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ELECTRE METHODS WITHINTERACTION
BETWEEN CRITERIA: AN EXTENSION
OF THE CONCORDANCE INDEX

ABSTRACT

This paper presents an extension of the comprehensivealverncordance index of ELECTRE methods, which
takes the interaction between criteria into account. Iivwenald decision-aiding situations, it is reasonable tosider
only the interaction between a small number of criteriorrgaiThree types of interaction have been considered:
mutual strengthening, mutual weakening, and antagonistie new concordance index correctly takes into account
such types of interactions, by imposing such conditionsasary, monotonicity, and continuity. We demonstrate
that the generalized index is able to take the three typesefdction, or dependencies, between criteria into adcoun
satisfactorily, first using quasi criteria and then usingymo criteria. We also examine the links between the new
concordance index and the Choquet integral

Key-words: Multicriteria analysis, Outranking methods, Interanthetween criteria, Choquet integral.

1 Introduction

In this article, we are particularly interested in thoseisiea-aiding situations that can be supported using an ELF
type method (cf. Figueira et al., 2005 and Roy and Vandegmd997). This kind of situation implies that a coherent
family F of n criteria has previously been built (cf. Roy and Bouysso®3l&8nd Roy, 1996).

An important advantage of using outranking methods (e lgg &TRE methods) is that they are able to take purely
ordinal scales into account (Martel and Roy, 2006), withmeding to convert the original scales into abstract onds wi
an arbitrary imposed range, thus maintaining the originakcete verbal meaning (for another methodology consigeri
purely ordinal scales, see Greco et al., 2001). Such cdomarsre used in many multi-criteria methods - for example,
AHP (Saaty, 2005), MACBETH (Bana e Costa and Vansnick, 1®8#ha e Costa et al., 2005), MAUT (Keeney and
Raiffa, 1976), SMART (Edwards, 1977; Von Winterfeldt andwidds, 1986), TOPSIS (Hwang and Yoon, 1981) - as
well as in methods based on fuzzy integrals (Grabisch, 188&hisch and Labreuche, 2005). A second advantage is that
indifference and preference thresholds can be taken immuat when modeling the imperfect knowledge of data, which
is impossible in the previous mentioned methods.

When using an ELECTRE-type method ( whatever a particulesiae of the method is considered), the criteria
family F must be designed so that there is no significant interactixwed®n any criterion pairs. By definition, we say
that there is significant interaction between two critefiinks (whatever their nature) exist between these cedténat
must be taken into account to support the validity, creitijhibr intensity of the comprehensive preference reladips
built by the model (based dn) to clarify the decision. In fact, fuzzy integral-based hogts were introduced in decision
aiding to allow such interactions to be taken into accourtiis Brticle proposes and extends ELECTRE methods that
allow certain types of interactions to be taken into accawny concretely. Specifically, this paper extends the mobib
concordance, as it has been defined for ELECTRE methodsptecd=LECTRE IV (see Figueira et al., 2005), to three
particular types of interaction, designated here as mstuahgthening, mutual weakening, and antagonistic.

The rest of this paper is organized as follows. Section 2idesvtwo examples to clarify the reader’s understanding
of the three types of interactions that can occur in realldvdecision-aiding situations. Section 3 introduces thedas
mental concepts, definitions, and notation, and reviewgémeral notions of comprehensive concordance index as well
as its fundamental properties. Section 4 defines the thpes tyf interaction considered in this paper, as well as hew th
decision-maker (DM) can assign numerical values to therpatars characterizing these interactions. Section 5 piese
an extension of the concordance index, starting with theglgish case in which only quasi criteria are considered, and
then moving towards the more complex case in which pseutkrierare considered. In Section 6, the examples pro-
vided in Section 2 are discussed in order to assess thelmatidn of our extension. Section 7 compares our method with
Choquet integral methods to evaluate how the two approdelesthe interactions between criteria into account. The
last section offers our conclusions and lines for futureaesh.



2 lllustrative Examples

This section provides two examples in order to clarify theas of the different interactions dealt with in this paper
These effects generate additional information that mugtken into account in the concordance indices. (Section 6
offers a more detailed discussion of how such additionarmftion can be modeled.) In the criterion descriptigmsn]

is assigned to the criteria to be minimized dnhX to the criteria to be maximized.

2.1 Choosing a site for a new hotel construction project

In this example, a site must be selected for a new hotel, wihtbngs to a multinational group, in a city where the
group is not yet established. Suppose that a consulting aoynfhenceforth, called the analyst) was asked to support
that decision-aiding process of the Chief Executive Off{¢EO) of this group (henceforth, called DM), and that this
analyst and the decision-maker’s representative (hernbefmalled DMR) decided to use an ELECTRE-type method. To
this end, a family of five criteriagj — gs) is built:

g1: land purchasing and construction costs (investment cfats;
gz: annual operating costs (annual cos$tsin|;

gs: personnel recruitment possibilities (recruitmeintax;

04: target client perceptions of the city district (imadelax;

gs: facility of access for the target clients (accelssax.

Indifference and preference thresholds (see Section Rsmeciated with each one of these criteria. For the first
two criteria, which are quantitative, these thresholds ehtltk “approximate” character of the financial evaluatjaml
for the three other criteria, the unavoidable arbitrasnefsthe value due to the subjectivity of purely ordinal eadilons.
These criteria do not have the same importance for the DMRrder to represent these differences, intrinsic relative
weightsk;j, j =1,...,5, are associated to the corresponding criteria in the ggtics procedure, using the SRF (acronym
of Simos-Roy-Figueira) technique and software by Figuaird Roy (2002). When considering two criteria in SRF, the
value of each weight is fixed without taking into account theact that the other criterion weight can have indepengentl
of whether or not belongs to the concordant coalition; ireotlords, all the possible interactions between criterga ar
abstracted.

The following tables given information that would allow tBR to see how the weights intervene in the comparison
of two sites.

a) The comparison of sita with sitesb, ¢, andd, in terms of the two financial criterigg andgy, is shown in Table 1.

b c d
01 | ais better tharb | ais worse tharc | ais better thard
g2 | ais worse tharb | ais better thart | ais better thard

Table 1: Comparison of sitewith sitesb, ¢, andd with respect to the financial criteria

According to the classic definition of the concordance in@e Section 3), the role that critegaandg, should
have for supporting the answer to the assertiaris‘at least as good as(or ¢ or d)” is characterized by the
following weights,

k1 in the comparison witl,
ko in the comparison witle,
ki + ko in the comparison witldl.



Given the information presented in Table 1, the DMR considkee weightsk; andk;, assigned to criterig; and

g2 appropriate, when only one criteriog, or gp, supports a decision that one action is better than anotieer o
However, he/she judges that the skim- ko is not sufficient to characterize the role of this criteria pehen both
supports the decision that one action is better than anotierbecause in this case each criterion is strengthened
by the other given the degree of complementarity betweem.tiEhe comparisons provided by the DMR about
actionsa, b, ¢, andd express his/her conviction that, if one action is betten tlwaother one with respect to criteria
g1 andg, conjointly, it would be interesting to be able to take thistoal strengthening effect into account. As this
reasoning shows, the classic concordance index is not@bdée such a mutual strengthening effect into account
(for an illustrative example see Section 6). This effect loariaken into account by increasing the weiditand

ko for the criteriag; andgp, respectively in the concordance index of the assertidn at least as good &b, when
both criteria intervene conjointly to make the assertiolidvan the following sections, the amount that must be
added tdk; + ko to model this mutual strengthening effect is dendtgd= ko;.

b) The comparisons of si@with sitesb, ¢, and ein terms of the two purely ordinal criterigy andgs, are presented
in Table 2.

b c e
04 | ais better tharb | ais worse thart | ais better thane
Os | ais worse tharb | ais better tharc | ais better thane

Table 2: Comparison of sit@with sitesb, ¢, andd with respect to the image and access criteria

Given the information presented in Table 2, the DMR considkee weightk, andks assigned to criterig, and

gs appropriate, when only one criteriogy or gs, supports a decision that one action is better than anotieer o
However, he/she judges that the sk ks is too high to characterize the role of this criteria pair whmmth
supports the decision that one action is better than anotierbecause in this case each criterion is weakened by
the other due to the degree of redundancy between them. Thearisons provided by the DMR about actions
a, b, ¢, and e express his/her conviction that, if one action is bettentaaother one with respect to critega
andgs conjointly, it would be interesting to be able to take thistoah weakening effect into account. As this
reasoning shows, the classic concordance index is not altéké such a mutual weakening effect into account
(for an illustrative example see Section 6). This effect loartaken into account by decreasing the weightand

ks for the criteriags andgs, respectively, in the concordance index of the assertiois ‘at least as good as”’,
when both criteria intervene conjointly to make the assertialid. In the following sections, the negative amount
that must be added tq + ks to model this mutual weakening effect is denokggl= ksa.

2.2 Launching a new digital camera model

In this example, a manufacturer wants to introduce a newadicgamera model on the market. As in the previous example,
we assume that the DMR and the analyst decided to use an ELE@yffe method. For this purpose a family of seven
criteria @1 — g7) is built:

01: purchasing costs (costnin];

g2: weaknesses (fragility)min;

gs: user friendliness of the controls (workabilitypax;
g4: image quality (image)max;

gs: aestheticsmax;

gs: Volume[miny;

g7: weight[min].



As in the previous example and for the same reasons, inglifferand preference thresholds, as well as weights, were
associated to each one of the seven criteria. In discugfierDMR and the analyst must again decide how the weights
of the criteria costd;) and fragility (@,) should intervene in the comparison of the possible actiwrmamera models. A
digital camera moded can be compared to the remaining modgls, andd, according to these two criterigy(andgy),
as is shown in Table 3.

b c d
g1 | ais better tharb | aworse tharc | ais better thard
g2 | ais better tharb | ais better thart | ais worse thard

Table 3: Comparison of modalwith modelsh, ¢ andd with respect to cost and fragility

According to the classic definition of the concordance in(®e Section 3), the role that critega andg, should
play in supporting the assertion “modelis at least as good as modelor ¢ or d)” is characterized by the following
weights,

ki + ko in the comparison witlb,
ko in the comparison witle,
k1 in the comparison witldl.

The value of each of these weights was set without takingaatmunt the impact that the other criterion’s weight
could have independent of whether or not it belongs to the@alant coalition; in other words, all the possible inter-
actions between criteria are abstracted. Given the infibioman Table 3, the DMR considers that weightsand ko
adequately characterize the role these two criteria shalalglwhen comparing with b anda with c; however, he/she
considers that the same is not true when compainith d. Based on a customer survey, it seems that when one model
is less fragile than another, the benefit derived from thestawost is partially masked by the fact the model is lesslgagi
This phenomenon can be modeled by decreasing the weighiterian g; in the concordance index of the assertien “
is at least as good 5. In the following sections, the quantity that must be sabted fromk; to take into account this
antagonistic effect (i.e., masking effect) of criterignwith respect to criteriomy; is denoted,.

Please note that if the DMR considers that the rolgois adequately taken into account by the weilghin the
concordance index of the asserticani$ at least as good &3, nothing can make him/her consider the possibility of an
antagonistic effect ofi; with respect tay,. On the other hand, if the results of the customer surveyfyustking such
an antagonism into account, the quanty that must be subtracted froka to model this interaction effect could be
different fromkj,. In other words, there is not necessarily symmetry betwkerto situations.

3 Concepts: Definitions and notation

This section presents some elementary concepts, defsyitaoil the notation used in the rest of this paper. As for the ke
concepts and the main features concerning ELECTRE metlioes@ntext in which they are relevant, modeling with
an outranking relation, their structure, the role of ci#geand how to account for imperfect knowledge) see Figustira
al. (2005). A comprehensive treatment of ELECTRE methodsg peafound in Roy and Bouyssou (1993) and Vincke
(1992). Much of the theory developed on this field is prestimi¢hese books.

3.1 Basic data

The basic data of a multiple criteria problem is composed aflzerent set or family of criteria, a set of actions, and an
evaluation matrix. Let,

- F={01,92,...,0i,...,0n} denote a family or set diriteria; for the sake of simplicity we shall use alsoas the
set of criteria indices (the same will apply later on for sibfF);

- A={a,b,c,...} denote a finite set aictionswith cardinalitym;

- gi(a) € E; denote theevaluationof actiona on criteriong;, for all a € A andi € F, whereE; is the scale associated
to criteriong; (no restriction is imposed to the scale type).

In what follows it is assumed that all the criteria are to bexinézed, which is not a restrictive assumption.



3.2 Binary relations

When comparing two actiorsandb, the following comprehensive binary relations can be defioe the seA. For a
pair (a,b) € Ax Alet,

- P denote thestrict preferenceelation;aPbmeans thatd is strictly preferred t®”;

| denote thendifferencerelation;alb means thatd is indifferent tob”;

Q denote thenveak preferenceelation; aQb means that d is weakly preferred tdo, which expresses hesitation
between indifference ] and preferenceR);

Sdenote theutrankingrelation;aSbmeans thatd outranksb” or more precisely thatd is at least as good .
Note thatS=1UQUP.

For a given criteriorg;, the same interpretation of the above binary relations ligl,vBut now these relations are
called partial binary relation$}, I;, Q;, andS, respectively.

3.3 The notion of pseudo-criterion

The concept of pseudo-criterion is based on the definitidwofpreference parameters, called thresholds. Let

- gi(gi(a)) denotes théndifference thresholdor criteriong;, for allac Aandi € F;

- pi(gi(a)) denotes thereference thresholtbr criteriong;, for allac Aandi € F.

such thatpi(gi(a)) > gi(gi(a)), for all gi(a) € Ej anda € A.

Definition 1 (pseudo-criterion). A pseudo-criterion is a function gssociated with the two threshold function&yya))
and p(gi(a)) satisfying the following condition, for all @ A (Roy, 1991, 1996): () + pi(gi(a)) and g(a) + qi(gi(a))
are non-decreasing monotone function dgg.

By definition, for all pairs(a,b) € Ax Awith gi(a) > gi(b),

alib < g(a) <g(b)+q(gib);
aQb <« gi(b) +ai(gi(b)) <gi(a) <gi(b)+ pi(gi(b));

aRb < gi(b)+ pi(gi(b)) <gi(a).

Definition 2 (quasi criterion). If, gi(gi(a)) = pi(gi(a)), for alla € A, then gis called a quasi criterion. It is a particular
case of a pseudo criterion which is also considered in theagthe paper. For a quasi criterion there is no ambiguity
zone, that is, there is no weak preferenge Q

In what followsC(aT b) represents the coalition of criteria in favor of the assertiaT ', whereT € {P,Q, S}

3.4 The criteria weights and the concordance index

In ELECTRE methods, theelative importance coefficientdtached to the criteria refer totrinsic weights For a given
criteriong;, the weightk;, k; > 0 for all g; € F, can be interpreted as its voting power when it contributethié majority
which is in favor of an outranking; it is not a substitutioneaFor more details about the question on how to attribute
numerical values to the parameters which must reflect tlagivelimportance of criteria, see Figueira and Roy (2002),
Mousseau (1993, 1995) and Roy and Mousseau (1996).

ELECTRE Multiple Criteria Aggregation Procedures (MCARs¢ based on eoncordance index(e,b) which is
used both to validate the asserticmdutranksb” and/or to give a measure of the credibility of such an assertidme T
concordance index can be defined as follows,



ki
C — — — :
(a,b) _ Z i where K Z ki (@H)
ieC(aSh i€

and,C(aSh represents the coalition of criteria in favor of the aseertia outranksb”, when F if composed of quasi
criteria.

WhenF contains at least a pseudo-criterion, this index shoulcebeitten in the following way (as in ELECTRE
IS, lll, and TRI, see Figueira et al., 2005),

c(a,b) = Z: gci (a,b) 2
where,
1, it gi(a)+ai(gi(a)=>ai(b), (agh),
clab - SEIROELOO i g a@@) <ab<e@ipEE). B3
0, if gi(a)+pi(g@)<ag(b), (bRa).

It is easy to see that, whéhis composed of quasi criteria, indéX) becomeg1).

_ Let C(bPa) denote the complement @f(bPa). It should be remarked that whéh comprises only quasi criteria
C(bPa) = C(aSh; if F is composed of at least one pseudo-critei@{bPa) = C(aSh UC(bQa). In both cases this set
represents the coalition of all the criteria which are niairgyly opposed to the assertiaBb(let us recall thabQais not
a strong opposition).

3.5 Properties ofc(a, b)
The following properties of(a,b) hold for all pairs(a,b) € Ax A,

Boundary conditions: 0 < c(a,b) < 1.
Monotonicity: c(a,b) is a monotonous non-decreasing functiod\pf= gi(a) — gi(b), for all i € F.

Continuity : if pi(gi(a)) > qi(gi(a)), for alli € F and ac A, then ¢a,b) is a continuous function of both(g) and
gi(b).

The proof of the boundary conditions is obvious. The proofmmhotonicity is based on the fact that, for each
ci(a,b) has the same property. Continuity is not valid for quasedadt The proof for the case of pseudo-criteria is also
based on the fact that, for eactt;(a,b) has the same property.

4 Types of interactions considered

The above formulae (1) and (2) do not take any type of depaydestween the considered criteria into account. Very
often, this is justified because the formulae are used towléala structural dependence related to various points con-
cerning distinct stakeholder (Roy and Bouyssou, 1993). ti@rsake of the clarity, a coherent criteria family must be
defined so as to reduce other types of dependency as much aBl@dsee, for example, Bisdorff, 2001). It is also
necessary to completely remove any dependencies derimeddispersion or from a classical utility approach (Roy and
Bouyssou, 1993). Consequently, from a practical point@fiwthe dependencies that really need to be taken into atcoun
are not numerous and in general concern only criteria p@mssidering criteria triples or quadruples and so on woeld b



too complicated to be effective in a decision aiding prodessause formulating them would involve so many problems
of interpretation and comprehension that their expectelé@dalue would vanish (see Roy, 2007).

Therefore, we consider the cases where the only dependdratiween criteria which deserve to be taken into account
in MCAPs are related to interactions between criteria pairshis paper we are interested in the situations in whieh th
interactions can be modeled using one of the three interattpes presented below. These definitions are modification
of formulae (1) and (2). The conditions in which these modifns take place are related to a given interaction type.
This work is based on the research of Greco and Figueira J200@hich similar interaction types can be found. Roy
(2007) provides a more general formulation of the threegygénteraction proposed in this paper, which is indepenhden
of the ways the interactions are taken into account in the@alance index.

4.1 Definitions

This section provides the definitions of the three inteoactypes. Let us notice that cage- b is mutually exclusive,
but cases — c andb— c are not.

a) Mutual strengthening effect _
If criteria g; andg; both strongly, or even weakly, support the asseré&iiv(more preciselyg;,g; € C(bPa)), we
consider that their contribution to the concordance indestrbe larger than the sum kf+ k;, because these two
weights represent the contribution of each of the two gat&rthe concordance index when the other criterion does
not supportaSh We suppose that the effect of the combined presenggaridg; among the criteria supporting
the assertiomSbcan be modeled by a mutual strengthening coeffidignt 0, which intervenes algebraically in
c(a,b). (For an example, see the interaction betwgeandg, in Section 2.1.) Please note thgt= K;;.

b) Mutual weakening effect _
If criteria g; andg; both strongly, or even weakly, support the asseré6ib(more preciselyg;,g; € C(bPa)), we
consider that their contribution to the concordance indesstnbe smaller than the sum kf+kj, because these
two weights represent the contribution of each of the twieda to the concordance index when the other criterion
does not suppo@Sh We suppose that this effect can be modeled using a mutudlene coefficienk;; < 0,
which intervenes algebraically {a,b). (For an example, see the interaction betwgeandg, in Section 2.1.)
Please note thdi; = k;;.

¢) Antagonistic effect
If criterion g; strongly, or weakly, supports the assertefBband criteriongy, strongly opposes this assertion, we
consider that the contribution of the criterignto the concordance index must be smaller than the wéjghtat
was considered in cases in whigh does not belong t€(bPa). We suppose that this effect can be modeled by
introducing an antagonism coefficiekjt > 0, which intervenes negatively ic(a,b). (For an example, see the
“cost” and “fragility” criteria in Section 2.2., where “ctids g; and “fragility” is gn.) Please note that the presence
of an antagonism coefficietd, > 0 is compatible with both the absence of antagonism in thersevdirection
(ki; = 0) and the presence of a reverse antagoniggn>(0).

The antagonistic effect does not double the influence of #te gffect; in fact, they are quite different. If
criterion g, has a veto power, it will always be considered, regardlesshaftherg; belongs to the concordant
coalition. The same is not true for the antagonistic effettich occurs only when the criteriap belongs to the
concordant coalition. Let us notice the a veto effect orghodd expresses the power attributed to a given criterion,
gj to be against the assertion “a outranks b”, when the diffteresf the evaluation betweeg)(b) andgj(a) is
greater than this threshold.

4.2 Practical aspects

The four-step procedure presented in this section showsrtumerical values can be assigned to the parameters in-
troduced below in order to characterize the mutual strenmgtiy, mutual weakening, and the antagonistic effects. The
parameters were designed so that these effects could beitdageaccount in the ELECTRE methods that use of the con-
cordance index, as mentioned in Section 3. The four-stegedioe is used in the context of a constructive perspective
when using ELECTRE methods rather than a descriptive ondmf, 1993, 2005, 2007).



Step 1 As is traditional in the ELECTRE method, step 1 assigns nigakvalues to the intrinsic weights, i =1,...,n.
The revised “pack of cards” method can be used for such a parfs®e SRF software by Figueira and Roy, 2002).
The analyst should, however, point out to the DMR that theievalf the relative weighit; should be set without
taking into account the impact that certain criteria, re@gss of whether they belong to the concordant coalition,
could have. In other words, the “cards” should be rankedriggaall the possible kinds of inter-criteria interaction
(cf. Section 2).

Step 2 The analyst should ask the DMR about the possible interatioat he/she thinks must be taken into account. In
order to make sure that the DMR has a good understanding oftéraction effects, the analyst can use illustrative
examples like the ones presented in Section 1. Then, comgideriteriong; and reviewing the remaining criteria
02,03, .- .,0n, it should be easy (and relatively quick), given the veryurabf the criteria, to recognize:

- That considering an interaction betwegnand another criterion is not justified, or

- That an interaction betwees and at least one of the remaining criteria must be considdrethis case,
it is also necessary to define which kind of interaction existnutual strengthening, mutual weakening, or
antagonistic. For our purposes here, we assume that amtgonteraction excludes the presence of the
other two types, in which case, the sign of the interactjom(gst also be defined (cf. 4c).

This procedure is repeated to consider the possible intenscbetweerg, andgs,...,gs, then betweerys and
Os, ...,0On, and, finally between,_; andg.

If the criteria family is appropriately designed, the numbiepairs/ordered pairs for which an interaction effect
can be defined should be rather very small.

Step 3 A numerical value is assigned to the interaction coefficésbciated with each pair identified in the previous step.
As stated in the coefficients’ definition (cf. Sections 2 art) 4the larger their absolute value, the more important
the interaction effect. By definition, these coefficients defined, such that:

If there is a mutual strengthening or a mutual weakeningceffetween criteria gand g, then the relative weights
of these two criteria in @, b) should be k+ kj + kij instead of k+k; (cf. Section 3) as soon as@&Sand a$b is
found.

If criterion gy, has an antagonistic effect with respect to criterigntgen the relative weight of criterion @ c(a, b)
should be k— ki, instead of k(cf. Section 3) as soon as;d%nd bRa is found.

These definitions should be considered to support the aisghgssition on the appropriate value of each interaction
coefficient to take the importance of the effect the DMR cdexs appropriate (cf. Step 2) into account in the
model. Let us review the examples presented in Section 20w Bow the analyst should proceed.

Case 1 (mutual strengthening effect): cf. 4, Xriteriag; andg,. Suppose that when using SRF the resulgis- 5
andk, = 4, and thusk; +k, = 9. Since there is a mutual strengthening effect, the relatigights of these
two criteria should be larger than 9, when comparing the ttesa andd (cf. Table 1). The analyst can ask
the DMR to set the value to be replaced to 9 in this comparis@mrder to adequately model the interaction
that the DMR wants to take into account. If the answer is 12ekample, the analyst should conclude that
ki» = 3.

Case 2 (mutual weakening effect): cf. Dlcriteriags andgs. Suppose that when using SRF the resukyis- 3
andks = 3, and thus, + ks = 6. Since there is a mutual weakening effect, the relativglteiof these two
criteria should be lower than 6, when comparing the two stasd e (cf. Table 2). The analyst can ask
the DMR to set the value to be replaced to 6 in this comparis@mrder to adequately model the interaction
that the DMR wants to take into account. If the answer is 4ef@mple, the analyst should conclude that
Kgs = —2.

Case 3 (antagonistic effect): cf. 2.2, critegigandg,. Suppose that when using SRF the result is- 6 andk, = 4,
and thusk; + ko = 10. Since criteriorys, is antagonistic with respect ta, the weightk; should be lower than
6, when comparing two digital camera modalandd (cf. Table 3). The analyst can ask the DMR to set the



value to be replaced to 6 in this comparison in order to adefgumodel the interaction that the DMR wants
to take into account. If the answer i3for example, the analyst should conclude #jat= 2.5.

Please note that the procedure followed for the latter casdiitle bit different from the other two cases, which
only underlines the difference between the antagonisticefind the mutual strengthening and mutual weakening
effects. This difference is connected to the fact that, wijes 0, it is also possible to havg, = 0 orkj; # 0 (cf.

4.1 c), without requiring thalt, = k/;..

The antagonistic effect that may exist between two critgriand g, can be formally taken into account
as a mutual strengthening effect between these two critémighis case, the initial weight andk;,, obtained
using SRF, should be replaced with the vallges ki, andk, — ki, respectively, such that, = ki, + ki;. However,
this ploy, which is very difficult for those who use it, doed poevent the antagonistic effect from being used to
define the valuek), andk;. In addition, as will be shown at the end of Section 5, this\eience is not valid for
pseudo-criteria.

Step 4 In this step the net balance condition is checked, becanseary specific cases, an improper result can mean a
return to the previous step to modify the value assignednmesateraction coefficients.

Letki; be the negative value of the interaction coefficient usedhéwarterize a mutual weakening effect. Since
the interaction can, at most, render the contribution @éédong; to c(a, b) null whenaS§b andaSib, the following
should be true:

ki — [kij| >0

In the same way, since this interaction can, at most, retggecdntribution of criteriory; to c(a,b) null when
aSbandbR,a, the interaction coefficierl,, that allows an antagonistic effect to be characterizedldhmidefined
such that:

ki—kip >0

Suppose the two previous interactions, where critegas present, were considered. Whafb, aSb, and
bR,a simultaneously occurs, the contribution of the three géteo c(a, b) is equal to:

ki — Kin — [kij |

This quantity must be positive since the two interactioh®mtainto account cannot render the contribution
of gi to c(a,b) non-negative. Thus, in Step 3, the analyst should checkhehetr not the values assigned to the
interaction coefficients fulfill the previous inequalitieBhe different types of interaction considered here wjth
can be present not only with one criterigpor g,, but with two or even, exceptionally, with three or more. $hu
the analyst should check that, for each critergprihat interacts with several criteria, the following netdrate
condition is fulfilled:

Condition (positive net balance) For alli € F,

(k)=( > Tal+3kn)>0

{i,i}:kj<0

If a criterion g; for which this inequality is not fulfilled, the values of theteraction coefficients shown
in brackets should be questioned. Clearly, the number of diinteraction criteria is generally small, thus the
inequalities that must be verified, if any exist, are alsdegfaw.



5 Extensions of the concordance index

This section is devoted to the definition of the concordandex, first wherF is composed of quasi criteria, and then

when at least one criterion is a pseudo-criterion.
Before presenting the formulae it is useful to introduceftilewing additional notation. Let,

- L(a,b) denote the set of all pairg, j} such that, j € C(bPa);

- O(a,b) denote the set of all ordered paiish) such thai € C(bPa) andh € C(bPa).

5.1 The quasi criterion model

Let us recall that a quasi criterion is a pseudo-criteriathghatq; (gi(a)) = pi(gi(a)), forallac A.

5.1.1 Definition ofc(a,b)

The comprehensive concordance index, whaa composed of quasi criteria, is defined as follows,

c(a,b):@(z k+ > ki— > ki/h)

ieC(bPa) {i,jteL(a,b) (i,h)E0(ab)
where,

K@ab)=3k+ 5 k= 3 k&
i€ {i,j}eL(ab) (i,h)eO(ab)

(4)

Note that, in generaK(a,b) # K(b,a). Observe also that, from positive balance conditda,b) > 0 is always true.

As for the new definition o€(a, b), the following properties should be fulfilled.

Coherence The definition of (a,b) as in formula (4) should be coherent with the classical dédiniof the ¢a, b)

as it was presented in Section 3.

It means that, when we compare two acti@nsndb and when there is no interaction effect regarding this com-
parison, the new(a,b) should be the same as the one of Section 3. The proof is quiteusbsince when
there is no interaction effect,(a,b) = 0 and O(a,b) = 0, and consequentlg(a,b) in formula (4) becomes,

c(ab) = g Jier ki with K(a,b) =K.

Boundary conditions: 0 < c(a,b) < 1.

As for the proof let us consider separately the two ineqgealit

1. c(a,b) >0

This inequality derives from the definition ofa,b) and the net balance condition; it is fulfilled for every

K(a,b). The proof is provided in Theorem 1.
2. c(ab)<1
Two cases have to be considered,

(a) C(bPa) = F (all the criteria belong to the concordant coalition)
It representsinanimityand the index must be equal to one,

c(ab)=1

Since unanimity leads to the absence of antagonistic ictieraeffects,c(a,b) can be rewritten as fol-

lows,

c(a.b) = K(ala b) <ieZki +{i.j}ezL(a,b)kij) -

()



(b) C(bPa) # F (at least one criterion belongs @jbPa))
In the previous case, the antagonistic coefficients wer@msent. As soon as these coefficients appear
in c(a,b) it becomes strictly lower than 1, i.e(a, b) < 1.

Remark 4. If F is composed of quasi criteria, the functiofach) presents a discontinuity when(g) + i (gi(a)) becomes
strictly lower than g(b). In the case of pseudo-criteria;(gi(a)) > qi(gi(a)), for alli € F and ac A, this discontinuity
will not occur.

5.1.2 Main theorem

Let us consider the paije,b) € A x Aand calculate the following algebraic sum,

Sab= % k+ > ki— > ky

icC(bPa) {i,iteC(ab) (i,h)E0(ab)

Lemma 1 For all (a,b) € Ax Aand for all fe F, S(a,b) is a monotone non-decreasing functiom\gfand Sa,b) > 0.
(The proof of this lemma is provided in the Appendix)

Remembering that(bPa) can be any subs& C F, the non-negativity 08(a, b) proved in Lemma 1 can be rewritten

as follows, for allE C F,
EEki + ki— Y kn=0
i€ {i,J}€E icE,heF\E

Before introducing the main result it is important to esttbhllso the following lemma.

Lemma 2. For all (a,b) € Ax A and for all fe F, c(a,b) defined as in (4) is a monotone non-decreasing functiakx of
if and only if the non-negativity summation condition idifield. (The proof of this lemma is provided in the Appendix)

The main result is established in the following theorem.

Theorem 1 Monotonicity and boundary conditions hold fofach) as defined in formula (4).

Proof.
Lemma 2 proves monotonicity. Let us now prove the boundangitions,
1. c(a,b)>0

If C(bPa) = @, thenc(a,b) = 0. Suppose that we could haega,b) < 0. This implies that at least one criteridndoes not belong to

C(bPa) # @. Consider that there exists at least one criterio@({bPa). If for all f in C(bPa), At is forced to decrease tit(bPa) = &,
thenc(a, b) cannot increase. Contradiction!

2. c(a,b) <1 _
From condition (5)c(a,b) = 1, whenC(bPa) = F. Suppose that we could haega, b) > 1. This implies that at least one criteriérdoes

not belong taC(bPa). Consider that there exists at least one criterion that doebelong taC(bPa). If for all f, At is forced to increase
till f becomes an element 6{bPa), thenc(a, b) cannot decrease. Contradiction!

The proof is now complete.

5.2 The pseudo-criterion model

When dealing with a pseudo-criteriog), an ambiguity zone should be taken into account, fofal) € A x A,

gi(@) +a(g(@) <ai(b) <gi(a)+pi(ai(a))
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5.2.1 Definition ofc(a,b)

The definition ofc(a, b) can be stated in the following manner,

c(a,b) =

(S c@bk+ S Ze@b.o@bk - Y Za@b.mbak) 6

K(@b) \\ . opa (.} (ab) (inE0(ab)

where,

K(a,b)zzm > Zc(ab)ci@b)kj— > Z(ci(ab),cn(b,a))k
ic {i,jteL(a,b) (i,n)eO(ab)

FunctionZ(-,-) in formula (6) is used to capture the interaction effectdienambiguity zone. It should be remarked that
in the third summatiomy, (b, a) is always equal to 1.

Remark 5. For the sake of clarity and simplicity, the same functiofs, 4 is used in both, the second and the third
summations. It would, however, be possible to use difféuertions.

Letx =cj(a,b) andy = cj(a,b) ory = cy(b,a). Consequentlyx,y € [0,1]. FunctionZ(x,y) is used to get the reduction
coefficients fork;; andkj, when, at least one of the argumentsZgx, y) is within the ranggo0, 1].

What are the properties df(x,y) to guarantee the coherence of formula (6)?

Extreme value conditions When leaving the ambiguity zonega, b) should regain the form presented in formula
(4). Thus,Z(1,1) = 1 andZ(x,0) = Z(0,y) = 0.

Symmetry: For the same reason for pkif = kji, since we assume that alg¢x,y) = Z(y, X).

Monotonicity: When the ambiguity diminishes, the effect due to the imtiBwa cannot increase. Thetix,y) is a
non-decreasing monotone functiohboth arguments andy.

Marginal impact condition : When the ambiguity diminishes passing fram w to X, the relative marginal impact
of the interactions is bounded from above,

VEV(Z(XJr w,y) — Z(x,y)) <1 xywx+wel0]]

We will see the interest of this condition in the proof of Lem® (see Appendix).

Continuity : Formula (2) is a continuous function gf(a) andg;(b) whenpi(gi(a)) > qi(gi(a)), for allac A. If
we want to preserve continuity, then it is necessary Zifaty) is acontinuous functiof each argument.

Boundary condition: For preserving the net balance condition, it is suffici@at Z (x,y) < min{x,y}.

The boundary condition is a particular case of the margmgikict condition. The proof is as follows.

1

V—V(Z(X+ W,y) = Z(x,y)) <1 & Z(x+wy)-Z(xy) <w
Consider nowx=0

Z(0+wy) -Z(0y) <w
and, according to the extreme value conditions,
Z(wy)—0<w < Z(wy) <w

Now, for symmetry, we get

Z(w,y) < min{w,y}.
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Therefore, it is sufficient to consider only the marginal anpcondition. However, for the sake of a better compre-
hension, we keep both conditions; it sounds more intuitive.

Among the multiple forms that can be chosen HiKi,y), we only present two of them which have an intuitive and
meaningful interpretation.

Z(x,y) = min{x,y};

Z(X,y) = Xy.

If x and/or y are equal to 1, both formulae are equivalent. But, wkemdy are both different from 1, that is, when
the two interacting criteria belong to the ambiguity zorent the impact of the interaction is weaker withthan with
min{x,y}. Choosing the mifix,y} formula means that the reduction coefficient is not influenzgwhat happens in the
other ambiguity zone. For these reasons the formykeems preferable to miir y}.

5.2.2 Extension of the main theorem

This section presents an extension of the previous restiliew is composed of at least one pseudo-criterion. The
proofs are similar to the ones provided for Lemma 2 and Thdre
Let us consider the paj@a,b) € A x Aand calculate the following algebraic sum,

Sab= ¥ a@abk+ Y Za@b.c@bki~ Y  Z(a(@b).on(b.a)k,

icC(bPa) {i,iteC(ab) (i,n)E0(ab)

Lemma 3. For all (a,b) € Ax Aand for all fe F, S(a,b) is a monotone non-decreasing functiom\gfand Sa,b) > 0.
(The proof of this lemma is provided in the Appendix)

An immediate consequence of Lemma 3 is tlh(aa b) > 0 for all (a,b) € Ax A. In fact

K(a,b) = Xa,b) + (1-c(@bpk+ Y k)

|eC(bPa j€C(bPa)
Two cases are possibler(C C(aSh C F):
e C(aSh C F: in this case the quantity in between big parentheses isyalpasitive becauske > 0 for all g; € F,
such that the non-negativity &a, b) implies thatk (a,b) > 0;

e C(aSh = @ in this case th&(a,b) = g ki > 0 becausd; > 0, forallg; € F.

Lemma 4. For all (a,b) € Ax Aand for all fe F, c(a,b) defined as in (6) is a monotone non-decreasing functiaxy of
(The proof of this lemma is provided in the Appendix)

Now the main result can be established.

Theorem 2 Boundary conditions, monotonicity, and continuity holdd¢a, b) as defined in formula (6).

Proof.
Lemma 2 establishes monotonicity. Boundary conditions dien considering pseudo-criteria. And continuity desifrem the fact that,

1. the functiong¢ (a,b), Z(x,y) are continuous, and

2. the conditiong¢ (a,b) = 0if g (a) +qr (9f(a)) — 91 (g¢ (b)) = 0 andZ(0,y) = Z(x,0) = 0 guarantees continuity when a criterion becomes
a member or when it is removed from one of the following s&ts, b), L(a,b), or O(a,b).

The proof is thus complete for the general case.

O

We complete this section (cf. end of Step 3 in Section 4.2)Hoyeng that when dealing with pseudo-criteria the
antagonistic effect is not equivalent to mutual strengtigenFor the sake of simplicity, consider a decision probieitin
only two criteria,g; andgp, and the following three cases:

13



a) gi,0n € C(bPa);
b) g € C(bPa) andg, € C(bPa);
¢) on € C(bPa) andg; € C(bPa).

Let us consider modeling casag b), andc) in terms of both mutual strengthening, using the weidhtkc, andkin,
and antagonism, using the weighsky, ki, andkhl

Taking into account modeling in terms of mutual strengthgrand considering the concordance indéx b), we
have (following the above three cases):

kici(a, b) + kncn(a,b) + kinZ(ci(a,b), ca(a, b))
ki +kn+ kinZ(ci(a, b),cn(a,b)) ’

a) c(a,b) =

. kici(avb).

b) C(a7b)_ k|—|—kh '
thh(a b)

© @b =

Taking into account modeling in terms of antagonism and idensg the concordance indexa,b), we have (fol-
lowing the above three cases):

Eci (a,b)+ Ehch(a, b)

a) c(ab) = P ;

_ kGi(a,b) — KyZ(Gi(a,b),cn(b,a) |
b) c(ab) = ki +kn — K, Z(ci(a,b),cn(b,@))
o) clab) = kncn(a, b) — K., Z(ch(a,b), G (b, a))

ki + kn — ki, Z(cn(a,b),ci(b,a))

To get an equivalence between modeling in terms of mutuahgthening and antagonism, the following equations
should hold for all the values a@f(a,b) andcy(a,b) in the above cases, i.e.,

kici(a,b) + kncn(a,b) + kinZ(ci(a,b),cn(a,b))  kici(a,b) +kncn(a,b)

¥ Kkt knZ@@b) m@b) kik
b) kici(a,b) k.c. a,b)— k{ (ci(a,b),cn(b,a))

ki+kn  ki+ko—KiZ(ci(ab),cn(b,a)
0 knch(a,b) khch a,b)— khZ ch(a,b),ci(b,a))

ki +kn B ki +kn— kh|z Ch avb)>cl(b>a))

Notice that the values of the weighks kn, kin andky, ki, ki,, ensuring that the above equations hold, depend on the
values ofci(a,b) andcny(a,b). This means that there are no weighktsk, kin andky, ki, ki giving the same values of
c(a,b) when modeling in terms of mutual strengthening and when firagien terms of antagonism, for all the possible
values ofc;(a,b) andcy(a,b). Therefore, in presence of pseudo-criteria, mutual sthremgng, and antagonism are not
equivalent.

6 Modeling the interaction effects in the illustrative exanples
In this section, the impact on the pairwise comparisons @tlinee interactions effects illustrated in Section 2 isxsho

When taking such effects into account, the comparisonsdmtvwactions can change. In the following sub-sections, it is
assumed that there is no veto effect in the pairwise compagisf the actions.
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6.1 Choosing a site for a new hotel construction project
Table 4 presents the evaluations of the five sites; ¢, d, and e - according to the five criteria. In this example,

- The evaluations of criteriog; (investment costs) are expressed in thousané&s désignated K. The indifference
and the preference thresholds assigned to this criteriermdg; (x)) = 500+ 0.03g;(x) K€ and p1(g1(X)) =
1000+ 0.05g; (X) K€, respectively, wherg is the worst of the two actions (c.f. Section 3.3).

- The evaluations of criteriog, (annual costs) are also expressed 8; khe thresholds assigned to this criterion are
a2(01(x)) = 50+ 0.059: (x) K€ andpz(g1(x)) = 100+ 0.07g:1 (X) K€, respectively, wherg s the worst of the two
actions (c.f. Section 3.3).

- The evaluations of criterigs (recruitment),gs (image), andys (access) are expressed on the following seven-level
gualitative scale: very bad (1), bad (2), rather bad (3)raye (5), rather good (5), good (6), and very good
(7). The values between parenthesis can be used in ELECTRibdseto code the different verbal statements.
Let us notice that such a way of coding plays only a purelyraidiole in the computation; other ways of coding
the verbal scale trough the use of numerical values couldsbd by adjusting the thresholds values (see Martel
and Roy, 2006).The indifference threshold for each catehias been set at one on the seven-level scale and the
preference threshold at two levels.

gimin] | ge[min] | gs[maX | ga[max | gs[max
a | 13000 kK€ | 3000 K€ | Average| Average | Average
b | 15000k | 2500 k€ | Good Bad Very Good
c | 10900 k€ | 3400ke | Good Good Very Bad
d | 15500 k€ | 3500 kK€ | Good Good Good
e| 15000kE | 2600 K€ | Good | Very Bad Bad

Table 4: Some potential sites for the new hotel

Consider again the weights obtained using SRFE: 5, ko = 4, ks = kg = ks = 3, whereK = 18. The concordance
index for the ordered paifa,d) is c(a,d) = % = % Taking into account the mutual strengthening interacttiact
betweeng; andgy, whose the value is set ki, = 3 as defined in Section 4.2, our normalization coefficke(a, d) =
18+ 3 =21. The newc(a,d) = 22 = 4. In fact, c(d,a) does not change whether or not the interaction coeffidignt
is taken into account (i.e¢(d,a) = 1% = %). If the concordance thresholhas been defined &s= 0.55, the mutual
strengthening interaction effect makes it clear thataitebetter thard, whereas they were previously incomparable.

For the comparison between sitegnd e, c(a,e) = % = 11, But, when considering the mutual weakening
(513:3°2) _ 2 the concordance index

interaction effect modeled witkys = —2, K(a,e) = 18— 2 = 16 andc(a,e) = ( 15— = 15
c(e,a) takes always the same valuge,a) = @ = 11 Fors= 0.55, a can no longer be compared t|® whereas it
was the preferred site prior to applying the mutual wealkgeiffiect.

6.2 Launching a new digital camera model

Table 5 presents the evaluations of the four model®; ¢, andd - according to the seven criteria given in Section 2. Let
us precise that:

- the evaluations of criteriog; (price) are expressed #; the indifference and the preference thresholds assigned
to this criterion arep; = 25€ andp; = 50 €, respectively;

- the evaluations of criteriogg (volume) are expressed in cubic centimeters; the threstadsigned to this criterion
areges = 10cn? andpg = 20cn?, respectively;

- the evaluations of criteriog; (weight) are expressed in grams; the thresholdsjare 10g andp; = 209, respec-
tively;

- the evaluations of criterig, (weakness)gs (workability), g4 (image), andgs (aesthetics) are expressed on the
following seven-level qualitative scale: very bad (1), b@&}, rather bad (3), average (4), rather good (5), good
(6), and very good (7); these criteria have an indifferehceshold of one on the seven-level scale and a preference
threshold of two.
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gu[min] | gz[min] ga[max ga[max gs(max | ge[min] | gz[min]
a| 220€ Average Average Rather Good Average | 190cn? | 155¢
b | 300€ Bad Rather Good Average | Rather Good 160cn? | 145¢g
c| 160€ Bad Very Bad Average | Rather Bad| 140cn? | 130g
d | 280€ | Very Good| Average Very Good Average | 220cn? | 1709

Table 5: Some possible digital camera models

Consider again the weights obtained by using SRF 6, ko =4, ks = kg = ks = 1, ks = ky = 2, whereK = 17.
The concordance index fga,d) is c(a,d) = W = i—% (criteriongy is in the ambiguity zone, and it only counts

for 50% of its overall weight). Now, consider the antagadnisffect, wherek}, = 2.5. The new concordance index takes

the valuec(a,d) = 25, But, ¢(d,a) remains the same (i.ec(d,a) = @53 — 8 |f sis defined as = 0.6, when

taking the antagonistic effect into account, the actioreol®e incomparable, althoughwas preferred tal before. This
incomparability shows that this effect can imply signifitahanges.

7 Concordance index and the Choquet integral

The Choquet integral (see Choquet, 1953) is an aggreggpemimr permitting to model interactions between critdtia

is used to build a value function giving a complete preorder, a transitive and strongly complete binary relatiather
than simply an outranking relation, being only reflexive awod transitive and complete, as it is the case in ELECTRE
type methods. Moreover, the way in which the Choquet intédgrased is questionable especially with respect to two
main points as stated by Roy (2007):

1. the hypothesis that the evaluation of each criterion ppesed to be expressed on the same scale in a meaningful
way; and,

2. the way in which the importance of criteria are measurealigih the Shapley indices.

In what follows we will show that the numerator of the new cartiance index of formula (6) can be interpreted
as the classical Choquet integral under two conditions: magmnistic effect is taken into account, afhe= min{x,y}.
Finally, we will show that for modeling the numerator of themnconcordance index of formula (6) in case of antagonistic
effect we need to use the bipolar Choquet integral.

The Choquet integral (see Choquet, 1953) of a vexter(xi, %z, ..., X)) € R with respect to a capacity being a
functionp: 2° — [0,1], such that

1. u(B) > u(C), foralBCCCF
2. (@) =0andu(F) =1,

is defined

n

Ch(x, ) = _Z(X(i) — X(i-1))M(B;))

where,(-) indicates a permutation &f such thak ;) <X < ... <Xn), X0) = 0andB(i) = {(i),...,(n)} . The Choquet
integral can be interpreted as a generalization of the weighverage aggregation method when interactions between
criteria have to be taken into account. This is clear undadgble after the concept of Mobius transform is introduce
and the Choquet integral is reformulated according to suchrsform. Given a capacity, its Mobius transform (see,

for example Rota, 1964) is given by the val@$s) € R , SC F, such that

a(s) = ; (-1 (), scF
cs
Using the Mobius transform, the capacity can be expressed a

(S = Tzsa(T), SCF
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while the Choquet integral can be rewritten as follows,
Ch(x,p) = ; aT)min{x : ieT}
cs

Let us remark that the values afS), SC F, are related to the interaction of elements frBmThus if there is no
interaction, we have(S) = 0 for all SC F with |§ > 1, and thus,

WS = 3 allip), ScF

e

while the Choquet integral becomes,

Chix,u) = > a({i})x = > u({i})x
that is the Choquet integral collapses to the weighted geenaethod of values; with weightsu({i}) = a({i}). An
interesting case of interaction, often used in the apptinatof Choquet integral for its simplicity, is given by-2dditive
capacity (see Grabisch, 1996), being a capgciuch that for its Mobius transform we have théf) = 0 for all SC F
with |§ > 2, and thus

(S = 3 alfi)) +

a({i,j}), SCF
i€ {i,]}CS

while the Choquet integral becomes,

Ch(x, u) = Z a({ib)x + a({i, j}) min{x;, x; }.

i€ {i,J]}CF

Looking at the concordance index from the point of view of Qinet integral (since in case of absence of interactions
the concordance index of ELECTRE methods is the weightethgeeof valueg;(a, b)), it can be seen as the Choquet
integral of value; (a, b) with a capacityu(S) = % for all SC F. Instead, in case of presence of mutual strengthening
or mutual weakening effect, but not the antagonistic effisgin the numerator of the concordance index we proposed in
the previous sections corresponds to the Choquet intefvallaesc;(a, b) with a capacityl(S) = Yieski + 3 fi jicskij,
for all SC F in case ofZ(x,y) = min{x,y}.

The antagonistic effect cannot be taken into account wighathove formula. As for taking it into account we will
consider the bipolar Choquet integral.

Given the set or family of criterialF = {091,92,...,0i,...,0n} or simply F = {1,2,...i,...,n} consider the set
M={(B,C) : BB.CCF, BNC# g}.

The antagonistic effect can be modeled in the frameworkeobtpolar Choquet integral (see Grabisch and Labreuche,
2005a and Greco et al., 2002).bicapacity(Grabisch and Labreuche, 2005a, 2005b) is a fungtiorM — [—1,1] such
that,

1) forallBC D C F andE C C C F such thatB,C), (D,E) € M, (A, B) < p(C, D),
2) W(2,9) =0,
3) w(F,2)=1andu(2,F)=-1.
A bipolar capacity(Greco et al, 2002) is a function
boip : M — [0,1] x [0,1], (B,C) — bip(B,C) = (H5io(B.C). bgip (B,C))
such that,
4) forallBC D C F andE CC CF such tha(B,C), (D,E) € M, py;,(B,C) < W, (D, E) andpyy; ,(B,C) > by (D, E),

5) forall BCF, W;,(@,B) = 0 andy;,(B, @) = 0,
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6) Myip(F, @) = 1 andpy, (2,F) = 1.

Now, the bipolar Choquet integraCfy) of x € R", with respect to bicapacity,, can be defined as follows (Grabisch
and Labreuche, 2005b),

n

— S Iy + B
Cho(cm) = 3 (o~ o) (B, B )
where,[-] indicates a permutation & such thatx) |, [X2)[,<,..., < [Xn)ls [X0)| =0, AZB ={jeF : x;> x|}, and
Ap=1{1€F 1 x5 <0, =x) =[x}

And, the bipolar Choquet integraCfyip) of x € R", with respect to bipolar capacityip, can be defined as follows,

Chin(Xv Ubip) = Chgip(xv Ubip) - Ch(;ip(xv Ubip)
with

Chplcbop) = i—i (o = i) i (B Biy)

being thepositive componerdf the bipolar Choquet integral, and

n

Chip (% Koip) = Zl (|X(i)| o |> Hoip (Bzir), B(*i)>

=
being thenegative componermif the bipolar Choquet integral (Greco et al, 2002).

To calculate the bipolar Choquet integral we have to fix tHeevaf i, (B, C) for all (B,C) € M, while to calculate the
positive and the negative components of the bipolar Chdgtegjral we have to fix the value gﬁip(B,C) andugip(B,C)
for all (B,C) € M. Thus, to apply the bipolar Choquet integral a very large Ipeinof parameters should be defined. To
deal with this problem Grabisch and Labreuche (2005a) megohe 2-additive bicapacities, while Greco and Figueira
(2003) proposed the 2-order decomposable bipolar capscilihe 2-order decomposable bipolar capacity measurg give
us a model to compare the bipolar Choquet integral with tmeaalance index in case where the antagonistic effect is
present.

A bipolar capacity is 2-order decomposable if there exiat{j},), a* ({j,k},2), at({j}, {k}), a (2,{j}),
a (2.{j,k}),a ({j}.{k}) €R, j,keF, j #k, such that, for al(B,C) € M,

- p‘&p(B7C): EBaJr({j}?@)"’_ a+({j7k}7®)+ aJr({J}?{k})

J€ j,keB jeB, keC

- ut;p(B>C) = EBai(@,{]})‘F

j€ i,

S @@kt 3 a(lih )
B jeB, keC

The bipolar Choquet integraCyip) of x € R", with respect to a 2-order decomposable bipolar capagity can be
defined as follows,

Chin(Xv Ubip) = Chgip(xv Ubip) - Ch(;ip(xv Ubip)
with,

Chyip (X Hoip) = FZ a({ibex+ Y a({ikhe)min{x,xd+
jeF, xj>0 j-keF, Xj, x>0

Y et k) ming, —xd
j.KeF, x;>0, %<0

being thepositive componerdf the bipolar Choquet integral, and

Chyip (X, Mbip) = FZ oa_(@>{j})(—xj)+ > a (@ {j.kh)min{-xj, %+
JEF,Xj<

j-keF, Xj,x<0

Sy a ik ming, —xd
j keF, x>0, %<0
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being thenegative componemif the bipolar Choquet integral (Greco and Figueira, 2003).

Observe that the numerator of the concordance index we pegjiocase oZ (x,y) = min{x,y}, corresponds to the
positive part of the bipolar Choquet integral of vecter (x1,...,X,) with X, = ¢i(a,b) if i € C(bPa) andx, = —cj(b,a) =
—1if i € C(bPa) in case

uBLip(Rv S) = Zkl + k” + ki/h, for all (R, S) S M,
i€ {i,j}CS ieS heR

which proves the relation between our proposal and Choqtegrial for this particular case.

8 Conclusion

In this paper we introduced three types of interaction tHatvamodeling a large number of dependence situations in
real-world decision-aiding problems. We showed how to fake account these types of interaction in the concordance
index used within the ELECTRE methods framework. For thigopse, formula (2) can be simply replaced by (6) in
all of the ELECTRE methods. We explained how the extensiai@iconcordance index we are proposing can be used
in practice. Nevertheless, this extension is appropriatg when the number of pairs of interaction criteria is rathe
small. Otherwise, we considere that the family of critetidd be rebuilt, since it contains too many interactions
and possibly incoherencies. In addition, we showed theslimktween our approach and the Choquet integral. As a
line for possible investigation in the future we can mentioa study of the interactive protocol of the decision-maker
or their representatives when facing to situations witkriattion between criteria in real-world problems. A sof@va
development and implementation will also be one of the maircerns in the near future.

Acknowledgements The first and the third authors acknowledge the support frasotFrench PESSOA bilateral
cooperation. The authors acknowledges Benedetto Matawat Manuel Matos for the valuable comments, remarks,
and suggestions they made on a draft version of this papées.r@search also partially benefited from the COST Action
0602 research project on “Algorithmic Decision Theory”.

Appendix

Proof of Lemma 1
The proof of this lemma is based on the fact that, if the diffeeA; decreases, eith&(a,b) remains constant or it decreases. Two cases should
be considered.

1. Criterionf belongs taC(bPa). _
If f belongs taC(bPa) it cannot belong t&€(bPa). Consequently, the pa{ii, f } will not belong toL(a,b). The decreasing ak; does not
affect neither the first nor the second summations in the dtarof S(a, b). Whatever, it will occur with the existence or not of ordepatdrs
(i, f) € O(a,b), the decreasing dis has no influence on the third summation. ConsequeBféyb) remains constant.

2. Criterionf belongs taC(bPa).

Two subcases have to be considered,

(a) Criterionf stills remain inC(bPa). _
The decreasing ahs will not move f from C(bPa). Hence, the three summations in the definitiors@, b) will not be affected.
Then,S(a,b) remains constant too.

(b) Criterionf moves toC(bPa). _
The decreasing ks movesf from C(bPa) to C(bPa). This moving has some implications on the result. The newevaf S(a, b)
will become,

S(a, )N = S(a,b)2 — (ki + S ki 3 Kt Y K )
{f,j1el0 (ab) (f,h)c0%1(a,b) (i,f)cONew(a,b)

where, L% (a,b), 0°'9(a,b) represent the setsa,b) andO(a,b) beforeAs decreases an@N®"(a,b) represents the s€(a,b)
afterAs decreases. The quantity in between big parenthesis isg@dgsnon-negative according to the net balance conditidrich
ensures

ki +

kej— Kin >0,

{f.j}eLZ‘d(a,b) (f,h)e(;‘d(a.b)
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and the positivity of the parameters relative to the antagoreffect, which ensures

kit > 0.
(i,f)eozew(a,b)

Consequentlys(a, b) cannot increase.

The proof of the monotonicity d§(a, b) is complete. Let us now show th&ta, b) > 0.

_ If C(bPa) = @, thenS(a,b) = 0. Suppose that we could ha@a,b) < 0. This implies that at least one criteridndoes not belong to
C(bPa) # @. Consider that there exists at least one criterio@i(ioPa). If for all f in C(bPa), At is forced to decrease till(bPa) = @, thenS(a, b)
cannot increase. Contradiction!

The proof is now complete.

Proof of Lemma 2.
The proof of this lemma is based on the fact that, if the diffieeA; decreases, eithe(a, b) remains constant or it decreases. Two cases should
be considered.

1. Criterionf belongs taC(bPa). _
If f belongs taC(bPa), afterA; decreases it continues to belon@dPa), such that the se@(bPa), L(a,b) andO(a, b) remain unchanged.
Consequently, the value &f(a,b) and the three summations in (4) do not change and, theref@é) remains constant.

2. Criterionf belongs taC(bPa).

Two subcases have to be considered,

(a) Criterionf stills remain inC(bPa). _
Decreasind\s will not make a move of from C(bPa) to the opposite coalitiof(bPa). Again, the value oK (a,b) does not change.
Hence, the three summations will not be affected. Thkémb) remains constant too.

(b) Criterionf moves taC(bPa). _

When decreasing¢, f moves fromC(bPa) to C(bPa). This moving has some implications on the result. Considerfollowing
additional notation,

o= S(a, b)NeW

B= K(a, b)New

y= K(a, b)Old _ K(a, b)NeW
0 =Kks¢

whereK (a,b)?'? denotes the value df (a,b) beforeAs decreases, arf(a,b)NW andK (a,b)Ne" denote the value d¥(a,b) and
K(a,b) afterAs decreases.

The concordance indicega, b)°!d andc(a, b)NeY can be rewritten as follows,

a+y+d

old _
c(a,b)~' = iy

and

o(a,p)New— &

B

Therefore, the monotonicity conditiafa, b)©'d > c(a, b)NeW becomes"‘ET"t5 > §. Sincep = K(a,b)N*¥andB+y=K(a b)Y,

we haveB > 0 andp+y > 0. Through the application of simple algebraic operatiovesget,

a+y+06 _ « .
By > 8 & (0+y+0)B> (B+y)a < (y+d)B>ay. (i)

Two cases are possible:

e y < 0: in this casdy+3)B > 0 (observe that, by lemma ¢+ 8 = S(a,b)°'d — S(a,b)NeW > 0) anday < 0 (notice thatr > 0,
becausex equalsS(a, b) after decreasings and, by Lemma 15(a, b) is always non-negative),
e y> 0: sinceP > a (notice thad — o = Ficc(ppy ki) anda > 0, (i) holds ifd > 0, which is always true.

Therefore, in any casg) is true and we can conclude that, when decrea8ing(a, b) also decreases.

The proof is complete.
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Proof of Lemma 3.
The proof of this lemma is also based on the fact that if thiedihce/\; decreases, eith&a, b) remains constant or it decreases. Two cases have

to be considered.

1. Criterionf belongs taC(bPa). _
As in the absence of pseudo-criteria, afigerdecreases it continues to belondXPa), such that the seS(bPa), L(a,b) andO(a,b) re-
main unchanged. Moreover, if there exist ordered @iy € O(a,b), then when decreasidiy ct(b,a) remains equal to 1. Consequently,
the value oK (a,b) and the three summations in (6) do not change and, theref@é) remains constant.

2. Criterionf belongs taC(bPa).
Now, three subcases have to be considered.

(a) Criterionf belongs taC(aSh.

The decreasing dk; does not moves; it remains thus irC(aSh. More precisely, the decreasing&f will not make any change
in the three components 8fa,b), which remains constant.

(b) Criterionf belongs taC(bQa).
After decreasind\¢, criterion f stills remain inC(bQa), either because it belonged to this coalition before or seat moved to
C(bQa) due to the decreasing 4f. All the summations in the definition &a, b) are affected. Let us suppose thata, b) changes
its new value and becomes(a,b) — A, with A > 0. We have the following inequality,

S(a.7 b)NeW_ S(a7 b)OId _

~Bki+ Y (Z(er(ab)-A.cj(ab) - Z(cr(ab).ci(ab)) )i+
jeCab)

— 5 (Zer(ab)—a.en(ba) ~Z(er(@b)cnlb ) Koy
heCbPa)

<

ki S (Z(erab) - Ag(ab) - Z(cr(ab).ci(@b)) ki +
jeClabyk

;<0
~ Y (Zer(ab)~A,cn(b.a) - Z(cr (ab),cn(b,a)) )Ksy
heC(bPa)
Let us remark that for ath € C(bPa),
Z(cr(a,b) — A, cn(b,a)) — Z(cr (a.b),cn(b.a)) = — (Z(cr(ab),cn(b,a)) ~ Z(c1 (a.b) — A,cn(b,)))

From the marginal impact condition and puttinga,b) — A = x, cy(b,a) =y, andA = w in the previous condition we obtain,

~ (2(er(@b).n(b.2) ~ Z(cr(ab) - a,cp(b.a)) <1
and therefore,

Z(cy (a,b),cn(b,a)) — Z(cr (. b) — A,cy(b,a)) < A
or, in an equivalent way,

Z(Cf (av b) —A, Ch(bv a)) 7Z(Cf (av b)vch(bv a)) > A

And, now from this expression we obtain,

jeC(a,b):ksj<0

~aki— Y (Z(ei(ab)~a.ci(ab) ~Z(cr(@b).cj(@b) ) kjl+

— 5 (Zer(@ab)—a.en(ba) ~ Z(er(@b).cnlb ) )Key
heC(bPa)

IN
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Ok A Y (ke[ wfh:fA(kff S kel ; wfh)
jeC(a,b):ksj<0 heC(bPa) jeC(a,b):ksj<0 heC(bPa)

From the net balance condition we have,

ks — [Kej|— Z k/fh>0
jeClab)krj <0 he¢BPa)

and, therefore, sinc& > 0, we have

—A(kf—fz kijl— Y ’fh)<o

jeC(a,b):ksj<0 heC(bPa)
such that
S(a, b)Newi S(a, b)Old <0

and, we can conclude that, after decreadingS(a, b) decreases.

(c) Criterionf moves taC(bPa).
The decreasing ak¢ will move f to C(bPa). In such a cases(a,b)ks can no more be found in the expressiorStd, b). If there
arej such that{f, j} € L(a b), then the term&(c¢(a,b),cj(a,b))ks; will be removed from the second summation of (6). For all
i € C(bPa), the pair(i, f) enters inO(a, b), while for allh € C(bPa) the pair(f,h) goes out fronD(a,b). The new value of(a,b),
Sa, b)NeW, is equal to the previous on§a, b)o'd, minus a certain quantity; it is calculated as follows,

S(a.7 b)NeW: S(a7 b)OId

~(cr@abki+ 5 Z(er(ab).ci@b)k
{f.i}eL(ab)

- z Z(Cf (a7 b),Ch(b, a))ki/f + Z Z(Ci(a7 b),Cf (b7 a))kllf>
(f,h),heC(bPa) (i,f),ieC(bPa)
Now, we have to prove that the quantity between parenthelsemted byAS(a, b), is non-negative. Remembering th&(x,y) <
min{x,y} for all x,y € [0, 1] and the net balance condition we get

AS(a,b) = ct(a,b)ks + Z Z(ct(a,b),cj(ab))ky;

{f,jiteL(ab)
- z Z(Cf(a7b)7ch(b7a))k/fh+ Z Z(Ci(a,b),Cf (ba))kllf
(f,h),heC(bPa) (i,f),ieC(bPa)
>
ci(a,b)ki — > Z(ct(a,b),cj(a b)) ks

{f,i}eL(ab).ksj<0
- Z Z(Cf(avb)vch(bva))k/fh+ Z Z(Ci(avb)vcf (ba))kllf

(f,h),hEC(bPa) (i,f),ieC(bPa)
>
c@b)(ki— Y kyl- Y )
{f,i}eL{ab)ksj<0 (f,h),heC(bPa)
+ > Zc(ab),ci(ba)ki >0
(i,1),icC(bPa)

Consequentlys(a, b) decreases.

The proof of the monotonicity db(a,b) is thus complete. The proof &a,b) > 0 can be obtained from the monotonicity$f, b) in an
analogous way as in the case of quasi criteria.
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Proof of Lemma 4.
The proof of this lemma is also based on the fact that if thiedihceA decreases, eithefa, b) remains constant or it decreases. Two cases have
to be considered.

1. Criterionf belongs taC(bPa).
For the same reasons as in the absence of pseudo-crifgrik) remains constant.

2. Criterionf belongs taC(bPa).
Now, four subcases have to be considered.

(a) Criterionf belongs taC(aSh and it remains irC(aSh after decreasings.
The decreasing of; does not movef to another coalition. Thus, the decreasingsfwill not make any change in the three
components of the numerator afa, b), neither in the normalization coefficiekta,b). Consequentlyg(a, b) remains constant.

(b) Criterionf moves fromC(aSh to C(bQa).
After decreasing\t, criterion f moves toC(bQa) due to this decreasing and the valuepfa, b) passes from 1 tos (a, b)NeW < 1.
All the summations in the numerator of (6) are affected. Témoad and the third summation in the denominators can befimadi

also.

Consider the following additional notation,
= S(a.7 b)New
B=K(abNe"

y=K(a,h)%" —K(abNev

&=k (1—cr(a b)Ne")
whereK (a,b)?'" denotes the value df (a,b) beforeAs decreases, anf(a,b)NeW andK (a,b)Ne" denote the value df(a,b) and
K(a,b) afterAs decreases.

Thus, we have that
a+y+d

B+y
such that the monotonicity conditiaria, b)°'d > c(a, b)NeWbecomes as follows,

c(a,b)0d = and c(abNev= <

a+y+9o S a
B+vy B

Observe thap > 0 andB+y > 0 (becaus® = K (a,b)N®VandB + y= K (a,b)®'d). Therefore, through the application of very simple
algebraic operationgii) is equivalent tqa +y+6)B > a(B+Y), from which we obtain

(i)

(y+93)B > ay (iii)
Notice also thay+ 3 = S(a,b)°'d — S(a,b)NeWand for lemma 3 we hav@(a, b)°!? — (a,b)Ne"> 0, such thay+ & > 0 always.
We prove also thg > a. In fact,

K@bN"=sabNr( 5 k+ §  (1-c@b)k)
ieC(bPaNew jeC(bQa)New

such that, remembering thate C(bQa)N®" we get that the quantity in between big parentheses is alwagitive. Therefore
K(a,b)N®W> S(a, b)NeWand consequentl§ > a.
Coming back to conditiofiii ), two cases are possible:

e y<O0:inthis casdy+d)p > 0 anday < 0 (notice thatr equals(a, b) after decreasing s and, by Lemma 33(a,b) is always
non-negative), such théii ) holds;
e y> 0: sinceP > a anda > 0, (iv) holds ifd > 0, which is always true.

Therefore, in any casgii ) is true and we can conclude that, when decrea&ing(a,b) also decreases.

Criterionf belongs taC(bQa) and it remains itC(bQa) after decreasing\s.
This case is analogous to the previous one, beaauseb) changes its new value and becorng&, b) — A, with A > 0. Thus, when
decreasing\f, c(a, b) also decreases.

(d) Criterionf moves fromC(bQa) to C(bPa).

(c

~

Let C(bPa)?'d, L(a,b)®!d, andO(a, b)°!d denote the set§(bPa), L(a,b), andO(a,b), respectively, before decreasing, and let
C(bPa)NeW L(a, b)NeW, andO(a, b)N®W denote the same sets after decreagingWe have,

C(bPa)NeW—=C(bPa)°'d\ {f}
LabNe=L(ab)%\ {{j,f} : € CbPa®\ {1}}
O(a,b)New = O(a7b)°'d\{(f7h) : heC(bPa)O'd}U{(Lf) : ieC(bPa)O'd\{f}}

Therefore all the summations in the numerator and in the ¢énewhinatior of (6) are affected.
Consider the following additional notation,
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o= S(a, b)NeW

B= K(a, b)New
y= K(a, b)Old _ K(a, b)NeW
o0 =kscs(a,b)

whereK (a,b)?'"? denotes the value df (a,b) beforeAs decreases, anf(a,b)NW andK (a,b)Ne" denote the value df(a,b) and
K(a,b) afterAs decreases.

Thus, we have that

o) a
ca,bO'd:a+y+ and c(a,b)NeW= =
(ab)o= =51 (a b=
such that from the monotonicity conditiaa, b)©'¥ > c(a, b)N®"becomes as follows,
a+y+d _« .
> — iv
gy 5

Observe thaB > 0 andB +y > 0 (becaus@ = K (a,b)N®"andB +y = K (a,b)®'%). Therefore, through the application of very simple
algebraic operationgiv) is equivalent tqa +y+ 6)3 > a(B+Y), from which we obtain

(Y+9)B > ay (V)

Notice also thay+& = S(a,b)°'d — S(a,b)NeWand for lemma 3 we hav@(a, b)°!? — (a,b)NeW> 0, such thay+ & > 0 always.
As proved in previous point (b), remember tifat o.
Coming back to conditioifv), two cases are possible:

e y<O0:inthis casdy+9)B > 0 anday < 0 (notice thatr equalsS(a, b) after decreasings and, by Lemma 33(a, b) is always
non-negative), such thét) holds;

e y> 0: since, as proved in previous point (B)> o, anda > 0, (v) holds if 8 > 0, which is always true.
Therefore, in any cas@) is true and we can conclude that, when decreaing(a, b) also decreases.
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