently, its general solution has the form (5.3):
z=V-R. (5.7)
Let us construct united matrix G of solutions (5.3) of systems L’ for all functional subnets
in such a manner that

x=z-G. (5.8)
We substitute (5.7) in (5.8):
x=v-R-G.
Thus
x=v-H, H=R-G. (5.9

Since only equivalent transformations were involved, the reasoning represented above
proves the following theorem.
Theorem 5.3. Expressions (5.9) represent the general solution for invariant (5.1).

Now we estimate the total speed-up of computations under obtaining of invariants with
decomposition. Let » be a maximal number either contact places or places of subnets

r= max(|C

,maXQP-/ ‘)) Note that »<n. Then complexity of invariants calculation with
J

decomposition may be estimated as ~ 2", so the complexity of decomposition according
theorem 4.6 is linear.
Thus, speed-up of computations is estimated as

2"/ _onr (5.10)
>
Therefore, obtained speed-up of computations is exponential with respect to dimension of net.

Now we apply introduced technique to the calculation of invariants of Petri net N, (Fig.
5.1). Notice that, this net is a weighted variant of the net N, (Fig. 2.1).

I. As it was represented in Fig. 2.2, Petri net N, is decomposed into three minimal
functional subnets Z',Z*,Z° completely defined by the sets of its transitions T' = {z,,¢,},
T? = {n}, T = {ty,15,15} .

II. Let us calculate invariants of the minimal functional subnets.
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Subnet Z'. The system of equations is
—-6-x,+x, =0,
{—2~x4 +x, =0.
The general solution is
X=z-(6 0 0 3 1)
Subnet Z*. The system of equations is
{—xl +3-x, +x; =0.

_ , ,. (3 1.0 0 0
x:(zlazz)'l 010 0/

The general solution is

Subnet 7* . The system of equations is
-3-x,—x;+6-x, =0,
-x;+x, =0,
- X, +x; =0.
The general solution is
x=z-0 13 3 1).
III. Let us write the system of equations for the contact places. Notice that in net N, all
places are contact ones
X, 23-212 +1-z§ :6-211,
X, :1-212 zl-zf,
X5 :1-222 :3-213,

_ 3 _ 1
x,=3-z, =3z,

_ 2 1
xg =1z =1-z,.

We may write this system in the form (5.1) and solve it with Toudic method [Toudic 82]

3.z +1-20-6-2 =0,
1.z} -1-z) =0,
1-22-3-2] =0,
3.2)=3.2] =0,
1-z) —1-z] =0.

The general solution with the respect to the vector z = (z{,z,,z5,z;) is
z=r-(1 1 3 1).
And the general solution of source system is
x=r-(6 1 3 3 1).
Notice that in this example we have not obtained any speed-up of computations, so Petri
net is tiny and all its places are contact ones. Real-life examples are considered in Section 7.

5.2 Fundamental Equation Solution

A fundamental equation of Petri net [Murata 89] may be represented as follows

X-A=An, (5.11)
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where Ap =pu—pu,, X is a firing count vector, A4 is a transposed incidence matrix or

incidence matrix of dual Petri net [Murata 89]. Notice that each equation of this system
corresponds to a transition of dual Petri net.

According to [Schrejver 91, Kryviy 99] we represent a general solution of homogeneous
system as the linear combination of basis solutions with nonnegative integer coefficients.
Notice that a basis consists of minimal in integer nonnegative lattice solutions of system. As
distinct from classic theory of linear systems for representation of general nonnegative integer
solution of nonhomogeneous system it is necessary to involve not one arbitrary but a set of
minimal particular solutions.

Let us consider the structure of system (5.11):

X-A=Au.
We apply the technique described in the previous subsection 5.1 to nonhomogeneous systems.
Each equation L,: X-A' = Ay, where A’ denotes i-th column of matrix A4, corresponds to
transition ¢, (of dual net). Equation contains the terms for all the incident places. At that the

coefficients are equals to weights of arcs and the terms for input places have sign minus and
for output places — plus.

Therefore the system (5.11) may be represented as

L=L AL,A...AL, (5.12)

Theorem 5.4. Solution X' of fundamental equation for Petri net N is the solution of
fundamental equation for each of its functional subnets.

Proof. As X' is the solution of fundamental equation for Petri net N, so x' is a
nonnegative integer solution of system (2) and consequently X' is a nonnegative integer
solution for each of equations Z,. Thus X' is a solution for an arbitrary subset {L,} .

According to Definition 4, a functional subnet Z', Z'> N is generated by the set of its
own transitions 7”. Thus, an equation corresponding to a transition of subnet has the same
form L, as for the entire net, so subnet contains all the incident places of source net.

Therefore the system representing the fundamental equation for functional subnet Z',
Z'> N is asubset of set {L,} and vector X' is its solution. Consequently X" is the solution of

fundamental equation for functional subnet Z'. Arbitrary choice of subnet Z’'> N in above
reasoning proves the theorem. [

Theorem 5.5. Fundamental equation of Petri net is solvable if and only if it is solvable for
each minimal functional subnet and a common solution for contact places exists.

Proof. We shall use equivalent transformations of systems of equations to not prove
separately necessary and sufficient conditions. According to Theorem 4.4, a set of minimal

functional subnets 3={Z’},Z’ = N of an arbitrary Petri net N defines a partition of set T

into nonintersecting subsets 7. Let number of minimal functional subnets equals k. As it
was mentioned in the proof of Theorem 5.3, equations contain the terms for all the incident
places. Therefore,

L & L'APA.AL, (5.13)
where L’ is a subsystem for a minimal functional subnet Z/,Z’ = N . Notice that if L’ has

not solutions, than L has not solutions also.
Let us a general solution for each functional subnet has the form

X' =x"+z-G’, (5.14)
where Z/ -G’ is the general solution of homogeneous system, X'/ e X'/, where X'/ is the
set of minimal particular solutions of nonhomogeneous system of equations. According to
(5.13):

L & x=x"+z2'-G'=x"+2".G*=..=x"+z".G".
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Therefore system

x=x"+z'"G'=x"+z*.G*=..=x"+z".G* (5.15)
is equivalent to source system of equations (5.11). We shall demonstrate further that the
solution of system (5.15) requires essentially smaller quantity of equations. Let us consider a
set of places of Petri net N with the set of minimal functional subnets {Z’ | Z/ = N} :

P=0'UQ*U..UQ"Uc,
where Q’ is a set of internal places of subnet Z’/ and C is a set of contact places. According

to definition each internal place p € Q’ is incident only to transitions from set 7. Thus X,

corresponding to this place is contained only in system L’. Consequently, we have to solve
only equations for contact places from set C.
Now we construct equations for contact places of net p € C, so only they are incident

more than one subnet. According to Lemma 3.3, each contact place p e C is incident not
more than two functional subnets. Therefore, we have equations
—1J =) i =l =l Al 5.16
x, +z/-G,=x,+z -G, ( )
where j,/ is the numbers of minimal functional subnets incident to contact place p € C and

G}, is a column of matrix G’ corresponding to place p . Equation (5.16) may be represented

in form
i) _ 5, l_—(l_—rj
z Gp z Gp—xp X, .
Thus, system

P

=i . _ .l ot
z'-G,-z -G,=x, -x,”, peC

{x :)?l’?‘/+z_j-G£, peQ/vpeC, (5.17)
is equivalent to source system (5.11). This fact completes the proof of theorem. [

Notice that in both cases described in proof according to (5.17), we have to solve a linear
homogeneous system of equations.

Corollary 1. To solve the fundamental equation of Petri net we may solve the fundamental
equations of its minimal functional subnets and then to find a common solutions for contact
places.

Corollary 2. Theorem 5.5 is valid also for an arbitrary set of functional subnets defining a

partition of the set of transition of Petri net.

Therefore, a compositional method for solution of fundamental equation of Petri net may
be presented as:
e Stage 0. Construct a dual Petri net.
e Stage 1. Decompose dual Petri net into functional subnets.
e Stage 2. Calculate solutions for each of functional subnets — find general solutions of
nonhomogeneous systems of equations (5.14).
e Stage 3. Compose subnets — find the common solution (5.16) for the set of contact
places.
Note that stages 2, 3 consist in solution of systems of linear nonhomogeneous Diophantine
equations in nonnegative integer numbers. For this purpose the methods described in [Colom
90, Contejean 97, Kryviy 99, Toudic 82] may be applied.

Let us extract out of system (5.17) equations for contact places
z/.G/-z' .G/ =x"-x".

Or in the matrix form
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Let us enumerate all the variables z’ in such a way to obtain a united vector
=g 7 . 2

and to assemble the matrices G/, —G! in a united matrix K . Then we obtain system

z-K=b'.
System obtained has the form (5.11), consequently, its general solution has the form (5.14):
z=Z'+V-R. (5.18)

Let us construct a united matrix G of solutions (5.14) of system (5.11) for all the functional
subnets in such a manner that
x=x'+z-G. (5.19)
We substitute (5.18) in (5.19):
Xx=x'+(Z'+v-R)-G=X'+Z-G+v-R-G.
Thus
x=x"+v-H,x"=x'+z'-G, H=R-G. (5.20)
Since only equivalent transformations were involved, the reasoning represented above
proves the following theorem.

Theorem 5.6. Expressions (5.20) represent a general solution of fundamental equation
(5.11).

Now we estimate the total speed-up of calculations under the obtaining of invariants via
decomposition. Let » be a maximal number either contact places or places of subnets

r= maXOC

,maxQPj ‘)j Notice that » <n. Then the complexity of fundamental equation
J

solution for subnet may be estimated as ~2", since the complexity of decomposition
according to Theorem 4.3 is polynomial.

Thus, the speed-up of computations is estimated as

"y ner 5.21
2 (=2 (5.21)

Therefore, speed-up of computations obtained is exponential.

Notice that the exponential speed-up of computations represented with expression (5.21) is
valid also in the case the general solutions for the functional subnets have more than one
minimal particular solution. Really, let each of minimal functional subnets has not more than
n minimal solutions. Then during calculation of common solutions for contact places we

ought to solve n”? systems and polynomial multiplier may be omitted in the comparison
estimations of exponential functions.

Let us check the reachability of marking z =(0,2,1,0,4) in Petri net N, (Fig. 5.1). Thus
A =(-1,2,1,-14).

Stages 0,1. Dual Petri net ]\N/2 (Fig. 5.2) is decomposed into four minimal functional
subnets Zl,Z 2 ,Z3,Z4 completely defined by the subsets of its transitions: T ! ={1},
T? ={t,13}, T° = ts}, T* = {ta}.

Stage 2.

1 _ L1 (100100
7l X x4 xg =1 Xx=(1 0 0 0 0 0)+(uf,up)

1 0000 1)
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ZZ . {3)61 —3X2 — X5 = 2,

B , L, (101030
x=1 0 0 0 1 0)+(uj,u>)- .
xl—xZ—X3:1;

110000

3. {6xy + x5 —6xg =4 —(000040)+(33)[000061J
YA Xy + X5 —0Xg = 4; X = Uup,uy): .
' 01 000°1
74 n-2x=-1 =0 0110 0+@hH(0 0 210 0)
Stage 3.

u11+u§—u12—u§:0,

2 3

uy, —uy =0, _

R =Gl W w )=

Lo 1120101
up —uy =1, =1 01 0 0 0 0)+(v,vp): 010101 of
3uf —6ui =3,

ué—uf—u%zo;

2 0 21 61

Notice that the general solution of homogeneous equation constitutes z-invariant of Petri
net. On the minimal solution x'=(2,0,1,1,4,0) we may construct the friable sequence

_ I 1.0 0 01
x:(2 011 4 O)+(V1,V2)'( J

O = ttstststst4tits . Therefore, marking 2 =(0,2,1,0,4) is reachable in net N .
In this tiny example all the places are contact, so we have not obtained any speed-up of

computations. For real-life examples the accelerations may become rather considerable
[Zaitsev 04c, 04f, 05].

5.3 Analysis of Petri Net Properties

We consider the role that linear invariants and fundamental equation solutions play for the
analysis of Petri net properties. Then we show that a lot of tasks for Petri net properties
analyses may be reduced to solution of linear Diophantine systems of equations and
inequalities and solvable in the same compositional way.

Invariants take a key part at investigation of such properties of nets as boundness,
conservativeness, liveness [Diaz 01, Girault 03, Murata 89]. Net is invariant if it possesses an
invariant with all the natural components. It is known that p-invariant net is conservative and
bounded and these properties are structural i.e. they hold true at any initial marking. T-
invariant represents persistent sequences of transitions firing. Existence of such sequences is a
necessary condition for liveness of bounded net. As according to [Murata 89] each t-invariant
of Petri net is p-invariant of dual net, so further without loss of generality we shall consider
only p-invariants.

It is known [Diaz 01, Girault 03, Murata 89, Sleptsov 86] that the solvability of
fundamental equation in nonnegative integer numbers is a necessary condition of the
reachability of a given marking. Solutions of system (5.11) are used for the construction of
the required firing sequences.

Notice that a majority of known tasks of Petri nets analysis is reduced to solving a linear
system of equations and inequalities [Murata 89, Sleptsov 86]. Necessary and sufficient
conditions for basic structural properties of Petri nets are represented in Table 5.1.

Table 5.1. Necessary and sufficient conditions for structural properties of Petri nets
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Structural property Necessary and sufficient conditions
Boundness x>0, x-A<0
Conservativeness x>0, x-A=0
Repetitiveness F>0, 4-y>0
Persistance F>0, A4-y=0

During the investigation of free choice Petri nets properties [Desel 1995, Murata 89] such
structural elements as siphons and traps are applied widely. Nonempty subset of places S of

net N is named a siphon if °S < S°. Nonempty subset of places O of net N is named a trap

if $°c'S. A free choice net is live if and only if each its siphon contains a marked trap.
Characteristic vectors of siphons and traps may be obtained as {0,1} solutions of the

following systems of inequalities
s-D<0and g-D' <0,
where D and D’ are modified incidence matrices [Murata 89].

As shown in [Kryviy 99] a linear system of equations and inequalities may be reduced to
equivalent system of equations. Note that transformations mentioned correspond to
modification of source net in such a manner that the task of any property determination may
be considered as calculation of p-invariant for modified net. Therefore, without loss of
generality we solve homogeneous equation of the form (5.1) for determination of structural
properties and nonhomogeneous equation of the form (5.11) for determination of behavioural
properties of Petri nets.

Notice that, for a given matrix C of a linear system we may construct a matrix of
directions D = sign(C) and consider it as the incidence matrix of a Petri net. This allows the

solution of an arbitrary linear systems using described decomposition [Zaitsev 04h].

6 Sequential Compositions of Functional Subnets

6.1 Collapse of Weighted Graph

Sequential composition of Petri net out of its minimal functional subnets is aimed to
provide an additional speed-up for calculation of invariants and solution of the fundamental
equation. The main idea is concerned with the system of equations for contact places. If this
system has dimension exceeding the maximal dimension of functional subnet then we propose
to execute sequential composition of subnets solving a sequence of systems with lesser
dimension. Since the complexity of system solution is exponential, we obtain an essential
speed-up in that way.

We consider the presentation of decomposition with undirected graph G = (V,E, W) as it
was described in Section 3 (Fig. 3.2 b). Let us consider the basic ways of composition of
functional subnets:

I. Simultaneous composition.

II. Sequential composition:
1) Pairwise (edge);
2) Subgraphs.
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Simultaneous composition assumes instant resolution of system for all contact places. It
was considered in previous Section 5; speed-up of computations is estimated by (5.10). In
general case the sequential composition requires the solution of system for a few neighbor
functional subnets represented by connected subgraph of G, which is replaced then by a
single vertex (Fig. 6.1). Continuing in such a way we transform the source graph into a single
vertex. This process was called a collapse of graph.

71,2,3,45,6,7,8
[ ]

Fig. 6.1. Collapse of Subgraphs

The simplest kind of sequential composition is a pairwise composition at which a pair of
adjacent vertices is replaced by one new vertex as the result of the solution of system
constructed for contact places used for connection of corresponding subnets (Fig. 6.2). The
number of contact places is equal to multiplicity of corresponding edge. In essence this
operation may be represented as a fusion of adjacent vertices of a graph. Pairwise
composition (contracting) provides the smallest dimension of solving systems. Process of p-
invariants calculation via edge composition is described in the next subsection 6.2.

A linear system containing »n equations and m unknown variables is named by (n,m)-

system. We assume that linear homogeneous system of form (5.1) is solving. In framework of
Petri net place invariants, equations of system (5.1) correspond to transitions and unknowns —
to places of Petri net. Such an assumption does not restrict the generality as it was shown
[Zaitsev 04d] in the same way the decomposition might be applied for nonhomogeneous
systems at state equation solution. As a general estimation of complexity one parameter
equaling to the maximum among a number of equations and a number of unknowns is
considered usually: / = max(m,n). Note that known methods of linear diophantine systems’

solution in nonnegative integer numbers [Colom 90, Contejean 97, Kryviy 99, Martinez 82,
Schrejver 91, Toudic 82] are exponential in time and in space. Thus, time complexity of
system solution is about 2.

Let us consider the decomposition of Petri net into £ minimal functional subnets. We
consider the dimensions of systems used at compositional solution of source system. It is
required to solve ksystems of dimensions (n,,m,),(n,,m,),...,(n,,m,) for minimal

functional subnets. Let us for each subnet Z' it have been obtained a matrix of basis solutions
G' containing b, solutions. Then we have to solve one extra system for contact places at

simultaneous composition. Estimation of dimension of this system is (C,Zbi), as equations

1

of system corresponds to contact places and free variables of basis solutions for subnets are
unknowns. Notice that Zni =n, Zmi =m+c, where c is the number of contact places in

1 l

the obtained decomposition: ¢ = |C| .
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Let we execute the fusion of two adjacent vertices with numbers i and j representing the
systems of equations with complexities (n,,m;) and (n,,m;) correspondingly. Then the

complexity of the system solving at pairwise composition equals to (c; ;,b, +b;), where ¢, ;

ij2
is the number of contact places in composition of subnets Z' u Z’.
Further it is convenient to consider one of the parameters describing the dimension of a
system, for instance, the number of equations. Let us assume that the number of unknowns
differs slightly. Moreover, the number of basis nonnegative solutions is unknown beforehand
that makes a priory estimation difficult. It is known that basis of solutions under set of vectors
with natural components and natural generators, as a rule is characteristic by a large scale.
Whereas basis constructed for rational generators has essentially low dimension [Colom 90].
It is convenient to choose as a characteristic of system’s dimension a number of places. So
we consider as a characteristic of dimension for a system of equations for a functional subnet
the number of its places and as a characteristic of composition’s dimension — the number of
contact places used in composition. Contact places in such a calculation are accounted twice

for each of adjacent subnets m,; = |Qi| +|Cl. , where Q. is a set of internal places and C, is a

set of contact places of subnet Z'. From practical experiences we have observed that
generally n, < m,. Thus, we assume in the sequel that this inequality holds.

We consider diophantine linear systems of equations solving in the set of nonnegative
integer numbers. As it was early mentioned, the complexity of such systems’ solution is
exponential. In comparison estimations of exponential functions the polynomial multiplier
may be omitted. Thus, the complexity of system solution by usual methods we shall consider
equals to 2™, and complexity of solution via simultaneous composition — equals to 2", where
r =max(m,,c). In other words, dimension of system is defined by maximal dimension

among subsystems constructed for functional subnets and system constructed for contact
places. Really, we have k-2"+2" =0(2"). Thus, speed-up of calculations at simultaneous

composition equals to 2™". At the condition k>1 we have r<m and, consequently
2" >1. Simultaneous composition advisable to apply in the cases the total number of
contact places does not exceed the number of places of maximal subnet max(m,) = ¢ or in the

cases of minor exceeding.

As the solution of system for each subnet is the necessary stage of compositional
technique, so further constructions are aimed to decrease the complexity of solution of system
for contact places. We consider sequential collapse of graph by the way of fusion (collapse) of
subgraphs generated by a given subset of vertices. Not limiting the generality we consider
connected subgraphs. As the width of collapse we consider the sum of weights of edges of
subgraph at a step. For sequential collapse the width is equal to maximal width of all the
steps. The task consists in construction such a sequence of fusions, which provides the
minimal width of collapse. The width of collapse corresponds to the dimension of system and
the complexity of the system solution via sequential composition is about 2, where d is the
width of collapse. Since d is essentially lesser than 7, we obtain an additional speed-up.

Further we shall consider an edge collapse as more effective way of composition under
exponential complexity of systems’ solution. Note that, estimations obtained are asymptotic.
In particular case at not great dimension of subnets when the concrete values of estimations of
exponential complexity are comparable to polynomial multipliers the collapse of subgraphs
often presents a lesser calculation complexity.
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6.2 Case Study of Edge Collapse

Let’s consider Petri net model of modified protocol ECMA presented in Fig. 6.1.

Fig. 6.3. Petri Net N; — Model of Telecommunication Protocol

Net N, (Fig. 6.3) is decomposed into four minimal functional subnets presented in Fig. 6.4.
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Fig. 6.4. Minimal Functional Subnets of Petri Net N,

Obtained decomposition is presented in Fig. 6.5.
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Fig. 6.5. Presentation of Decomposition for Petri Net N,

A) Simultaneous composition

1. Base solutions for minimal functional subnets:

Py P» P3 Py Pio Pu Pi2
G - zy 0 0 1 0 1 1 0
"z, 11 1 0 0 0 0
z; 10 0 1 0 0 1
Ps P7 Ps P13z Pua Pis Pie
G - zzp 10 0 0 1 0 1
Tz, 1110 0 0 0
z; 0 1 0 1 0 1 0

II. Common solution for contact places
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Ps P71 Py Pio Pu Pi2
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1 0 0 o0 o0}

0 0 0 1 1 0

P3 Py P13 P Pis Pis

0 1 0 1 0
0 0 1 0 1
1 0 0 0 0
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B) Sequential edge composition (Fig. 6.6)
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6.3 Properties of Edge Collapse

We consider the graph of decomposition of a given Petri net into minimal functional
subnets. Weight of an edge equals to the number of contact places connecting correspond pair
of subnets. Let G=(V,E, W) is a given weighted graph. Without loss of generality, we

consider G as a connected graph, otherwise we may provide a collapse separately on the
components.

Definition 10. Operation of edge collapse

We define the operation of edge collapse G\ e for an edge e € E in such a way. Let e=v,v,.
Then G\e=G'=(",E""W'), where V' =¥ \{v,,v,})Uv, where v is a new vertex
representing the fusion (collapse) of vertices v,,v, :
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E'=(E\(vyv, U {v1u|u eV,vuekE}U {v2u|u eV,vyueE}))U

{vu|u eV',vue EvvyueE},

Wu)+Ww,u), vue EAvyuekE,
W'(vu)=<Wu), vue EAnvugE,
W(v,u), viue EAnviug¢E.

Thus, at the fusion of vertices of an edge the edges incident with both vertices are fused.
Proposition 6.1. Edge collapse preserves the connectivity of graph.

Proposition 6.2. The following expression for the sum of edges’ weights is valid
S(G)=S(G")+w(e).

According to terminology [Berge 01, Harary 71], graph with |V| =k and |E| =/ we call
(k,l)-graph or k-graph. Since at execution of edge collapse operation a pair of adjacent
vertices is fused, the edge collapse of entire graph consists in sequential execution of (k —1)
operations of edge collapse.

Definition 11. Process of sequential edge collapse

Process of sequential edge collapse of k-graph (or briefly edge collapse) is a sequence of
(k —1) operations of edge collapse:

G'=G—>G' =G"\e, 5>G =G \e, > > G =G \eg,.

Note that, obtained as the result graph G*™' consists of a single vertex. This perfectly
corresponds to the name of process, which compress the source graph into a single vertex.
The process of collapse may be represented by the sequence of fusing edges o =epe,...e, ;.

As the major parameter of collapse we consider its width equalling to maximal weight of
fusing edge.

Definition 12. Width of edge collapse
Width of edge collapse is the maximal weight of edge in the process of collapse:

d(o) =maxw(e).

As will readily be observed the choice of different sequences of edges ee,...e, in general

case leads to various values of collapse width. We are interested in the sequences possessing
the minimal width.

Definition 13. Optimal collapse

An optimal process of collapse (or briefly optimal collapse) denotes the sequence of edges,
which provide the minimal width of collapse. The corresponding width of collapse is
accordingly denoted by optimal width.
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Optimal width of collapse is the property of a given graph. We introduce the recurrent
definition for optimal width of collapse. Let us denote the optimal width of edge collapse of
graph G as d(G). Then

d(G) = mein d(G,e),
d(G,e) = max(w(e),d (G \ e)),

where the function of two arguments d(G,e) defines the optimal width of edge collapse of
graph G under the condition the collapse of edge e will be executed firstly.

Edge collapse constitutes the combinatory task for solution of which we may apply the
universal method of complete choice of all the possible sequences of edges. The exact number
of different sequences equals to K(G) = H‘E ! ‘ . As at each step a pair of adjacent vertices is

i=0,k-2
fused, the maximal number of adjacent vertices occurs for a complete graph. The number of

k-(k—1)

edges of the complete k -graph equals to Then

5 i-(i-1) _ kHk-D! _ (k)’ 5
K(G):E[k (2 ) _ (zk_l )" _ k(-2)k‘1' For  example  K(10)=2,6-10°  and

K(20)=5,7-10%, K(100) =1,4-10%**. Thus, a search of effective methods of the solution of

the task of edge collapse is required.
The choice tree of the collapse for net N, (Fig. 6.3) is represented in Fig. 6.7. We conclude

that even for such a simple graph of decomposition we obtain widths of collapse, which
distinguish in twice (8 and 4) for various sequences of collapse.

Theorem 6.1. Width of collapse for acyclic graph equals to maximal weight of edge.

Proof. Operation of edge collapse of acyclic graph leads to obtaining of new acyclic graph,
witch contains the number of edges lesser by unit. Moreover, this operation does not change
the weights of remained edges. Thus, width of collapse does not depend on the order of edges
choice and equals to maximal weight of edge. ['|

Any simple chain may be replaced by edge with minimal weight under the width of
collapse equals to the maximal weight of edge. This corresponds to the choice of the edge of
maximal weight on a step. Not limiting generality we may consider compact graphs does not
containing simple chains and pendent vertices.

Proposition 1. If graph has cutvertices the width of collapse is equal to the maximum
width of its 2-connected components (blocks).

Theorem 6.2. Width of collapse for simple circle equals to max(w(e), min(w(e,) + w(e,)).

Proof. Simple circle is transformed to the circle of lesser dimension until a triangle will be
obtained. At the collapse of triangle a graph consisting of single edge with a weight equaling
to the sum of edges’ weights different from the fusing will be obtained. Thus, a width of
collapse is defined on the one hand by maximal edge before fusion of triangle and on the
other hand by the weight of the last edge. Consequently, the lower bound of width is the
weight of maximal edge as well as summary weight of a pair of edges. [
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Theorem 6.3. Optimal collapse of simple circle corresponds to the choice of the edge with
maximal weight at a step.
Proof. Collapse of a simple circle is executed without the change of weights of edges until a
triangle will be obtained. The choice of a maximal edge guarantees that at the obtaining of
triangle three edges of minimal weights remain. Moreover, at collapse of triangle the choice
of maximal edge provides the choice of a pair of vertices with a minimal summary weight.
Really, the following expression is valid: min(w(e,) + w(e,)) = min(e, ) + min(e, ) . [

e,e, e e, #e|
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z4 4 z3
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Fig. 6.7. Choice Tree for Edge Collapse of Weighted Graph

Definition 14. Partial lattice of collapse
Lattice consists of (k—1) levels. At level i, points represent the edges of the current graph

G'. Lines define the partial order relation << of edges for current and previous levels in such
a way that:

. » . _ . S
e <<u out = vu't =e +v'.

Partial lattice of collapse is the vivid representation of the process of edge collapse.
According to the definition of collapse operation, at each step one of edges is canceled. If the
end vertices of this edge do not have common adjacent vertices (do not form triangles
together with other edges), then at the next level all the edges are contained with the except of
the canceling. If the edge forms one or a few triangles, then each pair of edges of triangle is
replaced by a single edge. The recurrent expression for the number of edgesis /, =/, —-1-r,

where r is the number of triangles constituting by the canceling edge. The lattice illustrates
the relations of edges. Thus, each edge at a step of collapse constitutes either the edge of the
source graph or the sum of some edges.
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The lattices for two different sequences of collapse shown in Fig. 6.7 are represented in Fig.
6.8. The canceling edges are marked by cross.

Proposition 6.3. Each edge at a step of collapse is a sum of some edges of the source
graph.

Thus, width of collapse equals to the weight of an edge obtained at some step. Such an edge
will be named a critical edge of collapse. Critical edge either is cancelled in the process of
collapse or is remained by its last edge.

Since combinatorial way of solution of the optimal collapse task requires an exponential
time, we have to apply more effective methods. For the application of method of branches and
bounds [Jay 98, Schrejver 91] we have to construct estimations of upper and lower bounds of
collapse width.

2172 2273 73724 7421 21722 2273 Z374 Z4Z1

e e5 e2 e3 e4 e
. B e . B Rt 1/Es @ e @ oo
4 % 2 4 x2 v/ 4

b) 2172, 7374, 7173

a) Z4Z1,7273,7172

Fig. 6.3. Partial Lattice of Collapse

According to definition of width of edge collapse:

max w(e) < d(G) < > w(e).
We may improve the upper bound as

d(G) < max(w(e), > w(e)] .

ezxe'

Really, at least one edge will be cancelled and the collapse width for the remained graph will
not exceed the sum of its edges. Continuing the process described not more than (k —1) times

ax

we come to the following estimation. Let e™ is the maximal weight of graph’s edge and
e™ is the minimal one. Then on the second step of collapse the edge with the weight not
exceeding 2-e™ will be chosen and the collapse of remained part of the graph will not

exceed Z w(e)—2-e™ . Continuing the estimations till the finish of collapse we obtain:
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d(G) < max((k-2)-e™, > w(e)— (k-2)-¢™).

ax

On the other hand at the first step the edge with the weight greater than 2-e™
appear, at the second step 2-e™ +2-¢™ =4.¢™

may not
and so on. We have recurrent expression:

max max
e, =e,
e =2-e", i=Lk-1.

i i-1 2

Then
d(G)<e = 2K gmax

Since these estimations are rough enough, we consider the process of addition of the edges
connecting a pair of non-adjacent vertices. Let us study the influence of this operation on the
width of collapse.

Theorem 6.5. The addition of edge connecting non-adjacent vertices increases the width of
collapse not more than by the weight of edge added.
Proof. Let the width of collapse of graph G equals to d(G) and is reached by the

sequence o . Let us consider graph G +e and execute its collapse with the help of the same
sequence o . Let e=vv,.

Under the execution of collapse operation we shall mark by symbol v, all the vertices
fusing with the vertex v, and by symbol v, all the vertices fusing with the vertex v, . Firstly,
vertices v,,v, are non-adjacent in the source graph. Secondly, graph is connected. Therefore,
at any step of collapse we obtain a vertex u, which is adjacent with v, as well as with v, .
Fusion of this vertex in graph G together with one of vertices v,,v, leads to creation of edge
e’ =v,v,. Further this edge may participate in the constituting of critical edge or will be
simply cancelled.

Let us consider the execution of operations mentioned in graph G + e . Before the obtaining of
triangle composed of the edge e and a vertex u the process does not differ from early
described. At fusion of vertex u together with one of vertices v,,v, we obtain instead of edge
with weight w(e’) an edge with weight w(e’) + w(e) . Further this edge either will be included
in the critical edge of collapse or will be simply cancelled. In the first case the width of
collapse is increased by value w(e), in the second case — is not changed. []
Corollary.

d(G+e)<d(G)+w(e).

d(G +e) < max(d(G),w(e)) for pending edge (i.e. its degree is unit).

d(G +e) < max(d(G), max w(e") + w(e)) for non pending edge.

In order to obtain more precise upper bounds we consider the process of adding of missing
edges to any spanning tree of graph G . Since the width of edged collapse of acyclic graph
according to theorem 6.1 equals to maximal weight of edge, we may propose the following
estimation of collapse width.

Theorem 6.5. Width of a collapse does not exceed the sum of weight of maximal edge of
spanning tree and weights of remained edges:
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d(G) < max w(e) + Z w(e) , where R is a spanning tree of graph G .

e¢R

To improve the estimations we may choose a spanning tree of maximal weight for
minimization of sum. As a good enough approximation we may consider the standard task of
a maximal weight spanning tree choice [Berge 01, Harary 71]. Note that the number of
remained edges equals to cyclomatic number of graph v(G)=/—-k+1. Then we may

represent the estimation as:
dG)<W(G)+1)-e™ =(-k)-e™.

Estimations of lower and upper bounds may be applied at the solution of optimal collapse
task via classic method of branches and bounds [Jay 98, Schrejver 91]. In the next section we
propose simple and effective heuristic technique of solution.

7.4 Heuristic Technique of Collapse

Since the complexity of combinatorial solution via complete choice is exponential and
obtained estimations of upper and lower bounds for organization of solution via method of
branches and bounds are rough enough, we should to find a simple and effective technique of
edge collapse.

Our interest in the precise methods is limited also by the fact we have not precise enough
estimation of systems’ complexity at the step of collapse because the estimation of number of
basis nonnegative solutions of linear diophantine system is a difficult task. So, we use the
number of places as the parameter of complexity.

According to results obtained for a simple chain and a simple circle we may suggest to
choose the edge with a maximal weight at a step of collapse. We may choose the first or the
random edge with the maximal weight in the case there are a few edges of maximal weight.
Algorithm consists in pure implementation of collapse operation according to definition
supplied with the rule for choice of edge with maximal weight. The complexity of such
technique is about & -/*. Really, we have to execute k —1 steps and at each step we process
not more than / edges, for which at collapse of triangles we process not more than / incident
edges.

For comparison of various rules of edge choice at a step of collapse we generated a random
graphs and executed edge collapse of them. We compared the choice of maximal, minimal
and random edge at a step. Results obtained are represented in Table 6.1.
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Table 6.1. Comparison of Collapses for Random Graphs

Number Density Simultaneous Sequential Collapse
of (%) Collapse, Maximal Edge Random Edge Minimal Edge
Vertices Width Width Percent Width Percent Width Percent
20 442 35 7.9 191 44.6 231 52.3
20 40 869 66 7.6 367 422 533 61.3
60 1372 102 7.4 651 474 829 60.4
80 1825 160 8.8 876 48.0 990 54.2
20 1836 73 4.0 632 34.4 1002 54.6
40 40 3699 139 3.8 1664 45.0 2133 57.7
60 5539 214 3.9 2665 48.1 2948 53.2
80 7354 314 4.3 3608 49.0 3908 53.1
20 11602 160 1.4 4827 41.6 5829 50.2
100 40 22973 316 1.4 7617 33.2 12341 53.7
60 34334 501 1.5 13282 38.7 17559 51.1
80 45582 754 1.7 17144 37.6 23008 50.5
20 46073 288 0.63 19673 42.7 23781 51.6
200 40 91715 612 0.67 42260 46.0 91715 50.5
60 137684 997 0.72 67609 49.1 68957 50.0
80 183652 1486 0.81 91015 49.6 91669 49.9

For construction of Table 6.1 we used random uniformly distributed weights of edges with
range from 4 to 20. Usage of different else ranges leads to another absolute values but
preserves the percentage. We conclude that the worst choice is the choice of minimal edge. It
becomes close to random choice of edge under the growth of number of vertices. The best
choice is the choice of maximal edge, which provides the essentially lesser width of collapse.
Notice that, the greedy strategy does not always lead to the optimal result; Fig. 6.9 illustrates

this fact.
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a) Maximal Edge b) Random Edge

Fig. 6.9. An Example of Collapse
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Example of collapse for the sample graph with 8 vertices using maximal, random and
minimal edge is represented in Fig. 6.2. Partial lattice of collapse under random edge choice is
shown in Fig. 6.10.

z3z27
Z122
2275
7576
Z1Z4
Z475

Fig. 6.10. Partial Lattice of Collapse (Fig. 6.2)

More precise (and more expensive) techniques involve several steps estimation
implementing mini-max procedures [Levin 70, Jay 98]. For instance, in two-step algorithm
we choose maximal edge, which provides minimum of the maximal weights of vertices at the
next step.

7 Telecommunication Protocols Verification Using
Composition of Functional Subnets

7.1 Protocol BGP Verification

Communication protocol BGP. The Border Gateway Protocol (BGP) [Loogheed 89] is
an inter-autonomous system routing protocol. It is the very significant for the whole Internet
operability, so the autonomous systems constitute a backbone of the global data exchange.
More than thirty RFC (Requests For Comments) are devoted to BGP protocol specification
and refinement. Recently the most widespread is BGP-4 [Rekhter 95], but the distinctions in
comparison with the first standard specification [Loogheed 89] are the very specific and
inessential for a draft model construction.

The primary function of a BGP speaking system is to exchange network reachability
information with other BGP systems. This network reachability information includes
information on the autonomous systems (AS's) that traffic must transit to reach these
networks. This information is sufficient to construct a graph of AS connectivity from which
routing loops may be pruned and policy decisions at an AS level may be enforced.

There are five types of standard BGP messages:
1 — OPEN,
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2 — UPDATE,

3 — NOTIFICATION,
4 — KEEPALIVE,

5 — OPEN CONFIRM.

After a transport protocol connection is established, the first message sent by either side is
an OPEN message. If the OPEN message is acceptable, an OPEN CONFIRM message
confirming the OPEN is sent back. Once the OPEN is confirmed, UPDATE, KEEPALIVE,
and NOTIFICATION messages may be exchanged.

UPDATE messages are used to transfer routing information between BGP peers. The
information in the UPDATE packet can be used to construct a graph describing the
relationships of the various autonomous systems. By applying rules to be discussed, routing
information loops and some other anomalies may be detected and removed from the inter-AS
routing.

BGP does not use any transport protocol based keepalive mechanism to determine if peers
are reachable. Instead KEEPALIVE messages are exchanged between peers often enough as
not to cause the hold time (as advertised in the BGP header) to expire. The KEEPALIVE
message is a BGP header without any data.

NOTIFICATION messages are sent when an error condition is detected.

Model of protocol BGP. Petri net model of protocol BGP is represented in Fig. 7.1. The
model describes asymmetric interaction of two systems. First system is represented with
places p, — ps and transitions ¢, —f,, second system — with places p,— p,, and transitions

t; —t,. Places p,,—p,, correspond to communication subsystem and model standard

messages: OPEN, OPENCONFIRM, and KEEPALIVE. Notice that the model represents only
procedures of connection establishment and maintenance, abstracting of data transfer for
adjustment of routing tables. Date interchange is implemented in state ESTABLISHED with
the aid of standard messages UPDATE. This process is not displayed in model constructed.
Semantic description of elements of the model is represented in Table 7.1.
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IDLET, p1

KEEPALIVERECENKD1, p5

IDLE2, p6

Fig. 7.1. Petri net model of protocol BGP

Decomposition of BGP protocol model. The decomposition of model into functional
subnets is represented in Fig. 7.2.

Table 7.1 Description of model’s elements
Place Description Transition Description

D1» Ps Initial state of systems 4 Send OPEN message

D> Open request sent ts Receive OPEN message

D7 Open request received tg Send OPENCONFIRM message
D3, D3 Connection established ty Receive OPENCONFIRM message
D4 KEEPALIVE message sent 13,1 Send KEEPALIVE message

Do KEEPALIVE message received | 4,19 Receive KEEPALIVE message
Ds KEEPALIVE message received | fs,7; Connection keep alive loop

Do KEEPALIVE message received | #,1, Disconnection

D11 OPEN message

P12 OPENCONFIRM message

P13-P1a | KEEPALIVE message

Notice that four drawn functional subnets Z', Z*, Z*, Z*, defining a partition of source

model, are not minimal.

As the result of Algorithm 4.4 application we obtain the
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decomposition into minimal subnets induced by the subsets
{tl } , {tz , ZS , 16}, {t3 } , {14}, {t7 } . {tg , tl 1> t12 } . {tg}, {110} . SO, for instance, subnet 22 constitutes a

sum of two minimal subnets induced by transitions #; and ¢, correspondingly. Problems of

the functional subnets composition out of the minimal functional subnets were studied in
[Zaitsev 04b, O4e].

Fig. 7.2. Decomposition of BGP protocol model

Invariants of places. With the help of tool Tina [Berthomieu 04] we obtain the following
basis invariants of the subnets enumerated in Fig. 7.2:

111100
1. 1 1 1
Z' 0 (X, %, X3, X5, X1, X5) =(21,2,)- G, G _(1 0111 J,
11100
2, 2 2 _2 2 2
Z . (x3,x4,x5,x13,xl4)=(21 ,22,23)'(; s G =100101 Py

10010

Z3 ( ) (3 3)G3 G3 111100
(X X7, X, X0, X1, X =(zZ;,25)" =
6>V 5V M0V 127412 1242 ’ 010011 ’

11100
11001
n 4 4 4 4 4 4

27 (xg,X9,X10,X13,%14) = (21 ,25,23,24)- G, G = 01110/

01011

The composition of the model is defined by fusion of eight contact places indicated in
Fig. 7.2. Let us construct the system of equations for contact places:

43



p3: Zl+ZZ_Zl —Z
pS: ZI+ZZ_ZI —Z
Ps: Zy =2y —Z2p =
Pio - 213_214_ §:0>
P 2=

. 3 _
P z—2z, =0,

. 4 _
D3 23 =23 =24 =0,
.2 4 4
Pyt 23 =23 —24 =0.

. : . L1 2 2 .2 3 3 4 4 4 4
The basis solutions of the system with respect to vector (z,,2,,2;,25,25,2] ,2552] 12323 +24)

have the form

10100000000
00000101000
01100010000

R=|{10011000001
01011010001
10011100110
01011110110

Let us assemble the joined matrix G of matrices G', G*, G°, G". Notice that matrix
G may be constructed in different ways depending on the order of calculation of invariants
for contact places. As each contact place is incident to two subnets, so its invariant may be
calculated by two different ways.

PR R P OO0OOOOOoOOo
O O O OO pPr OO o oo
O O O OO oo okr o
O O O OO OO ook o

Q

Il
[cNeoNoNoNoNolNolNoRoll il
[eNeoNoNoNoNoNoNoNoNoN S
[ecNeoNoNoNoNoNoNoNeoN S =
O O O OO OO okr oo
[eNeoNoNoNoNoNoNoNoN T =
O O O OO KFr OO o oo
O O OO Rr P OoOoOoOo oo
O O O OO Pr oo ooo
O O O OO ok o ooo
OO O OO ook oOooo

After multiplication of matrices we obtain:
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11111000000000
00000111110000
10111010001100

H=R-G=(11101000100011
10101010101111
11101111210011
10101121211111

Notice that the source system has five basis solutions so sixth solution is the sum of second
and fourth, and seventh — the sum of second and fifth.

Therefore, the model of BGP protocol is p-invariant so, for instance, invariant,
x=2121212121111 1),
which is the sum of second, third and fourth basis invariants, contains all the natural
components. Consequently, the model of protocol is safe and bounded. For any reachable

marking it holds that X -z = 3.

pT’

;—D

p2[ ]

p12
2 []
p3’

3 []

t5’

t6’

|:| p4’ po’ |:|

p5’ p10

Fig. 7.3. Dual Petri net of BGP protocol model

Invariants of transitions. To calculate invariants of transitions we construct the dual Petri
net (Fig. 7.3), decompose it (Fig. 7.4) and implement the technique described for place
invariants. The decomposition contains six minimal functional subnets. For calculation of
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invariants, it is convenient to consider the decomposition into two functional subnets. Since

subnet Z'' consists of 9 transitions, we may compose remained minimal subnets into one
subnet with 5 transitions.
The following matrix represents the basis invariants of transitions:

1 111011111201
0 01110O0O0T1T1T102O0

As, for instance, the sum of two basis invariants
y=012211112211

contains all the natural components, so the model of protocol BGP is t-invariant. Therefore,
the model is consistent. Sequence & =1,t5tet,tstot 0t 1tal ststot ol 1ntals, COTTEsponding to

invariant 3", provides 7, i)ﬁo.

Notice that, though the model of protocol BGP is invariant, it contains deadlocks
(pz, Ds> p“) and (p4, Pe> p13), reached via sequences f )ttt tstot otst) tst;  and
Littgt tatot ot 4t ot sty correspondingly. It may be easily explained by the model does not
represent timeouts provided by the source specifications. With additional transitions returning
each system from the ESTABLISHED to the IDLE state the model becomes live.

Fig. 7.4. Decomposition of dual Petri net into functional subnets
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Speed-up of computations. Let us estimate the speed-up of computations obtained in the
assumption of the exponential complexity of the algorithms [Kryviy 99] for the solving of

linear Diophantine systems in nonnegative integer numbers. Let the complexity is about 27,
where ¢ is the number of nodes of net.

Notice that even such rather tiny model allows the speed-up of computations. At
calculation of place invariants, instead to solve the system of dimension 12, we solved five
systems with the dimension not exceeding 8. If we not take into accounting polynomial

multipliers, then we obtain sixteen fold (2 / 2% =16) speed-up of computations.

Notice that, speed-up have been obtained for the net numbering about dozen of nodes. At
investigation of large-scale nets, the speed-up may be rather huge [Zaitsev 04f, 05], so it is

estimated (5.10) as exponential function 2", where » = max(m;,c) and m; is the number of
1

places of subnet Z’, ¢ is the number of contact places.

7.2 Protocol ECMA Verification

Model of communication protocol ECMA. Protocol ECMA (European Computer
Manufacturer Association) is transport protocol situated between network and session levels
of ISO model. Further, the model of protocol represented in [Berthelot 82] will be used. On
the one hand, the model is simplified enough to be studied in article, on another hand, it allow
the implementation of decomposition technique. Further studying model represents only
connection-disconnection processes and abstracts of the concrete way of data transmission.

Petri net model of protocol ECMA is represented in Fig. 7.5. Three basic parts of model is
considered: left interacting system — places p, — p,, transitions ¢ —t; ; right interacting system
— places ps-— pg, transitions #—#,; communication subsystem — places py—p;s. Semantic

description of elements of the model is represented at Table 7.2.
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Fig. 7.5. Model of protocol ECMA

Table 7.2 Description of model’s elements
Place Description Transitio | Description
n

D1, D5 Initial state of systems 1,13 Send connection request
P25 D6 Waiting of connection 12,19 Receive connection request
P3>P1 Transmission of data 13,40 Receive connection acknowledgement
P4>D8 Waiting of disconnection 14,41 Send disconnection request
P9 P11 Request of connection t5,t2 Receive disconnection request
D10> P12 Acknowledgement of connection | .3 Receive disconnection acknowledgement
P13: P14 Request of disconnection 17,414 Receive counter disconnection request
Pis>Ple Acknowledgement of

disconnection

Decomposition of protocol ECMA. We decompose the source model of ECMA protocol
represented at Fig. 7.5 in minimal functional subnets. Application of decomposition algorithm

to model of ECMA protocol (Fig. 7.5) results in obtaining of set {z"!,z"?,z%! 722} consisting

of four minimal functional subnets represented in Fig. 7.6.
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Fig. 7.6. Decomposition of protocol ECMA

Note that, as processes of system interaction are symmetrical, so pairs of subnets z! and
7>, and also z>! and z*? are isomorphic. Thus, it is necessary to investigate further only
properties of two subnets of four obtained. Different ways of minimal functional subnets
composition allow the decomposition of the source model in left and right interacting systems
7', 7z? and also decomposition in subnets of connection establishing and disconnecting 2",
7% where z' =zM 4+ 712 72 =72 4 722 7V =My 2B 722 = 720 722

Invariancy of protocol ECMA. We use the isomorphism of subnets Z' and Z*. Firstly,

we calculate invariants of subnet Z'. Then we construct invariants of isomorphic net Z°.
And finally, we calculate invariant of whole given Petri net.

: 1,1 2,1
Invariants of subnets Z and Z~ we represent as
1111 1y ALl 2 2 2y A2
(1, %2, X3, X9, X105 %11, X12) = (21,22, 23,24,25) -G, (X1,X3,%4,X13,X14, X5, X16) = (2 ,22,23) -G,

where matrices G"' and G"* have the following form:
1011001

0

0

I

0

GM =

—_— = O
—_ O =
- o O
S = O
(=
S = O
oS o =

S = = O
(=
_ o = O
—_ 0 O -

0
1
0
0

Note that, components of vector x, corresponding to subnets Z"' and Z*>', are written in
explicit form; they define indexation of columns of constructed matrices. Indexes of rows
correspond to components of vectors z' =(z,,z},2,,2,,25) and z° = (z],z2,23).

We construct the system of equations of form (5.6) for contact places:
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1 1 1 2 2
zZy+zy+z, -2z, —z; =0,
1 1 1 2 2
zy+zy+z,—z —z; =0.
Note that, in composition of subnets G"' and G"“* places p, and p, are contact ones.

General solution has the following form

11 11 1.2 .2 2v_ = pl pl
(21,22,23,24,25,21 ,23,23) =y R, R =

- © © © — © o©
o o~ o o o~ o
o o o —~ 0o o —~ o
o oo o~ o o ~
- o o o o o o o
o O = o0 O = o =
C o0 = O = o =
S -0 O = o = o

S

For calculation of basis invariants of net Z' according to (4) we construct of subnets’
invariants G"' and G*' a joined matrix G':

1 01 010O0T1O0O0O0 0 000O0OT1O0O0OT1UO0O0O0 0
001 00O0OT1T1O0O0O0 0 000O0O0OOTI1T1O0GO0OO0 0
1 000110000 O0 0 000O0OT1T1UO0O0O0O0O0 0
G1:1 1 1OOOOOOOOOOI'Glzo10000000000
000O0OO0OT1T1O0UO0O0O0 0 000O0OO0OT1T1O0UO0O0O0 0
000O0OO0OOOOTI1 01 001 00O0O0OO0OO0OTI1 O0°1
000O0O0OOOTI1IO0T1 0 1 000O0O0OO0OOCT1O0T1 O
00010O0O0GO0OO0O0O0 0 1 011000O0O0O0OO 0]

Note that, the difference between matrices is contained in columns corresponding to
contact places (p, and p,). In the first case invariants of contact places are calculated

according to matrix G"', and in the second case — according to G*'. Indexation of columns
corresponds to vector (X;,X,,X;,X,,Xe,X,05X X125 X135 X145 X155 X)) -
Matrix of basis solutions has the following form

111000001111
1010100T1T1T1T1]1
111100000 O0O0 0
H1=100011001010.
001 00O0O1T1O0T1O0°71
10111001000 0
000O0OO0OT1T1O0UO0O0O0 0

-

Note that, after a calculation of product R-G according to (5.9) we have deleted linearly

dependent rows in matrix.
Further, in the same way, we construct invariants of whole net, that is the composition of

subnets Z' and Z*. System of equations for contact places has the following form:

Py Z£+Z}‘+Zé—252—272:0,
. 1 1 2 2 2
Plo: Z4+zZ7—2Z) —zZ5 —Zg —0,
1 1 2 2 2
pic o zs+z7—z) =23 26 =0,
. 1 1 1 2 2 _
Pip: ZptzZst+zg—2Zy4—2zZ7 —O,
1 1 1 2 2 2
P13: zi+zp+z4—zi —z5 —z5 =0,
1 1 1 2 2 2
Pla: ZytzZptzs—2zZy —zZ) —2Z4 =0,
1 1 1 2 2 2
Pi15: z1+zp+z4—zf —z5 —z5 =0,

Ple : Z% +zlz+z% —zlz—z%—zi =0.

Let us solve a system, calculate a product R-G and delete linearly dependent rows. We
obtain basis invariants of Petri net as follows:
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S = O O O o = O
e =T =T
—_ 0 O O o = O O
S O = O = O O =
S O = O O = = O
S O O = O = = O
S O O = = O O =
S = O = O O = =
=R = ==
S = O = O O = =

1
1
0
1
H=|o
1
1
0
1

1
1
0
1
1
0
1
0
1

-0 O O O = O O O
S = = O O O O o =
[ Y Y = T S S S
S O == o OO = =

—
(=
(=]
(=]
S
(=]
(=]
(=]
S
(=]

Result obtained coincides with invariants calculated with usual methods for whole net and
also with invariants obtained with direct composition of four minimal functional subnets.
Thus, Petri net is invariant so, for instance, the invariant

—%
X =(121212111111111),

that is the sum of basis invariants with numbers 1, 3 and 9, contains all natural components.
Therefore, model of protocol ECMA is safe and bounded.

It should to note, that though net is also t-invariant one, it contains a deadlock with tokens
in places p, and p,,. Net reaches this deadlock as a result of firing sequence #,¢; or £, .

Speed-up of invariants calculation. Let us estimate obtained speed-up of computations in
the assumption of exponential complexity of algorithms [Kryviy 99] for solving of linear

Diophantine systems in nonnegative integer numbers. Let the complexity is 29, where ¢ is

number of nodes of net.

Source net contains 16 places, thus, direct calculation of invariants require solving a
system with 16 unknowns. Composition of four minimal subnets requires solving system of
the size 7 to obtain invariants of minimal subnets and to solve a system of the size 12 to
obtain invariants of contact places. Sequential composition assumes solving system of the size
7 to obtain invariants of minimal subnets, solving system of the size 5 to obtain invariants of
contact places of first composition and solving system of the size 8 to obtain invariants of
contact places of second composition. Note that, at the exponential growth of functions, the
complexity of matrices multiplication representing by polynomial of third degree is irrelevant
and will not be considered.

Complexities of calculation for each of enumerated three ways of invariants obtaining
may be estimated by following expressions:

ST =2"%65000, S" =27 +2" ~ 4300, S" =27 +2° +2° = 500.

Thus, decomposition allowed the acceleration more than ten times in the comparison
with traditional methods. Moreover, sequential composition allowed the additional tenfold
speed-up.

It should to be noted, that speed-up has been obtained for net numbering three tens of
nodes. At research of large-scale nets, the acceleration may be rather huge, so it is estimated
as exponential function (5.10).

7.3 Protocol TCP Verification

Specifications of protocol TCP. TCP is the major transport protocol of Internet. Namely
via protocol TCP more than two hundreds petabits of public and private information is
transferred per day. Therefore, a formal proof of TCP protocol correctness has a key
significance for the grounding of modern global networks reliability.

Standard specification of protocol TCP has been presented in year 1981 in RFC 793
[Postel 81]. This document had become the result of prolonged discussions reflected, for
instance, in RFC with numbers 44, 55, 761. In the process of exploitation, it was made
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alterations concerned with such items as slow start RFC 1122, quick recovery RFC 2001,
repetitive transmission RFC 2988. The improvement of standard is not ceased at present. It is
confirmed, for instance, by RFC 3360, 3481, 3562, which propose technique of reliable
interaction at connection reset, special rules for wireless lines connections, algorithms of keys
exchange for protection of information.

Petri net model of protocol TCP. Petri net model of protocol TCP is represented in Fig.
7.7.

RN

<\

SYNRCVD

Fig. 7.7. Petri net model of protocol TCP

Model consists of three parts: left interacting system; right interacting system;
communication subsystem. Each of interacting systems corresponds exactly to standard state
diagram of protocol [Postel 81]. Notations of right system contain prefix “x”. States of
diagram are represented by places of the same name. At that the additional places
corresponding to flags SYN, FIN, ACK of packets’ headers are used. These places constitute
the communication subsystem. Flags of packets transmitting by right interacting system have
prefix “x”. Notice that, for clearness of model the flag of acknowledgement ACK is
represented by separate places corresponding to its receiving either as answer on flag SYN
(SYNACK), or as answer on flag FIN (FINACK). Moreover, since model does not contain
the descriptions of application level protocols, commands OPEN, CLOSE, SEND are
represented merely in notations of corresponding transitions. The names of residuary
transitions are chosen as first letters of flags waiting for which are represented in standard
state diagram of protocol [Postel 81]. Notice that, the source state diagram represented in
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[Postel 81] is defined more exactly accordingly to RFC 896 anticipating congestion avoidance
facilities and RFC 1122 studying the slow start problem.

Decomposition of TCP protocol model. Let us implement the decomposition of protocol
TCP model represented in Fig. 7.7 into its minimal functional subnets according to Algorithm

Fig. 7.8. Decomposition of protocol TCP model

Application of decomposition algorithm 4.1 to protocol TCP model (Fig. 7.7) leads to the
obtaining of set {Z1,72,73,7Z4}, consisting of four minimal functional subnets represented in
Fig. 7.8.

Notice that, by virtue of symmetry of systems’ interaction processes the pairs of subnets
Z1 and Z2as well as Z4 and Z3 are isomorphic. Therefore, it is required to investigate the
properties only for two of enumerated four subnets.
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Fig. 7.8. Sequential composition of protocol TCP model

Various manners of minimal functional subnets composition allow the decomposition of the
source model into left and right interacting systems Zleft and Zright , and the decomposition

into net establishing the connection Zup and disconnecting net Zdown, where
Zleft = Z1+Z4, Zright =72+ 73, Zup = Z1+ Z2, Zdown = Z4+ Z3.

Invariance of TCP protocol model. In [Berthelot 82] it was shown that a correct
telecommunication protocol has to be invariant one. Known methods of invariants calculation
[Kryviy 99] have exponential complexity that makes its application difficult for investigation
of real-life objects’ models numbering thousands of elements. The model of protocol TCP
(Fig. 7.7) allows the convincing illustration of this fact. However, net contains only 30 places
and 28 transitions, the calculation of basis invariants for natural generators by known tool
Tina [Berthomieu 04] had not been completed in 24 hours.

Let us consider the graph of decomposition (Fig. 7.9). In [Zaitsev 04f] the sequence shown
in Fig. 7.9 a) was implemented. Maximal number of equations equals to 8§ in spite of 12 for
simultaneous composition. We implement stepwise composition for protocol TCP model
according to optimal sequence represented in Fig. 7.9 b). It guarantees the maximal number of
equations equaling to 4.

Let us enumerate places according to Table 7.3 for calculation of invariants. Basis
invariants of subnets Z1 and Z4 are calculated with the aid of tool Tina [Berthomieu 04].
Invariants for isomorphic subnet Z2 and Z3 are constructed out of invariants obtained.

Table 7.3. Places of net

# | Name # | Name # | Name

1 | CLOSED 11 | TIMEWAIT 21 | XLISTEN

2 | LISTEN 12 | SYN 22 | XSYNSENT

3 | SYNSENT 13 | XSYN 23 | XSYNRCVD

4 | SYNRCVD 14 | SYNACK 24 | XESTAB

5| ESTAB 15 | xSYNACK 25 | XCLOSEWATIT

6 | CLOSEWAIT |16 | FIN 260 | xFINWATITI1

7| FINWAIT1 17 | XFIN 27 | XLASTACK

8 | LASTACK 18 | FINACK 28 | XCLOSING

9 | CLOSING 19 | xFINACK 29 | xFINWAIT?2
10 | FINWAIT2 20 | xCLOSED 30 | XTIMEWAIT

We implement the sequence of stepwise composition represented in Fig. 7.3 b).
e Composition: Z1+Z72

With respect to numeration of places defined by Table 7.3 the invariants of subnets Z1 and
Z2 may be represented as:
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I S U T B B 1

(X155 X35 X4, X5, X155 X135 X145 X15) = (21,25, 23,24, 25,26 ) G
.2 2 2 2 2 2 2
(X205 %515 X0 » X035 X045 X135 X125 X155 X14) = (21 525,235,245 25,25) G,

where the matrices have the form

111110000
11100001 0
1 2 _looo1 101 00
G_G_110001000’
000010001
000000T1 10

Notice that, components of vectors X’ corresponding to subnets Z1 and Z2 are written in
explicit form. They define the indexation of columns of matrices constructed. Indexes of rows

correspond to components of vectors z' = (z|,23,23,24,25,2¢ )2 = (21,23 ,23,24,22,20 ).
Let’s construct the system of equations with the form (5.6) for contact places:

P zi—zf—zézo,
P - 2y —2; — 24 =0,
P zé+zé—252:0,
Dis 222+z§—z;=0.

Notice that, in composition of subnets Z1 and Z2 are used such contact places as p,,,
DPis» P> Dis- The general solution of system has the form

1 1 1 1 1 1 2 2 2 2 2 2N = R1,2
(21’22523’24’25’26521 722523 724525 JZ(,)_y' s

=

)

Il
OO OO OOHO
OOHOOOOO
OO0 OoOOHrHOOO
OoOrroOoO0OOoORr oo
HPROOOOOO
OO OOOO
oNeolololNoNeNeN o)
HOOOOOOO
OO OO OO
OO0 RFOOO
OOFRFRFRFROOOO
O OO0 OOO

For calculation of basis invariants of net Z1,2 according to (5.9), we construct the joint

matrix G"* out of invariants of subnets G' and G*:

Q

o

|
OO0 OOOOOHOFKH
OO0 OO0OOOOHOF
OO0 OOODOOOOORrRK
olololololololoNoN e N )
coococoocoror o
OO0 O0OO0OOOOHrHrOOO
OO0 O0OOoOOoOHrHrOoOOrrOO
OO O0OO0OO0OOHrHrOOORr O
OO OFFOODODOOO
OO OFRRFRFOODODOOO
OO OORFRRFOOOOOO
OOOHFHORHROOOOOO
O OFrRrORrROOOO0OOO

OO0 OHrHrOOOO

The indexation of columns corresponds to vector

(X155 X35 X4 5 X5 X155 X135 X145 X155 X5 Xg1 5 X 5 X35 Xy )-
Invariants of contact places are calculated according to matrix for subnet Z1. Matrix of basis
solutions H"* = R"* -G"* has the form
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e Composition: Z4+73

The invariants of subnets Z4 and Z3 may be represented as
4 4 4 _4 4 _4 4
(X5 X5, X6, X7, Xg5 X5 X105 X115 X165 X7, X185 X19) = (2] 525,23, 24525 ,26 ) G
.3 3 3 3 3 _3 3
(X205 X245 X555 X265 X075 X055 X295 X305 X175 X165 X195 X1g) = (215255 23524,25,25)- G

where the matrices have the form

111111110000,
101011010100
G4=(T5=010100100010.
100000110001
011000001000
000000000110

System of equations for contact places has the form:

Pis - 22_22_26220’
Py 75—z, -z =0,
Pis - Z;"'Z;‘_Zi:()a
Do zi+z, -z, =0.

The general solution of system may be represented as

4 _4 _4 _4 4 _4 3 3 3 3 3 3y _ — pai3
(215255235245 255 2652152523524, 25,25 ) = Y - R,

000000100000
100000000000
000010010000
R&32010000000010
000001000110
001000000100
000110000001
000100001000

For calculation of basis invariants of net Z4,3 according to (5.9), we construct the joint

matrix G** out of invariants of subnets G* and G*:

G4 =

ErEEEEEEEREEEE
OO0 O0OO0OHOR O
COO0OO0O0O0OrHOOR
OO0 0O0O0O0OORr O
[eXeloNoloNoloNoRa RNy
OO0 O0OOOOOOR
OO0 O0OOCOORr O
OO0 O0O0O0OrHOOO O
OO0 0O0OO0OHOOOR O
OO0OO0OO0O0OOHOOFR OO
OO0OO0OO0O0OO0O0OHOOO
OOoOrORrRRFPROO0OOOOO
O OFRORrROO0OOO OO
OrOoOORrRRrROO0OOOOO
OCoOrRrOrROO0OOO OO
CoO0OOoORrRrPrOO0OOO OO
CoO0OO0ORrRRPROOOO OO
OCOrHRPOROOOO OO
OCOrHORPOOOO OO

OCoOO0O0O0O0O0OR O
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The indexation of columns corresponds to vector

(X5 X5, X6, X7 5 Xg5 X5 X105 X115 X165 X175 X185 X195 X005 Xog > X5 X6 5 X375 Xg s X295 X3 )-

Matrix of basis solutions H** = R** -G** has the form

HOHO HH OO
—HOO0O AHO
—HOHO o000
O H0o000O
000000
AO A= OO0 O
—HOOoO A 1400 -
HO O A 10O
oQCoocoo
cCooHHOO
oo+ 4000
o9 Ho oo O
oo —"0O
o000 oA
ofoHoo00o
oHoHoO00O
oHoooHOO
oOodHHOOHO
O+ HOOAHO

oOoHo A0 O -

1]
=

Z1,2+743

Composition:

System of equations for contact places has the form

S o o o
i n
a4 a9 o <
— 0~ <t — 00 <t
NN NN
b
n/_., o (o] o
—_ O oy =
N 4Z6 N 425
N
N N e
—en 4 — <
N 4Z3 N 4Z4
b b
n/_’ o n/_’ o
P TR S UL
<+t ~+ —
NG N TG
S L
“ «“
<too - o -
N 1Zoo N 126
«“ “
<t~ _- <t o
+ + + 4
«“ “
AR
N T NN
+ + + +
«“ «
S I e T S
N N N N

P
Ps
P2 -
Py

This system has 48 basis solutions constituting matrix R

1O 0000000000O0O0O0OAHHOOAHAOOAHOO AHOODOODODODODODOODODDODOODOOOO
COHT00 0000000000000 OCOAdATAATAHA AT OO OOOOO
OO0 0000O0OHHOO0OOOOOAHAAAAHAATAD OO OO DODODODODODODODDDODDOOO OO
OO0 O0O0OOOOHTHTOOODOODODODOODODOOOOOODOOOOHATOO AHOOAAHODO O HHOO
CO0O0O0OH 1000000000000 HFHOOHHAOOAHOO A AODODODODODODODODODODODDODOO OO
D000 000O00O0O0OHHOO0OOO0O0OO00O0OOAdTHAAHAAAHTADOODODODODODODDOOODOO OO
OO0 00O0OHHOO0OOOOOODOODOODOODO0OODOODOODO0OOO0OOOOOOOOOO el
OO0 HAADODDODODODODOODOODOODOOOOOHAOO A HOO A HOO
OO0 0000O0OHOOOHOODOODODODODODODODOODODODODOOOOHOHO HAO A0 HO HO O O
COHOO0OOHOOOOOOOOOHOHO AOHO AOAOHAOATODODODODOODODDODDODOODOOO OO
HOOOA00000O0DO0ODODODOVDOODODODOVDOOOOOVOOAHAAAOOOO AHAHOO OO
OO0 O0O0O0O0O0O0OHO0O0OO A0 AdTAATO0OO0O0O A HATHOOOODODODODOOODODODODOODOOOOO
0OO0000000O0OHOOOHOOOOOOOOOOOOO0OO0OOOOOHOHOAODOHOHO AHO HO
el leolololmlololojolololololololololojleojeojeojojleloleolojojojlelololololoRol  RoRoReNoRoRo Rl o i I I
OO0 1000100000000 HOHAOHOHOAOAOHOAODOODOODOODOODODODODOO OO
00000000000 HO0O0OO 10000 THH 10000 AFAFT 100000000000 OO OO O

Il
34

3.

Let us construct the joint matrix G out of invariants of subnets G"> = H"* and G* = H"
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Matrix of basis solutions H
the form:

after the erasing of nonminimal solutions has
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Since, for instance, the sum of all the rows has all the natura
is p-invariant and, consequently, it is bounded and safe net.

In the same way, using dual net and decomposition, it may be shown that model is t-
invariant also. It means that net is persistent and constitutes the necessary conditions for its
liveness.

Notice that, expenses of time for invariants calculation via stepwise composition of
functional subnets completely corresponds to exponential estimations of speed-up (5.10). The
total time for construction of basis invariants of places did not exceed 10 seconds on
computer Pentium (3.2 GHz CPU, 0.5 Gb memory).

components, model of protocol

8 Conclusions

In present work the concept of functional subnet of Petri net was introduced and studied.
The properties of the set of functional subnets were investigated. Two different techniques of
generating set of functional subnets construction were studied: with logic equations and with
an ad-hoc algorithm. It was shown that the time complexity of algorithm is linear. Program
realization of algorithm was implemented. Together with [Zaitsev 90, 97], where formal
description of transmission function for functional timed Petri net was obtained, the present
work gives the complete technique of nets’ properties analysis based on obtaining of
functional subnets, algebraic description of their transmission function and consequent
equivalent transformations.

Basis of compositional analysis of Petri nets is constructed. It is aimed to speed-up of Petri
net properties determination with the aid of linear algebra methods based on fundamental
equation of net and invariants. For investigation of Petri nets properties it is requires to solve
systems of linear Diophantine equations over nonnegative integer numbers. All known
methods of such systems solution have exponential calculation complexity. The technique
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proposed and studied in paper allows the speed-up of calculation of invariants. This technique
is based on the decomposition of Petri net into functional subnets and consequent
composition. The speed-up obtained is exponential with respect to the number of places of
source Petri net. The technique also allows the speed-up of the fundamental equation solution.

Analysis of real-life models of systems and processes numbering thousands of elements
with early known methods was practically unrealisable task so it required calculation
expenses measuring by years. Application of compositional analysis allows the exponential
speed-up of computations and in that way to cut essentially a time of tasks solution.

Decomposition-based solution of state equation and calculation of invariants consists in
two major stages: solution of systems for minimal functional subnets and solution of system
for contact places. At large-scale nets analysis the number of contact places may be huge
enough. This implies the increase of overall calculation complexity.

Sequential composition is aimed to decrease the dimension of solving systems. Instead of
one system of a huge dimension for contact places we propose to solve a sequence of systems
with essentially lesser dimension. At exponential complexity of system solution this technique
provides a considerable additional speed-up of computations. Decomposition was presented
with weighted graph, which is transformed to a single vertex at sequential composition. The
corresponding task was named a collapse of weighted graph. Edge or pairwise collapse has
been chosen as the most effective kind of collapse. Width of collapse equals to maximal
weight of edge and corresponds to maximal dimension of solving system.

Properties of edge collapse were studied. Upper and lower bounds for width of collapse,
which may be applied in the solution of the task with methods of branches and bounds, were
obtained. Simple and effective heuristic algorithm of edge collapse based on maximal weight
edge choice was proposed. It was applied to a series of automatically generated random
graphs. For small graphs we showed that result is close to optimal. For huge graphs we
obtained results essentially better than for random collapse. Results obtained prove the
practical value of sequential composition for additional speed-up of state equation solution
and invariants calculation.

The obtained results are illustrated by examples of telecommunication protocols
verification with the help of the decomposition of Petri net models into functional subnets and
their composition. Speed-up of invariants calculation was obtained for such well-known
protocols as BGP, ECMA, TCP.
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