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ELECTRE METHODS WITH INTERACTION

BETWEEN CRITERIA: AN EXTENSION

OF THE CONCORDANCE INDEX

ABSTRACT

This paper presents an extension of the comprehensive (overall) concordance index of ELECTRE methods, which
takes the interaction between criteria into account. In real-world decision-aiding situations, it is reasonable to consider
only the interaction between a small number of criterion pairs. Three types of interaction have been considered:
mutual strengthening, mutual weakening, and antagonistic. The new concordance index correctly takes into account
such types of interactions, by imposing such conditions as boundary, monotonicity, and continuity. We demonstrate
that the generalized index is able to take the three types of interaction, or dependencies, between criteria into account
satisfactorily, first using quasi criteria and then using pseudo criteria. We also examine the links between the new
concordance index and the Choquet integral

Key-words: Multicriteria analysis, Outranking methods, Interaction between criteria, Choquet integral.

1 Introduction

In this article, we are particularly interested in those decision-aiding situations that can be supported using an ELECTRE-
type method (cf. Figueira et al., 2005 and Roy and Vanderpooten, 1997). This kind of situation implies that a coherent
family F of n criteria has previously been built (cf. Roy and Bouyssou, 1993 and Roy, 1996).

An important advantage of using outranking methods (e.g., ELECTRE methods) is that they are able to take purely
ordinal scales into account (Martel and Roy, 2006), withoutneeding to convert the original scales into abstract ones with
an arbitrary imposed range, thus maintaining the original concrete verbal meaning (for another methodology considering
purely ordinal scales, see Greco et al., 2001). Such conversions are used in many multi-criteria methods - for example,
AHP (Saaty, 2005), MACBETH (Bana e Costa and Vansnick, 1994;Bana e Costa et al., 2005), MAUT (Keeney and
Raiffa, 1976), SMART (Edwards, 1977; Von Winterfeldt and Edwards, 1986), TOPSIS (Hwang and Yoon, 1981) - as
well as in methods based on fuzzy integrals (Grabisch, 1996;Grabisch and Labreuche, 2005). A second advantage is that
indifference and preference thresholds can be taken into account when modeling the imperfect knowledge of data, which
is impossible in the previous mentioned methods.

When using an ELECTRE-type method ( whatever a particular version of the method is considered), the criteria
family F must be designed so that there is no significant interaction between any criterion pairs. By definition, we say
that there is significant interaction between two criteria if links (whatever their nature) exist between these criteria that
must be taken into account to support the validity, credibility, or intensity of the comprehensive preference relationships
built by the model (based onF) to clarify the decision. In fact, fuzzy integral-based methods were introduced in decision
aiding to allow such interactions to be taken into account. This article proposes and extends ELECTRE methods that
allow certain types of interactions to be taken into accountvery concretely. Specifically, this paper extends the notion of
concordance, as it has been defined for ELECTRE methods, except for ELECTRE IV (see Figueira et al., 2005), to three
particular types of interaction, designated here as mutualstrengthening, mutual weakening, and antagonistic.

The rest of this paper is organized as follows. Section 2 provides two examples to clarify the reader’s understanding
of the three types of interactions that can occur in real-world decision-aiding situations. Section 3 introduces the funda-
mental concepts, definitions, and notation, and reviews thegeneral notions of comprehensive concordance index as well
as its fundamental properties. Section 4 defines the three types of interaction considered in this paper, as well as how the
decision-maker (DM) can assign numerical values to the parameters characterizing these interactions. Section 5 presents
an extension of the concordance index, starting with the simplest case in which only quasi criteria are considered, and
then moving towards the more complex case in which pseudo-criteria are considered. In Section 6, the examples pro-
vided in Section 2 are discussed in order to assess the contribution of our extension. Section 7 compares our method with
Choquet integral methods to evaluate how the two approachestake the interactions between criteria into account. The
last section offers our conclusions and lines for future research.
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2 Illustrative Examples

This section provides two examples in order to clarify the effects of the different interactions dealt with in this paper.
These effects generate additional information that must betaken into account in the concordance indices. (Section 6
offers a more detailed discussion of how such additional information can be modeled.) In the criterion descriptions,[min]
is assigned to the criteria to be minimized and[max] to the criteria to be maximized.

2.1 Choosing a site for a new hotel construction project

In this example, a site must be selected for a new hotel, whichbelongs to a multinational group, in a city where the
group is not yet established. Suppose that a consulting company (henceforth, called the analyst) was asked to support
that decision-aiding process of the Chief Executive Officer(CEO) of this group (henceforth, called DM), and that this
analyst and the decision-maker’s representative (henceforth, called DMR) decided to use an ELECTRE-type method. To
this end, a family of five criteria (g1−g5) is built:

g1: land purchasing and construction costs (investment costs) [min];

g2: annual operating costs (annual costs)[min];

g3: personnel recruitment possibilities (recruitment)[max];

g4: target client perceptions of the city district (image)[max];

g5: facility of access for the target clients (access)[max].

Indifference and preference thresholds (see Section 3) areassociated with each one of these criteria. For the first
two criteria, which are quantitative, these thresholds model the “approximate” character of the financial evaluations, and
for the three other criteria, the unavoidable arbitrariness of the value due to the subjectivity of purely ordinal evaluations.
These criteria do not have the same importance for the DMR. Inorder to represent these differences, intrinsic relative
weightsk j , j = 1, . . . ,5, are associated to the corresponding criteria in the aggregation procedure, using the SRF (acronym
of Simos-Roy-Figueira) technique and software by Figueiraand Roy (2002). When considering two criteria in SRF, the
value of each weight is fixed without taking into account the impact that the other criterion weight can have independently
of whether or not belongs to the concordant coalition; in other words, all the possible interactions between criteria are
abstracted.

The following tables given information that would allow theDMR to see how the weights intervene in the comparison
of two sites.

a) The comparison of sitea with sitesb, c, andd, in terms of the two financial criteriag1 andg2, is shown in Table 1.

b c d
g1 a is better thanb a is worse thanc a is better thand
g2 a is worse thanb a is better thanc a is better thand

Table 1: Comparison of sitea with sitesb, c, andd with respect to the financial criteria

According to the classic definition of the concordance index(see Section 3), the role that criteriag1 andg2 should
have for supporting the answer to the assertion “a is at least as good asb (or c or d)” is characterized by the
following weights,

k1 in the comparison withb,

k2 in the comparison withc,

k1 +k2 in the comparison withd.
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Given the information presented in Table 1, the DMR considers the weightsk1 andk2 assigned to criteriag1 and
g2 appropriate, when only one criterion,g1 or g2, supports a decision that one action is better than another one.
However, he/she judges that the sumk1 +k2 is not sufficient to characterize the role of this criteria pair when both
supports the decision that one action is better than anotherone, because in this case each criterion is strengthened
by the other given the degree of complementarity between them. The comparisons provided by the DMR about
actionsa, b, c, andd express his/her conviction that, if one action is better than another one with respect to criteria
g1 andg2 conjointly, it would be interesting to be able to take this mutual strengthening effect into account. As this
reasoning shows, the classic concordance index is not able to take such a mutual strengthening effect into account
(for an illustrative example see Section 6). This effect canbe taken into account by increasing the weightsk1 and
k2 for the criteriag1 andg2, respectively in the concordance index of the assertion “a is at least as good asd”, when
both criteria intervene conjointly to make the assertion valid. In the following sections, the amount that must be
added tok1 +k2 to model this mutual strengthening effect is denotedk12 = k21.

b) The comparisons of sitea with sitesb, c, and e in terms of the two purely ordinal criteria,g4 andg5, are presented
in Table 2.

b c e
g4 a is better thanb a is worse thanc a is better thane
g5 a is worse thanb a is better thanc a is better thane

Table 2: Comparison of sitea with sitesb, c, andd with respect to the image and access criteria

Given the information presented in Table 2, the DMR considers the weightsk4 andk5 assigned to criteriag4 and
g5 appropriate, when only one criterion,g4 or g5, supports a decision that one action is better than another one.
However, he/she judges that the sumk4 + k5 is too high to characterize the role of this criteria pair when both
supports the decision that one action is better than anotherone, because in this case each criterion is weakened by
the other due to the degree of redundancy between them. The comparisons provided by the DMR about actions
a, b, c, and e express his/her conviction that, if one action is better than another one with respect to criteriag4

andg5 conjointly, it would be interesting to be able to take this mutual weakening effect into account. As this
reasoning shows, the classic concordance index is not able to take such a mutual weakening effect into account
(for an illustrative example see Section 6). This effect canbe taken into account by decreasing the weightsk4 and
k5 for the criteriag4 andg5, respectively, in the concordance index of the assertion “a is at least as good ase”,
when both criteria intervene conjointly to make the assertion valid. In the following sections, the negative amount
that must be added tok4 +k5 to model this mutual weakening effect is denotedk45 = k54.

2.2 Launching a new digital camera model

In this example, a manufacturer wants to introduce a new digital camera model on the market. As in the previous example,
we assume that the DMR and the analyst decided to use an ELECTRE-type method. For this purpose a family of seven
criteria (g1−g7) is built:

g1: purchasing costs (cost)[min];

g2: weaknesses (fragility)[min];

g3: user friendliness of the controls (workability)[max];

g4: image quality (image)[max];

g5: aesthetics[max];

g6: volume[min];

g7: weight [min].
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As in the previous example and for the same reasons, indifference and preference thresholds, as well as weights, were
associated to each one of the seven criteria. In discussion,the DMR and the analyst must again decide how the weights
of the criteria cost (g1) and fragility (g2) should intervene in the comparison of the possible actionsor camera models. A
digital camera modela can be compared to the remaining modelsb, c, andd, according to these two criteria (g1 andg2),
as is shown in Table 3.

b c d
g1 a is better thanb a worse thanc a is better thand
g2 a is better thanb a is better thanc a is worse thand

Table 3: Comparison of modela with modelsb, c andd with respect to cost and fragility

According to the classic definition of the concordance index(see Section 3), the role that criteriag1 andg2 should
play in supporting the assertion “modela is at least as good as modelb (or c or d)” is characterized by the following
weights,

k1 +k2 in the comparison withb,

k2 in the comparison withc,

k1 in the comparison withd.

The value of each of these weights was set without taking intoaccount the impact that the other criterion’s weight
could have independent of whether or not it belongs to the concordant coalition; in other words, all the possible inter-
actions between criteria are abstracted. Given the information in Table 3, the DMR considers that weightsk1 andk2

adequately characterize the role these two criteria shouldplay when comparinga with b anda with c; however, he/she
considers that the same is not true when comparinga with d. Based on a customer survey, it seems that when one model
is less fragile than another, the benefit derived from the lower cost is partially masked by the fact the model is less fragile.
This phenomenon can be modeled by decreasing the weight of criterion g1 in the concordance index of the assertion “a
is at least as good asb”. In the following sections, the quantity that must be subtracted fromk1 to take into account this
antagonistic effect (i.e., masking effect) of criteriong2 with respect to criteriong1 is denotedk′12.

Please note that if the DMR considers that the role ofg2 is adequately taken into account by the weightk2 in the
concordance index of the assertion “a is at least as good asc”, nothing can make him/her consider the possibility of an
antagonistic effect ofg1 with respect tog2. On the other hand, if the results of the customer survey justify taking such
an antagonism into account, the quantityk′21 that must be subtracted fromk2 to model this interaction effect could be
different fromk′12. In other words, there is not necessarily symmetry between the two situations.

3 Concepts: Definitions and notation

This section presents some elementary concepts, definitions, and the notation used in the rest of this paper. As for the key
concepts and the main features concerning ELECTRE methods (the context in which they are relevant, modeling with
an outranking relation, their structure, the role of criteria, and how to account for imperfect knowledge) see Figueiraet
al. (2005). A comprehensive treatment of ELECTRE methods may be found in Roy and Bouyssou (1993) and Vincke
(1992). Much of the theory developed on this field is presented in these books.

3.1 Basic data

The basic data of a multiple criteria problem is composed of acoherent set or family of criteria, a set of actions, and an
evaluation matrix. Let,

- F = {g1,g2, . . . ,gi , . . . ,gn} denote a family or set ofcriteria; for the sake of simplicity we shall use alsoF as the
set of criteria indices (the same will apply later on for subsets ofF);

- A = {a,b,c, . . .} denote a finite set ofactionswith cardinalitym;

- gi(a) ∈ Ei denote theevaluationof actiona on criteriongi , for all a∈ A andi ∈ F , whereEi is the scale associated
to criteriongi (no restriction is imposed to the scale type).

In what follows it is assumed that all the criteria are to be maximized, which is not a restrictive assumption.
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3.2 Binary relations

When comparing two actionsa andb, the following comprehensive binary relations can be defined on the setA. For a
pair (a,b) ∈ A×A let,

- P denote thestrict preferencerelation;aPbmeans that “a is strictly preferred tob”;

- I denote theindifferencerelation;aIb means that “a is indifferent tob”;

- Q denote theweak preferencerelation; aQb means that “a is weakly preferred tob, which expresses hesitation
between indifference (I ) and preference (P);

- Sdenote theoutrankingrelation;aSbmeans that “a outranksb” or more precisely that “a is at least as good asb”.
Note that,S= I ∪Q∪P.

For a given criteriongi , the same interpretation of the above binary relations is valid, but now these relations are
called partial binary relations,Pi, Ii, Qi, andSi , respectively.

3.3 The notion of pseudo-criterion

The concept of pseudo-criterion is based on the definition oftwo preference parameters, called thresholds. Let

- qi(gi(a)) denotes theindifference thresholdfor criteriongi , for all a∈ A andi ∈ F;

- pi(gi(a)) denotes thepreference thresholdfor criteriongi , for all a∈ A andi ∈ F .

such thatpi(gi(a)) ≥ qi(gi(a)), for all gi(a) ∈ Ei anda∈ A.

Definition 1 (pseudo-criterion). A pseudo-criterion is a function gi associated with the two threshold functions qi(gi(a))
and pi(gi(a)) satisfying the following condition, for all a∈ A (Roy, 1991, 1996): gi(a)+ pi(gi(a)) and gi(a)+qi(gi(a))
are non-decreasing monotone function of gi(a).

By definition, for all pairs(a,b) ∈ A×A with gi(a) ≥ gi(b),

aIib ⇔ gi(a) ≤ gi(b)+qi(gi(b));

aQib ⇔ gi(b)+qi(gi(b)) < gi(a) ≤ gi(b)+ pi(gi(b));

aPib ⇔ gi(b)+ pi(gi(b)) < gi(a).

Definition 2 (quasi criterion). If, qi(gi(a)) = pi(gi(a)), for all a∈ A, then gi is called a quasi criterion. It is a particular
case of a pseudo criterion which is also considered in the rest of the paper. For a quasi criterion there is no ambiguity
zone, that is, there is no weak preference Qi.

In what followsC(aTb) represents the coalition of criteria in favor of the assertion “aTb”, whereT ∈ {P,Q,S}

3.4 The criteria weights and the concordance index

In ELECTRE methods, therelative importance coefficientsattached to the criteria refer tointrinsic weights. For a given
criteriongi , the weightki , ki > 0 for all gi ∈ F, can be interpreted as its voting power when it contributes to the majority
which is in favor of an outranking; it is not a substitution rate. For more details about the question on how to attribute
numerical values to the parameters which must reflect the relative importance of criteria, see Figueira and Roy (2002),
Mousseau (1993, 1995) and Roy and Mousseau (1996).

ELECTRE Multiple Criteria Aggregation Procedures (MCAPs)are based on aconcordance index c(a,b) which is
used both to validate the assertion “a outranksb” and/or to give a measure of the credibility of such an assertion. The
concordance index can be defined as follows,
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c(a,b) = ∑
i∈C(aSb)

ki

K
, where K = ∑

i∈F

ki (1)

and,C(aSb) represents the coalition of criteria in favor of the assertion “a outranksb”, when F if composed of quasi
criteria.

WhenF contains at least a pseudo-criterion, this index should be rewritten in the following way (as in ELECTRE
IS, III, and TRI, see Figueira et al., 2005),

c(a,b) = ∑
i∈F

ki

K
ci(a,b) (2)

where,

ci(a,b) =



































1, if gi(a)+qi(gi(a)) ≥ gi(b), (aSib),

gi(a)+ pi
(

gi(a)
)

−gi(b)

pi
(

gi(a)
)

−qi
(

gi(a)
) , if gi(a)+qi(gi(a)) < gi(b) ≤ gi(a)+ pi(gi(a)), (bQia),

0, if gi(a)+ pi(gi(a)) < gi(b), (bPia).

(3)

It is easy to see that, whenF is composed of quasi criteria, index(2) becomes(1).

Let C̄(bPa) denote the complement ofC(bPa). It should be remarked that whenF comprises only quasi criteria
C̄(bPa) = C(aSb); if F is composed of at least one pseudo-criterionC̄(bPa) = C(aSb)∪C(bQa). In both cases this set
represents the coalition of all the criteria which are not strongly opposed to the assertionaSb(let us recall thatbQa is not
a strong opposition).

3.5 Properties ofc(a,b)

The following properties ofc(a,b) hold for all pairs(a,b) ∈ A×A,

Boundary conditions: 0≤ c(a,b) ≤ 1.

Monotonicity : c(a,b) is a monotonous non-decreasing function of∆i = gi(a)−gi(b), for all i ∈ F.

Continuity : if pi(gi(a)) > qi(gi(a)), for all i ∈ F and a∈ A, then c(a,b) is a continuous function of both gi(a) and
gi(b).

The proof of the boundary conditions is obvious. The proof ofmonotonicity is based on the fact that, for eachi,
ci(a,b) has the same property. Continuity is not valid for quasi criteria. The proof for the case of pseudo-criteria is also
based on the fact that, for eachi, ci(a,b) has the same property.

4 Types of interactions considered

The above formulae (1) and (2) do not take any type of dependency between the considered criteria into account. Very
often, this is justified because the formulae are used to dealwith a structural dependence related to various points con-
cerning distinct stakeholder (Roy and Bouyssou, 1993). Forthe sake of the clarity, a coherent criteria family must be
defined so as to reduce other types of dependency as much as possible (see, for example, Bisdorff, 2001). It is also
necessary to completely remove any dependencies derived from dispersion or from a classical utility approach (Roy and
Bouyssou, 1993). Consequently, from a practical point of view, the dependencies that really need to be taken into account
are not numerous and in general concern only criteria pairs.Considering criteria triples or quadruples and so on would be
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too complicated to be effective in a decision aiding processbecause formulating them would involve so many problems
of interpretation and comprehension that their expected added value would vanish (see Roy, 2007).

Therefore, we consider the cases where the only dependencies between criteria which deserve to be taken into account
in MCAPs are related to interactions between criteria pairs. In this paper we are interested in the situations in which the
interactions can be modeled using one of the three interaction types presented below. These definitions are modifications
of formulae (1) and (2). The conditions in which these modifications take place are related to a given interaction type.
This work is based on the research of Greco and Figueira (2003), in which similar interaction types can be found. Roy
(2007) provides a more general formulation of the three types of interaction proposed in this paper, which is independent
of the ways the interactions are taken into account in the concordance index.

4.1 Definitions

This section provides the definitions of the three interaction types. Let us notice that casea−b is mutually exclusive,
but casesa−c andb−c are not.

a) Mutual strengthening effect
If criteria gi andg j both strongly, or even weakly, support the assertionaSb(more precisely,gi ,g j ∈ C̄(bPa)), we
consider that their contribution to the concordance index must be larger than the sum ofki +k j , because these two
weights represent the contribution of each of the two criteria to the concordance index when the other criterion does
not supportaSb. We suppose that the effect of the combined presence ofgi andg j among the criteria supporting
the assertionaSbcan be modeled by a mutual strengthening coefficientki j > 0, which intervenes algebraically in
c(a,b). (For an example, see the interaction betweeng1 andg2 in Section 2.1.) Please note thatki j = k ji .

b) Mutual weakening effect
If criteria gi andg j both strongly, or even weakly, support the assertionaSb(more precisely,gi ,g j ∈ C̄(bPa)), we
consider that their contribution to the concordance index must be smaller than the sum ofki + k j , because these
two weights represent the contribution of each of the two criteria to the concordance index when the other criterion
does not supportaSb. We suppose that this effect can be modeled using a mutual weakening coefficientki j < 0,
which intervenes algebraically inc(a,b). (For an example, see the interaction betweeng3 andg4 in Section 2.1.)
Please note thatki j = k ji .

c) Antagonistic effect
If criterion gi strongly, or weakly, supports the assertionaSband criteriongh strongly opposes this assertion, we
consider that the contribution of the criteriongi to the concordance index must be smaller than the weightki that
was considered in cases in whichgh does not belong toC(bPa). We suppose that this effect can be modeled by
introducing an antagonism coefficientk′ih > 0, which intervenes negatively inc(a,b). (For an example, see the
“cost” and “fragility” criteria in Section 2.2., where “cost” is gi and “fragility” is gh.) Please note that the presence
of an antagonism coefficientk′ih > 0 is compatible with both the absence of antagonism in the reverse direction
(k′hi = 0) and the presence of a reverse antagonism (k′hi > 0).

The antagonistic effect does not double the influence of the veto effect; in fact, they are quite different. If
criterion gh has a veto power, it will always be considered, regardless ofwhethergi belongs to the concordant
coalition. The same is not true for the antagonistic effect,which occurs only when the criteriongi belongs to the
concordant coalition. Let us notice the a veto effect or threshold expresses the power attributed to a given criterion,
g j to be against the assertion “a outranks b”, when the difference of the evaluation betweeng j(b) andg j(a) is
greater than this threshold.

4.2 Practical aspects

The four-step procedure presented in this section shows hownumerical values can be assigned to the parameters in-
troduced below in order to characterize the mutual strengthening, mutual weakening, and the antagonistic effects. The
parameters were designed so that these effects could be taken into account in the ELECTRE methods that use of the con-
cordance index, as mentioned in Section 3. The four-step procedure is used in the context of a constructive perspective
when using ELECTRE methods rather than a descriptive one (cf. Roy, 1993, 2005, 2007).
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Step 1 As is traditional in the ELECTRE method, step 1 assigns numerical values to the intrinsic weightski , i = 1, . . . ,n.
The revised “pack of cards” method can be used for such a purpose (see SRF software by Figueira and Roy, 2002).
The analyst should, however, point out to the DMR that the value of the relative weightki should be set without
taking into account the impact that certain criteria, regardless of whether they belong to the concordant coalition,
could have. In other words, the “cards” should be ranked ignoring all the possible kinds of inter-criteria interaction
(cf. Section 2).

Step 2 The analyst should ask the DMR about the possible interactions that he/she thinks must be taken into account. In
order to make sure that the DMR has a good understanding of theinteraction effects, the analyst can use illustrative
examples like the ones presented in Section 1. Then, considering criteriong1 and reviewing the remaining criteria
g2,g3, . . . ,gn, it should be easy (and relatively quick), given the very nature of the criteria, to recognize:

- That considering an interaction betweeng1 and another criterion is not justified, or

- That an interaction betweeng1 and at least one of the remaining criteria must be considered. In this case,
it is also necessary to define which kind of interaction exists: mutual strengthening, mutual weakening, or
antagonistic. For our purposes here, we assume that antagonistic interaction excludes the presence of the
other two types, in which case, the sign of the interaction(s) must also be defined (cf. 4.1c).

This procedure is repeated to consider the possible interactions betweeng2 andg3, . . . ,gn, then betweeng3 and
g4, . . . ,gn, and, finally betweengn−1 andgn.

If the criteria family is appropriately designed, the number of pairs/ordered pairs for which an interaction effect
can be defined should be rather very small.

Step 3 A numerical value is assigned to the interaction coefficientassociated with each pair identified in the previous step.
As stated in the coefficients’ definition (cf. Sections 2 and 4.1), the larger their absolute value, the more important
the interaction effect. By definition, these coefficients are defined, such that:

If there is a mutual strengthening or a mutual weakening effect between criteria gi and gj , then the relative weights
of these two criteria in c(a,b) should be ki +k j +ki j instead of ki +k j (cf. Section 3) as soon as aSib and aSjb is
found.

If criterion gh has an antagonistic effect with respect to criterion gi , then the relative weight of criterion gi in c(a,b)
should be ki −k′ih instead of ki (cf. Section 3) as soon as aSib and bPha is found.

These definitions should be considered to support the analyst’s position on the appropriate value of each interaction
coefficient to take the importance of the effect the DMR considers appropriate (cf. Step 2) into account in the
model. Let us review the examples presented in Section 2 to show how the analyst should proceed.

Case 1 (mutual strengthening effect): cf. 2.1a, criteriag1 andg2. Suppose that when using SRF the result isk1 = 5
andk2 = 4, and thusk1 + k2 = 9. Since there is a mutual strengthening effect, the relative weights of these
two criteria should be larger than 9, when comparing the two sitesa andd (cf. Table 1). The analyst can ask
the DMR to set the value to be replaced to 9 in this comparison in order to adequately model the interaction
that the DMR wants to take into account. If the answer is 12, for example, the analyst should conclude that
k12 = 3.

Case 2 (mutual weakening effect): cf. 2.1b, criteria g4 andg5. Suppose that when using SRF the result isk4 = 3
andk5 = 3, and thusk4 +k5 = 6. Since there is a mutual weakening effect, the relative weights of these two
criteria should be lower than 6, when comparing the two sitesa and e (cf. Table 2). The analyst can ask
the DMR to set the value to be replaced to 6 in this comparison in order to adequately model the interaction
that the DMR wants to take into account. If the answer is 4, forexample, the analyst should conclude that
k45 = −2.

Case 3 (antagonistic effect): cf. 2.2, criteriag1 andg2. Suppose that when using SRF the result isk1 = 6 andk2 = 4,
and thusk1+k2 = 10. Since criteriong2 is antagonistic with respect tog1, the weightk1 should be lower than
6, when comparing two digital camera modelsa andd (cf. Table 3). The analyst can ask the DMR to set the
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value to be replaced to 6 in this comparison in order to adequately model the interaction that the DMR wants
to take into account. If the answer is 3.5, for example, the analyst should conclude thatk′12 = 2.5.

Please note that the procedure followed for the latter case is a little bit different from the other two cases, which
only underlines the difference between the antagonistic effect and the mutual strengthening and mutual weakening
effects. This difference is connected to the fact that, whenk′ih 6= 0, it is also possible to havek′hi = 0 or k′hi 6= 0 (cf.
4.1 c), without requiring thatk′ih = k′hi.

The antagonistic effect that may exist between two criteriagi andgh can be formally taken into account
as a mutual strengthening effect between these two criteria. In this case, the initial weightski andkh, obtained
using SRF, should be replaced with the valueski −k′ih andkh−k′hi respectively, such thatkih = k′ih +k′hi. However,
this ploy, which is very difficult for those who use it, does not prevent the antagonistic effect from being used to
define the valuesk′ih andk′hi. In addition, as will be shown at the end of Section 5, this equivalence is not valid for
pseudo-criteria.

Step 4 In this step the net balance condition is checked, because, in very specific cases, an improper result can mean a
return to the previous step to modify the value assigned to some interaction coefficients.

Let ki j be the negative value of the interaction coefficient used to characterize a mutual weakening effect. Since
the interaction can, at most, render the contribution of criteriongi to c(a,b) null whenaSib andaSjb, the following
should be true:

ki −|ki j | ≥ 0

In the same way, since this interaction can, at most, render the contribution of criteriongi to c(a,b) null when
aSib andbPha, the interaction coefficientk′ih that allows an antagonistic effect to be characterized should be defined
such that:

ki −k′ih ≥ 0

Suppose the two previous interactions, where criteriongi is present, were considered. WhenaSib, aSj b, and
bPha simultaneously occurs, the contribution of the three criteria toc(a,b) is equal to:

ki −k′ih −|ki j |

This quantity must be positive since the two interactions taken into account cannot render the contribution
of gi to c(a,b) non-negative. Thus, in Step 3, the analyst should check whether or not the values assigned to the
interaction coefficients fulfill the previous inequalities. The different types of interaction considered here withgi

can be present not only with one criteriong j or gh, but with two or even, exceptionally, with three or more. Thus
the analyst should check that, for each criteriongi that interacts with several criteria, the following net balance
condition is fulfilled:

Condition (positive net balance). For all i ∈ F,
(

ki

)

−
(

∑
{i, j}:ki j <0

|ki j |+∑
h

k′ih
)

> 0

If a criterion gi for which this inequality is not fulfilled, the values of the interaction coefficients shown
in brackets should be questioned. Clearly, the number of pairs of interaction criteria is generally small, thus the
inequalities that must be verified, if any exist, are also quite few.
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5 Extensions of the concordance index

This section is devoted to the definition of the concordance index, first whenF is composed of quasi criteria, and then
when at least one criterion is a pseudo-criterion.

Before presenting the formulae it is useful to introduce thefollowing additional notation. Let,

- L(a,b) denote the set of all pairs{i, j} such thati, j ∈ C̄(bPa);

- O(a,b) denote the set of all ordered pairs(i,h) such thati ∈ C̄(bPa) andh∈C(bPa).

5.1 The quasi criterion model

Let us recall that a quasi criterion is a pseudo-criterion such thatqi(gi(a)) = pi(gi(a)), for all a∈ A.

5.1.1 Definition ofc(a,b)

The comprehensive concordance index, whenF is composed of quasi criteria, is defined as follows,

c(a,b) =
1

K(a,b)

(

∑
i∈C̄(bPa)

ki + ∑
{i, j}∈L(a,b)

ki j − ∑
(i,h)∈O(a,b)

k′ih
)

(4)

where,

K(a,b) = ∑
i∈F

ki + ∑
{i, j}∈L(a,b)

ki j − ∑
(i,h)∈O(a,b)

k′ih

Note that, in general,K(a,b) 6= K(b,a). Observe also that, from positive balance conditionK(a,b) > 0 is always true.

As for the new definition ofc(a,b), the following properties should be fulfilled.

Coherence: The definition of c(a,b) as in formula (4) should be coherent with the classical definition of the c(a,b)
as it was presented in Section 3.

It means that, when we compare two actionsa andb and when there is no interaction effect regarding this com-
parison, the newc(a,b) should be the same as the one of Section 3. The proof is quite obvious since when
there is no interaction effect,L(a,b) = /0 and O(a,b) = /0, and consequentlyc(a,b) in formula (4) becomes,
c(a,b) = 1

K(a,b) ∑i∈F ki with K(a,b) = K.

Boundary conditions: 0≤ c(a,b) ≤ 1.

As for the proof let us consider separately the two inequalities,

1. c(a,b) ≥ 0

This inequality derives from the definition ofc(a,b) and the net balance condition; it is fulfilled for every
K(a,b). The proof is provided in Theorem 1.

2. c(a,b) ≤ 1

Two cases have to be considered,

(a) C̄(bPa) = F (all the criteria belong to the concordant coalition)
It representsunanimityand the index must be equal to one,

c(a,b) = 1

Since unanimity leads to the absence of antagonistic interaction effects,c(a,b) can be rewritten as fol-
lows,

c(a,b) =
1

K(a,b)

(

∑
i∈F

ki + ∑
{i, j}∈L(a,b)

ki j

)

= 1 (5)
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(b) C̄(bPa) 6= F (at least one criterion belongs toC(bPa))
In the previous case, the antagonistic coefficients were notpresent. As soon as these coefficients appear
in c(a,b) it becomes strictly lower than 1, i.e.,c(a,b) < 1.

Remark 4. If F is composed of quasi criteria, the function c(a,b) presents a discontinuity when gi(a)+qi(gi(a)) becomes
strictly lower than gi(b). In the case of pseudo-criteria, pi(gi(a)) > qi(gi(a)), for all i ∈ F and a∈ A, this discontinuity
will not occur.

5.1.2 Main theorem

Let us consider the pair(a,b) ∈ A×A and calculate the following algebraic sum,

S(a,b) = ∑
i∈C̄(bPa)

ki + ∑
{i, j}∈L(a,b)

ki j − ∑
(i,h)∈O(a,b)

k′ih

Lemma 1. For all (a,b) ∈ A×A and for all f∈ F, S(a,b) is a monotone non-decreasing function of∆ f and S(a,b) ≥ 0.
(The proof of this lemma is provided in the Appendix)

Remembering that̄C(bPa) can be any subsetE ⊆F , the non-negativity ofS(a,b) proved in Lemma 1 can be rewritten
as follows, for allE ⊆ F,

∑
i∈E

ki + ∑
{i, j}∈E

ki j − ∑
i∈E,h∈F\E

k′ih ≥ 0

Before introducing the main result it is important to establish also the following lemma.

Lemma 2. For all (a,b) ∈ A×A and for all f∈ F, c(a,b) defined as in (4) is a monotone non-decreasing function of∆ f

if and only if the non-negativity summation condition is fulfilled. (The proof of this lemma is provided in the Appendix)

The main result is established in the following theorem.

Theorem 1. Monotonicity and boundary conditions hold for c(a,b) as defined in formula (4).

Proof.
Lemma 2 proves monotonicity. Let us now prove the boundary conditions,

1. c(a,b) ≥ 0
If C̄(bPa) = ∅, thenc(a,b) = 0. Suppose that we could havec(a,b) < 0. This implies that at least one criterionf does not belong to
C̄(bPa) 6= ∅. Consider that there exists at least one criterion inC̄(bPa). If for all f in C̄(bPa), ∆ f is forced to decrease till̄C(bPa) = ∅,
thenc(a,b) cannot increase. Contradiction!

2. c(a,b) ≤ 1
From condition (5),c(a,b) = 1, whenC̄(bPa) = F . Suppose that we could havec(a,b) > 1. This implies that at least one criterionf does
not belong toC̄(bPa). Consider that there exists at least one criterion that doesnot belong toC̄(bPa). If for all f , ∆ f is forced to increase
till f becomes an element of̄C(bPa), thenc(a,b) cannot decrease. Contradiction!

The proof is now complete.

�

5.2 The pseudo-criterion model

When dealing with a pseudo-criterion,gi , an ambiguity zone should be taken into account, for all(a,b) ∈ A×A,

gi(a)+qi(gi(a)) < gi(b) ≤ gi(a)+ pi(gi(a))
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5.2.1 Definition ofc(a,b)

The definition ofc(a,b) can be stated in the following manner,

c(a,b) =
1

K(a,b)

(

∑
i∈C̄(bPa)

ci(a,b)ki + ∑
{i, j}∈L(a,b)

Z(ci(a,b),c j (a,b))ki j − ∑
(i,h)∈O(a,b)

Z(ci(a,b),ch(b,a))k′ih
)

(6)

where,
K(a,b) = ∑

i∈F

ki + ∑
{i, j}∈L(a,b)

Z(ci(a,b),c j (a,b))ki j − ∑
(i,h)∈O(a,b)

Z(ci(a,b),ch(b,a))k′ih

FunctionZ(·, ·) in formula (6) is used to capture the interaction effects in the ambiguity zone. It should be remarked that
in the third summationch(b,a) is always equal to 1.

Remark 5. For the sake of clarity and simplicity, the same function Z(·, ·) is used in both, the second and the third
summations. It would, however, be possible to use differentfunctions.

Let x = ci(a,b) andy = c j(a,b) or y = ch(b,a). Consequently,x,y∈ [0,1]. FunctionZ(x,y) is used to get the reduction
coefficients forki j andk′ih when, at least one of the arguments ofZ(x,y) is within the range]0,1[.

What are the properties ofZ(x,y) to guarantee the coherence of formula (6)?

Extreme value conditions: When leaving the ambiguity zones,c(a,b) should regain the form presented in formula
(4). Thus,Z(1,1) = 1 andZ(x,0) = Z(0,y) = 0.

Symmetry: For the same reason for putki j = k ji , since we assume that alsoZ(x,y) = Z(y,x).

Monotonicity : When the ambiguity diminishes, the effect due to the interaction cannot increase. ThenZ(x,y) is a
non-decreasing monotone functionof both argumentsx andy.

Marginal impact condition : When the ambiguity diminishes passing fromx+w to x, the relative marginal impact
of the interactions is bounded from above,

1
w

(

Z(x+w,y)−Z(x,y)
)

≤ 1 x,y,w,x+w∈ [0,1]

We will see the interest of this condition in the proof of Lemma 3 (see Appendix).

Continuity : Formula (2) is a continuous function ofgi(a) andgi(b) when pi(gi(a)) > qi(gi(a)), for all a∈ A. If
we want to preserve continuity, then it is necessary thatZ(x,y) is acontinuous functionof each argument.

Boundary condition: For preserving the net balance condition, it is sufficient thatZ(x,y) ≤ min{x,y}.

The boundary condition is a particular case of the marginal impact condition. The proof is as follows.

1
w

(

Z(x+w,y)−Z(x,y)
)

≤ 1 ⇔ Z(x+w,y)−Z(x,y) ≤ w

Consider now,x = 0

Z(0+w,y)−Z(0,y) ≤ w

and, according to the extreme value conditions,

Z(w,y)−0≤ w ⇔ Z(w,y) ≤ w

Now, for symmetry, we get

Z(w,y) ≤ min{w,y}.
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Therefore, it is sufficient to consider only the marginal impact condition. However, for the sake of a better compre-
hension, we keep both conditions; it sounds more intuitive.

Among the multiple forms that can be chosen forZ(x,y), we only present two of them which have an intuitive and
meaningful interpretation.

Z(x,y) = min{x,y};

Z(x,y) = xy.

If x and/or y are equal to 1, both formulae are equivalent. But, whenx andy are both different from 1, that is, when
the two interacting criteria belong to the ambiguity zone, then the impact of the interaction is weaker withxy than with
min{x,y}. Choosing the min{x,y} formula means that the reduction coefficient is not influenced by what happens in the
other ambiguity zone. For these reasons the formulaxy seems preferable to min{x,y}.

5.2.2 Extension of the main theorem

This section presents an extension of the previous results whenF is composed of at least one pseudo-criterion. The
proofs are similar to the ones provided for Lemma 2 and Theorem 1.

Let us consider the pair(a,b) ∈ A×A and calculate the following algebraic sum,

S(a,b) = ∑
i∈C̄(bPa)

ci(a,b)ki + ∑
{i, j}∈L(a,b)

Z(ci(a,b),c j (a,b))ki j − ∑
(i,h)∈O(a,b)

Z(ci(a,b),ch(b,a))k′ih

Lemma 3. For all (a,b) ∈ A×A and for all f∈ F, S(a,b) is a monotone non-decreasing function of∆ f and S(a,b) ≥ 0.
(The proof of this lemma is provided in the Appendix)

An immediate consequence of Lemma 3 is thatK(a,b) > 0 for all (a,b) ∈ A×A. In fact

K(a,b) = S(a,b)+
(

∑
i∈C̄(bPa)

(1−ci(a,b))ki + ∑
j∈C(bPa)

k j
)

Two cases are possible (∅ ⊂C(aSb) ⊆ F):

• C(aSb) ⊆ F : in this case the quantity in between big parentheses is always positive becauseki > 0 for all gi ∈ F,
such that the non-negativity ofS(a,b) implies thatK(a,b) > 0;

• C(aSb) = ∅: in this case theK(a,b) = ∑i∈F ki > 0 becauseki > 0, for all gi ∈ F.

Lemma 4. For all (a,b) ∈ A×A and for all f∈ F, c(a,b) defined as in (6) is a monotone non-decreasing function of∆ f .
(The proof of this lemma is provided in the Appendix)

Now the main result can be established.

Theorem 2. Boundary conditions, monotonicity, and continuity hold for c(a,b) as defined in formula (6).

Proof.
Lemma 2 establishes monotonicity. Boundary conditions hold when considering pseudo-criteria. And continuity derives from the fact that,

1. the functionscf (a,b), Z(x,y) are continuous, and

2. the conditionscf (a,b) = 0 if gf (a)+qf (gf (a))−gf (gf (b)) = 0 andZ(0,y) = Z(x,0) = 0 guarantees continuity when a criterion becomes
a member or when it is removed from one of the following sets,C̄(a,b), L(a,b), or O(a,b).

The proof is thus complete for the general case.

�

We complete this section (cf. end of Step 3 in Section 4.2) by showing that when dealing with pseudo-criteria the
antagonistic effect is not equivalent to mutual strengthening. For the sake of simplicity, consider a decision problemwith
only two criteria,gi andgh, and the following three cases:
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a) gi ,gh ∈ C̄(bPa);

b) gi ∈ C̄(bPa) andgh ∈ C(bPa);

c) gh ∈ C̄(bPa) andgi ∈ C(bPa).

Let us consider modeling casesa), b), andc) in terms of both mutual strengthening, using the weightski , kk, andkih,
and antagonism, using the weightsk̄i , k̄h, k̄′ih, andk̄′hi.

Taking into account modeling in terms of mutual strengthening and considering the concordance indexc(a,b), we
have (following the above three cases):

a) c(a,b) =
kici(a,b)+khch(a,b)+kihZ(ci(a,b),ch(a,b))

ki +kh +kihZ(ci(a,b),ch(a,b))
;

b) c(a,b) =
kici(a,b)

ki +kh
;

c) c(a,b) =
khch(a,b)

ki +kh
.

Taking into account modeling in terms of antagonism and considering the concordance indexc(a,b), we have (fol-
lowing the above three cases):

a) c(a,b) =
k̄ici(a,b)+ k̄hch(a,b)

k̄i + k̄h
;

b) c(a,b) =
k̄ici(a,b)− k̄′ihZ(ci(a,b),ch(b,a))

k̄i + k̄h− k̄′ihZ(ci(a,b),ch(b,a))
;

c) c(a,b) =
k̄hch(a,b)− k̄′hiZ(ch(a,b),ci(b,a))

k̄i + k̄h− k̄′hiZ(ch(a,b),ci(b,a))
.

To get an equivalence between modeling in terms of mutual strengthening and antagonism, the following equations
should hold for all the values ofci(a,b) andch(a,b) in the above cases, i.e.,

a)
kici(a,b)+khch(a,b)+kihZ(ci(a,b),ch(a,b))

ki +kh+kihZ(ci(a,b),ch(a,b))
=

k̄ici(a,b)+ k̄hch(a,b)

k̄i + k̄h
;

b)
kici(a,b)

ki +kh
=

k̄ici(a,b)− k̄′ihZ(ci(a,b),ch(b,a))

k̄i + k̄h− k̄′ihZ(ci(a,b),ch(b,a))
;

c)
khch(a,b)

ki +kh
=

k̄hch(a,b)− k̄′hiZ(ch(a,b),ci(b,a))

k̄i + k̄h− k̄′hiZ(ch(a,b),ci(b,a))
.

Notice that the values of the weightski , kh, kih andk̄h, k̄′ih, k̄′hi, ensuring that the above equations hold, depend on the
values ofci(a,b) andch(a,b). This means that there are no weightski , kh, kih andk̄h, k̄′ih, k̄′hi giving the same values of
c(a,b) when modeling in terms of mutual strengthening and when modeling in terms of antagonism, for all the possible
values ofci(a,b) andch(a,b). Therefore, in presence of pseudo-criteria, mutual strengthening, and antagonism are not
equivalent.

6 Modeling the interaction effects in the illustrative examples

In this section, the impact on the pairwise comparisons of the three interactions effects illustrated in Section 2 is shown.
When taking such effects into account, the comparisons between actions can change. In the following sub-sections, it is
assumed that there is no veto effect in the pairwise comparisons of the actions.
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6.1 Choosing a site for a new hotel construction project

Table 4 presents the evaluations of the five sites -a, b, c, d, and e - according to the five criteria. In this example,

- The evaluations of criteriong1 (investment costs) are expressed in thousands ofe, designated Ke. The indifference
and the preference thresholds assigned to this criterion are q1(g1(x)) = 500+ 0.03g1(x) Ke and p1(g1(x)) =
1000+0.05g1(x) Ke, respectively, wherex is the worst of the two actions (c.f. Section 3.3).

- The evaluations of criteriong2 (annual costs) are also expressed in Ke; the thresholds assigned to this criterion are
q2(g1(x)) = 50+0.05g1(x) Ke andp2(g1(x)) = 100+0.07g1(x) Ke, respectively, wherex is the worst of the two
actions (c.f. Section 3.3).

- The evaluations of criteriag3 (recruitment),g4 (image), andg5 (access) are expressed on the following seven-level
qualitative scale: very bad (1), bad (2), rather bad (3), average (5), rather good (5), good (6), and very good
(7). The values between parenthesis can be used in ELECTRE methods to code the different verbal statements.
Let us notice that such a way of coding plays only a purely ordinal role in the computation; other ways of coding
the verbal scale trough the use of numerical values could be used by adjusting the thresholds values (see Martel
and Roy, 2006).The indifference threshold for each criterion has been set at one on the seven-level scale and the
preference threshold at two levels.

g1[min] g2[min] g3[max] g4[max] g5[max]
a 13 000 Ke 3 000 Ke Average Average Average
b 15 000 Ke 2 500 Ke Good Bad Very Good
c 10 900 Ke 3 400 Ke Good Good Very Bad
d 15 500 Ke 3 500 Ke Good Good Good
e 15 000 Ke 2 600 Ke Good Very Bad Bad

Table 4: Some potential sites for the new hotel

Consider again the weights obtained using SRF,k1 = 5, k2 = 4, k3 = k4 = k5 = 3, whereK = 18. The concordance
index for the ordered pair(a,d) is c(a,d) = (5+4)

18 = 1
2. Taking into account the mutual strengthening interactioneffect

betweeng1 andg2, whose the value is set atk12 = 3 as defined in Section 4.2, our normalization coefficientK(a,d) =
18+ 3 = 21. The newc(a,d) = 12

21 = 4
7. In fact, c(d,a) does not change whether or not the interaction coefficientk12

is taken into account (i.e.,c(d,a) = 9
18 = 1

2). If the concordance thresholds has been defined ass= 0.55, the mutual
strengthening interaction effect makes it clear that sitea is better thand, whereas they were previously incomparable.

For the comparison between sitesa and e, c(a,e) = (5+3+3)
18 = 11

18. But, when considering the mutual weakening

interaction effect modeled withk45 = −2, K(a,e) = 18− 2 = 16 andc(a,e) = (5+3+3−2)
16 = 9

16, the concordance index

c(e,a) takes always the same value:c(e,a) = (4+3)
18 = 7

18. For s= 0.55, a can no longer be compared toe, whereas it
was the preferred site prior to applying the mutual weakening effect.

6.2 Launching a new digital camera model

Table 5 presents the evaluations of the four models -a, b, c, andd - according to the seven criteria given in Section 2. Let
us precise that:

- the evaluations of criteriong1 (price) are expressed ine; the indifference and the preference thresholds assigned
to this criterion areq1 = 25e andp1 = 50e, respectively;

- the evaluations of criteriong6 (volume) are expressed in cubic centimeters; the thresholds assigned to this criterion
areq6 = 10cm3 andp6 = 20cm3, respectively;

- the evaluations of criteriong7 (weight) are expressed in grams; the thresholds areq7 = 10g andp7 = 20g, respec-
tively;

- the evaluations of criteriag2 (weakness),g3 (workability), g4 (image), andg5 (aesthetics) are expressed on the
following seven-level qualitative scale: very bad (1), bad(2), rather bad (3), average (4), rather good (5), good
(6), and very good (7); these criteria have an indifference threshold of one on the seven-level scale and a preference
threshold of two.
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g1[min] g2[min] g3[max] g4[max] g5[max] g6[min] g7[min]

a 220e Average Average Rather Good Average 190cm3 155g
b 300e Bad Rather Good Average Rather Good 160cm3 145g
c 160e Bad Very Bad Average Rather Bad 140cm3 130g
d 280e Very Good Average Very Good Average 220cm3 170g

Table 5: Some possible digital camera models

Consider again the weights obtained by using SRF,k1 = 6, k2 = 4, k3 = k4 = k5 = 1, k6 = k7 = 2, whereK = 17.
The concordance index for(a,d) is c(a,d) = (6+1+1+2+1)

17 = 11
17 (criteriong7 is in the ambiguity zone, and it only counts

for 50% of its overall weight). Now, consider the antagonistic effect, wherek′12 = 2.5. The new concordance index takes

the valuec(a,d) = 8.5
14.5. But, c(d,a) remains the same (i.e.,c(d,a) = (4+3+1)

17 = 8
17). If s is defined ats = 0.6, when

taking the antagonistic effect into account, the actions become incomparable, althougha was preferred tod before. This
incomparability shows that this effect can imply significant changes.

7 Concordance index and the Choquet integral

The Choquet integral (see Choquet, 1953) is an aggregation operator permitting to model interactions between criteria. It
is used to build a value function giving a complete preorder,i.e., a transitive and strongly complete binary relation, rather
than simply an outranking relation, being only reflexive andnot transitive and complete, as it is the case in ELECTRE
type methods. Moreover, the way in which the Choquet integral is used is questionable especially with respect to two
main points as stated by Roy (2007):

1. the hypothesis that the evaluation of each criterion is supposed to be expressed on the same scale in a meaningful
way; and,

2. the way in which the importance of criteria are measured through the Shapley indices.

In what follows we will show that the numerator of the new concordance index of formula (6) can be interpreted
as the classical Choquet integral under two conditions: no antagonistic effect is taken into account, andZ = min{x,y}.
Finally, we will show that for modeling the numerator of the new concordance index of formula (6) in case of antagonistic
effect we need to use the bipolar Choquet integral.

The Choquet integral (see Choquet, 1953) of a vectorx = (x1,x2, . . . ,xn) ∈ R
n
+ with respect to a capacityµ being a

functionµ : 2F → [0,1], such that

1. µ(B) ≥ µ(C), for all B⊆C⊆ F

2. µ(∅) = 0 andµ(F) = 1,

is defined

Ch(x,µ) =
n

∑
i=1

(x(i) −x(i−1))µ(B(i))

where,(·) indicates a permutation ofF such thatx(1) ≤ x(2) ≤ . . . ≤ x(n), x(0) = 0 andB(i) = {(i), . . . ,(n)} . The Choquet
integral can be interpreted as a generalization of the weighted average aggregation method when interactions between
criteria have to be taken into account. This is clear understandable after the concept of Möbius transform is introduced
and the Choquet integral is reformulated according to such atransform. Given a capacityµ, its Möbius transform (see,
for example Rota, 1964) is given by the valuesa(S) ∈ R , S⊆ F, such that

a(S) = ∑
T⊆S

(−1)|S−T|µ(T), S⊆ F

Using the Möbius transform, the capacity can be expressed as

µ(S) = ∑
T⊆S

a(T), S⊆ F
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while the Choquet integral can be rewritten as follows,

Ch(x,µ) = ∑
T⊆S

a(T)min{xi : i ∈ T}

Let us remark that the values ofa(S), S⊆ F, are related to the interaction of elements fromS. Thus if there is no
interaction, we havea(S) = 0 for all S⊆ F with |S| > 1, and thus,

µ(S) = ∑
i∈A

a({i}), S⊆ F

while the Choquet integral becomes,

Ch(x,µ) = ∑
i∈F

a({i})xi = ∑
i∈F

µ({i})xi

that is the Choquet integral collapses to the weighted average method of valuesxi with weightsµ({i}) = a({i}). An
interesting case of interaction, often used in the applications of Choquet integral for its simplicity, is given by 2−additive
capacity (see Grabisch, 1996), being a capacityµ such that for its Möbius transform we have thata(S) = 0 for all S⊆ F
with |S| > 2, and thus

µ(S) = ∑
i∈S

a({i})+ ∑
{i, j}⊆S

a({i, j}), S⊆ F

while the Choquet integral becomes,

Ch(x,µ) = ∑
i∈F

a({i})xi + ∑
{i, j}⊆F

a({i, j})min{xi ,x j}.

Looking at the concordance index from the point of view of Choquet integral (since in case of absence of interactions
the concordance index of ELECTRE methods is the weighted average of valuesci(a,b)), it can be seen as the Choquet
integral of valuesci(a,b) with a capacityµ(S) = ∑i∈Ski

K for all S⊆ F . Instead, in case of presence of mutual strengthening
or mutual weakening effect, but not the antagonistic effect, then the numerator of the concordance index we proposed in
the previous sections corresponds to the Choquet integral of valuesci(a,b) with a capacityµ(S) = ∑i∈Ski + ∑{i, j}⊆Ski j ,
for all S⊆ F in case ofZ(x,y) = min{x,y}.

The antagonistic effect cannot be taken into account with the above formula. As for taking it into account we will
consider the bipolar Choquet integral.

Given the set or family of criteria,F = {g1,g2, . . . ,gi , . . . ,gn} or simply F = {1,2, . . . , i, . . . ,n} consider the set
M = {(B,C) : B,C⊆ F, B∩C 6= ∅}.

The antagonistic effect can be modeled in the framework of the bipolar Choquet integral (see Grabisch and Labreuche,
2005a and Greco et al., 2002). Abicapacity(Grabisch and Labreuche, 2005a, 2005b) is a functionµb : M → [−1,1] such
that,

1) for all B⊆ D ⊆ F andE ⊆C⊆ F such that(B,C),(D,E) ∈ M, µb(A,B) ≤ µb(C,D),

2) µb(∅,∅) = 0,

3) µb(F,∅) = 1 andµb(∅,F) = −1.

A bipolar capacity(Greco et al, 2002) is a function

µbip : M → [0,1]× [0,1], (B,C) → µbip(B,C) = (µ+
bip(B,C),µ−bip(B,C))

such that,

4) for all B⊆D⊆ F andE ⊆C⊆ F such that(B,C),(D,E)∈M, µ+
bip(B,C)≤ µ+

bip(D,E) andµ−bip(B,C)≥ µ−bip(D,E),

5) for all B⊆ F, µ+
bip(∅,B) = 0 andµ−bip(B,∅) = 0,
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6) µ+
bip(F,∅) = 1 andµ−bip(∅,F) = 1.

Now, the bipolar Choquet integral (Chb) of x∈R
n, with respect to bicapacityµb, can be defined as follows (Grabisch

and Labreuche, 2005b),

Chb(x,µb) =
n

∑
i=1

(

|x(i)|− |x(i−1)|
)

µb

(

B+
(i),B

−
(i)

)

where,[·] indicates a permutation ofF such that|x(1)|, |x(2)|,≤, . . . ,≤ |x(n)|, |x(0)| = 0, A+
(i) = { j ∈ F : x j ≥ |xi |}, and

A−
(i) = { j ∈ F : x j < 0, −x j ≥ |xi |}.

And, the bipolar Choquet integral (Chbip) of x∈ R
n, with respect to bipolar capacityµbip, can be defined as follows,

Chbip(x,µbip) = Ch+
bip(x,µbip)−Ch−bip(x,µbip)

with

Ch+
bip(x,µbip) =

n

∑
i=1

(

|x(i)|− |x(i−1)|
)

µ+
bip

(

B+
(i),B

−
(i)

)

being thepositive componentof the bipolar Choquet integral, and

Ch−bip(x,µbip) =
n

∑
i=1

(

|x(i)|− |x(i−1)|
)

µ−bip

(

B+
(i),B

−
(i)

)

being thenegative componentof the bipolar Choquet integral (Greco et al, 2002).
To calculate the bipolar Choquet integral we have to fix the value ofµb(B,C) for all (B,C)∈ M, while to calculate the

positive and the negative components of the bipolar Choquetintegral we have to fix the value ofµ+
bip(B,C) andµ−bip(B,C)

for all (B,C) ∈ M. Thus, to apply the bipolar Choquet integral a very large number of parameters should be defined. To
deal with this problem Grabisch and Labreuche (2005a) proposed the 2-additive bicapacities, while Greco and Figueira
(2003) proposed the 2-order decomposable bipolar capacities. The 2-order decomposable bipolar capacity measure gives
us a model to compare the bipolar Choquet integral with the concordance index in case where the antagonistic effect is
present.

A bipolar capacity is 2-order decomposable if there exists,a+({ j},∅), a+({ j,k},∅), a+({ j}, {k}), a−(∅,{ j}),
a−(∅,{ j,k}), a−({ j},{k}) ∈ R, j,k∈ F, j 6= k, such that, for all(B,C) ∈ M,

- µ+
bip(B,C) = ∑

j∈B

a+({ j},∅)+ ∑
j,k∈B

a+({ j,k},∅)+ ∑
j∈B, k∈C

a+({ j},{k})

- µ−bip(B,C) = ∑
j∈B

a−(∅,{ j})+ ∑
j,k∈B

a−(∅,{ j,k})+ ∑
j∈B, k∈C

a−({ j},{k})

The bipolar Choquet integral (Chbip) of x ∈ R
n, with respect to a 2-order decomposable bipolar capacityµbip, can be

defined as follows,

Chbip(x,µbip) = Ch+
bip(x,µbip)−Ch−bip(x,µbip)

with,

Ch+
bip(x,µbip) = ∑

j∈F, xj>0

a+({ j},∅)x j + ∑
j,k∈F, xj ,xk>0

a+({ j,k},∅)min{x j ,xk}+

+ ∑
j,k∈F, xj>0, xk<0

a+({ j},{k})min{x j ,−xk}

being thepositive componentof the bipolar Choquet integral, and

Ch−bip(x,µbip) = ∑
j∈F, xj<0

a−(∅,{ j})(−x j )+ ∑
j,k∈F, xj ,xk<0

a−(∅,{ j,k})min{−x j ,−xk}+

+ ∑
j,k∈F, xj>0, xk<0

a−({ j},{k})min{x j ,−xk}
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being thenegative componentof the bipolar Choquet integral (Greco and Figueira, 2003).
Observe that the numerator of the concordance index we propose, in case ofZ(x,y) = min{x,y}, corresponds to the

positive part of the bipolar Choquet integral of vectorx= (x1, . . . ,xn) with xi = ci(a,b) if i ∈ C̄(bPa) andxi =−ci(b,a) =
−1 if i ∈C(bPa) in case

µ+
bip(R,S) = ∑

i∈S

ki + ∑
{i, j}⊆S

ki j + ∑
i∈S, h∈R

k′ih, for all (R,S) ∈ M,

which proves the relation between our proposal and Choquet integral for this particular case.

8 Conclusion

In this paper we introduced three types of interaction that allow modeling a large number of dependence situations in
real-world decision-aiding problems. We showed how to takeinto account these types of interaction in the concordance
index used within the ELECTRE methods framework. For this purpose, formula (2) can be simply replaced by (6) in
all of the ELECTRE methods. We explained how the extension ofthe concordance index we are proposing can be used
in practice. Nevertheless, this extension is appropriate only when the number of pairs of interaction criteria is rather
small. Otherwise, we considere that the family of criteria should be rebuilt, since it contains too many interactions
and possibly incoherencies. In addition, we showed the links between our approach and the Choquet integral. As a
line for possible investigation in the future we can mentionthe study of the interactive protocol of the decision-makers
or their representatives when facing to situations with interaction between criteria in real-world problems. A software
development and implementation will also be one of the main concerns in the near future.
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Appendix

Proof of Lemma 1.
The proof of this lemma is based on the fact that, if the difference∆ f decreases, eitherS(a,b) remains constant or it decreases. Two cases should
be considered.

1. Criterion f belongs toC(bPa).
If f belongs toC(bPa) it cannot belong tōC(bPa). Consequently, the pair{i, f } will not belong toL(a,b). The decreasing of∆ f does not
affect neither the first nor the second summations in the formula ofS(a,b). Whatever, it will occur with the existence or not of orderedpairs
(i, f ) ∈ O(a,b), the decreasing of∆ f has no influence on the third summation. Consequently,S(a,b) remains constant.

2. Criterion f belongs toC̄(bPa).

Two subcases have to be considered,

(a) Criterion f stills remain inC̄(bPa).
The decreasing of∆ f will not move f from C̄(bPa). Hence, the three summations in the definition ofS(a,b) will not be affected.
Then,S(a,b) remains constant too.

(b) Criterion f moves toC(bPa).
The decreasing of∆ f moves f from C̄(bPa) to C(bPa). This moving has some implications on the result. The new value ofS(a,b)
will become,

S(a,b)New= S(a,b)Old −
(

kf + ∑
{ f , j}∈LOld(a,b)

kf j − ∑
( f ,h)∈OOld(a,b)

k′f h + ∑
(i, f )∈ONew(a,b)

k′i f

)

where,LOld(a,b), OOld(a,b) represent the setsL(a,b) andO(a,b) before∆ f decreases andONew(a,b) represents the setO(a,b)
after∆ f decreases. The quantity in between big parenthesis is necessarily non-negative according to the net balance condition, which
ensures

kf + ∑
{ f , j}∈LOld(a,b)

kf j − ∑
( f ,h)∈OOld(a,b)

k′f h > 0,
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and the positivity of the parameters relative to the antagonism effect, which ensures

∑
(i, f )∈ONew(a,b)

k′i f ≥ 0.

Consequently,S(a,b) cannot increase.

The proof of the monotonicity ofS(a,b) is complete. Let us now show thatS(a,b) ≥ 0.
If C̄(bPa) = ∅, thenS(a,b) = 0. Suppose that we could haveS(a,b) < 0. This implies that at least one criterionf does not belong to

C̄(bPa) 6= ∅. Consider that there exists at least one criterion inC̄(bPa). If for all f in C̄(bPa), ∆ f is forced to decrease till̄C(bPa) = ∅, thenS(a,b)
cannot increase. Contradiction!
The proof is now complete.

�

Proof of Lemma 2.
The proof of this lemma is based on the fact that, if the difference∆ f decreases, eitherc(a,b) remains constant or it decreases. Two cases should
be considered.

1. Criterion f belongs toC(bPa).
If f belongs toC(bPa), after∆ f decreases it continues to belong toC(bPa), such that the sets̄C(bPa), L(a,b) andO(a,b) remain unchanged.
Consequently, the value ofK(a,b) and the three summations in (4) do not change and, therefore,c(a,b) remains constant.

2. Criterion f belongs toC̄(bPa).

Two subcases have to be considered,

(a) Criterion f stills remain inC̄(bPa).
Decreasing∆ f will not make a move off from C̄(bPa) to the opposite coalitionC(bPa). Again, the value ofK(a,b) does not change.
Hence, the three summations will not be affected. Then,c(a,b) remains constant too.

(b) Criterion f moves toC(bPa).
When decreasing∆ f , f moves fromC̄(bPa) to C(bPa). This moving has some implications on the result. Consider the following
additional notation,

α = S(a,b)New

β = K(a,b)New

γ = K(a,b)Old −K(a,b)New

δ = kf

whereK(a,b)Old denotes the value ofK(a,b) before∆ f decreases, andS(a,b)New andK(a,b)New denote the value ofS(a,b) and
K(a,b) after∆ f decreases.

The concordance indicesc(a,b)Old andc(a,b)New can be rewritten as follows,

c(a,b)Old =
α+ γ+δ

β+ γ

and

c(a,b)New=
α
β

Therefore, the monotonicity conditionc(a,b)Old > c(a,b)New becomesα+γ+δ
β+γ > α

β . Sinceβ = K(a,b)New andβ + γ = K(a,b)Old,

we haveβ > 0 andβ+ γ > 0. Through the application of simple algebraic operations,we get,

α+ γ+δ
β+ γ

>
α
β
⇔ (α+ γ+δ)β > (β+ γ)α ⇔ (γ+δ)β > αγ. (i)

Two cases are possible:

• γ ≤ 0: in this case(γ +δ)β > 0 (observe that, by lemma 1,γ +δ = S(a,b)Old −S(a,b)New> 0) andαγ ≤ 0 (notice thatα ≥ 0,
becauseα equalsS(a,b) after decreasing∆ f and, by Lemma 1,S(a,b) is always non-negative),

• γ > 0: sinceβ > α (notice thatβ−α = ∑i∈C(bPa) ki) andα ≥ 0, (i) holds if δ > 0, which is always true.

Therefore, in any case(i) is true and we can conclude that, when decreasing∆ f , c(a,b) also decreases.

The proof is complete.

�
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Proof of Lemma 3.
The proof of this lemma is also based on the fact that if the difference∆ f decreases, eitherS(a,b) remains constant or it decreases. Two cases have
to be considered.

1. Criterion f belongs toC(bPa).
As in the absence of pseudo-criteria, after∆ f decreases it continues to belong toC(bPa), such that the sets̄C(bPa), L(a,b) andO(a,b) re-
main unchanged. Moreover, if there exist ordered pairs(i, f )∈O(a,b), then when decreasing∆ f cf (b,a) remains equal to 1. Consequently,
the value ofK(a,b) and the three summations in (6) do not change and, therefore,c(a,b) remains constant.

2. Criterion f belongs toC̄(bPa).
Now, three subcases have to be considered.

(a) Criterion f belongs toC(aSb).
The decreasing of∆ f does not movesf ; it remains thus inC(aSb). More precisely, the decreasing of∆ f will not make any change
in the three components ofS(a,b), which remains constant.

(b) Criterion f belongs toC(bQa).
After decreasing∆ f , criterion f stills remain inC(bQa), either because it belonged to this coalition before or because it moved to
C(bQa) due to the decreasing of∆ f . All the summations in the definition ofS(a,b) are affected. Let us suppose thatcf (a,b) changes
its new value and becomescf (a,b)−∆, with ∆ > 0. We have the following inequality,

S(a,b)New−S(a,b)Old =

−∆kf + ∑
j∈C̄(a,b)

(

Z(cf (a,b)−∆,c j (a,b))−Z(cf (a,b),c j (a,b))
)

kf j+

− ∑
h∈C(bPa)

(

Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a))
)

k′f h

≤

−∆kf − ∑
j∈C̄(a,b):kf j<0

(

Z(cf (a,b)−∆,c j (a,b))−Z(cf (a,b),c j (a,b))
)

|kf j |+

− ∑
h∈C(bPa)

(

Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a))
)

k′f h

Let us remark that for allh∈C(bPa),

Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a)) = −
(

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a))
)

From the marginal impact condition and puttingcf (a,b)−∆ = x, ch(b,a) = y, and∆ = w in the previous condition we obtain,

1
∆

(

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a))
)

≤ 1

and therefore,

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a)) ≤ ∆

or, in an equivalent way,

Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a)) ≥−∆

And, now from this expression we obtain,

−∆kf − ∑
j∈C̄(a,b):kf j<0

(

Z(cf (a,b)−∆,c j (a,b))−Z(cf (a,b),c j (a,b))
)

|kf j |+

− ∑
h∈C(bPa)

(

Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a))
)

k′f h

≤
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−∆kf +∆ ∑
j∈C̄(a,b):kf j <0

|kf j |+∆ ∑
h∈C(bPa)

k′f h = −∆
(

kf − ∑
j∈C̄(a,b):kf j<0

|kf j |− ∑
h∈C(bPa)

k′f h

)

From the net balance condition we have,

kf − ∑
j∈C̄(a,b):kf j<0

|kf j |− ∑
h∈C(bPa)

k′f h > 0

and, therefore, since∆ > 0, we have

−∆
(

kf − ∑
j∈C̄(a,b):kf j<0

|kf j |− ∑
h∈C(bPa)

k′f h

)

< 0

such that

S(a,b)New−S(a,b)Old < 0

and, we can conclude that, after decreasing∆ f , S(a,b) decreases.

(c) Criterion f moves toC(bPa).
The decreasing of∆ f will move f to C(bPa). In such a case,cf (a,b)kf can no more be found in the expression ofS(a,b). If there
are j such that{ f , j} ∈ L(a,b), then the termsZ(cf (a,b),c j (a,b))kf j will be removed from the second summation of (6). For all
i ∈ C̄(bPa), the pair(i, f ) enters inO(a,b), while for all h∈C(bPa) the pair( f ,h) goes out fromO(a,b). The new value ofS(a,b),
S(a,b)New, is equal to the previous one,S(a,b)Old, minus a certain quantity; it is calculated as follows,

S(a,b)New= S(a,b)Old

−
(

cf (a,b)kf + ∑
{ f , j}∈L(a,b)

Z(cf (a,b),c j (a,b))kf j

− ∑
( f ,h),h∈C(bPa)

Z(cf (a,b),ch(b,a))k′i f + ∑
(i, f ),i∈C̄(bPa)

Z(ci(a,b),cf (b,a))k′i f

)

Now, we have to prove that the quantity between parentheses,denoted by∆S(a,b), is non-negative. Remembering thatZ(x,y) ≤
min{x,y} for all x,y∈ [0,1] and the net balance condition we get

∆S(a,b) = cf (a,b)kf + ∑
{ f , j}∈L(a,b)

Z(cf (a,b),c j (a,b))kf j

− ∑
( f ,h),h∈C(bPa)

Z(cf (a,b),ch(b,a))k′f h + ∑
(i, f ),i∈C̄(bPa)

Z(ci(a,b),cf (b,a))k′i f

≥

cf (a,b)kf − ∑
{ f , j}∈L(a,b),kf j <0

Z(cf (a,b),c j (a,b))|kf j |

− ∑
( f ,h),h∈C(bPa)

Z(cf (a,b),ch(b,a))k′f h + ∑
(i, f ),i∈C̄(bPa)

Z(ci(a,b),cf (b,a))k′i f

≥

cf (a,b)
(

kf − ∑
{ f , j}∈L(a,b),kf j <0

|kf j |− ∑
( f ,h),h∈C(bPa)

k′f h

)

+ ∑
(i, f ),i∈C̄(bPa)

Z(ci(a,b),cf (b,a))k′i f > 0

Consequently,S(a,b) decreases.

The proof of the monotonicity ofS(a,b) is thus complete. The proof ofS(a,b) ≥ 0 can be obtained from the monotonicity ofS(a,b) in an
analogous way as in the case of quasi criteria.

�
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Proof of Lemma 4.
The proof of this lemma is also based on the fact that if the difference∆ f decreases, eitherc(a,b) remains constant or it decreases. Two cases have
to be considered.

1. Criterion f belongs toC(bPa).
For the same reasons as in the absence of pseudo-criteria,c(a,b) remains constant.

2. Criterion f belongs toC̄(bPa).
Now, four subcases have to be considered.

(a) Criterion f belongs toC(aSb) and it remains inC(aSb) after decreasing∆ f .
The decreasing of∆ f does not movef to another coalition. Thus, the decreasing of∆ f will not make any change in the three
components of the numerator ofc(a,b), neither in the normalization coefficientK(a,b). Consequently,c(a,b) remains constant.

(b) Criterion f moves fromC(aSb) to C(bQa).
After decreasing∆ f , criterion f moves toC(bQa) due to this decreasing and the value ofcf (a,b) passes from 1 tocf (a,b)New< 1.
All the summations in the numerator of (6) are affected. The second and the third summation in the denominators can be modified
also.

Consider the following additional notation,

α = S(a,b)New

β = K(a,b)New

γ = K(a,b)Old −K(a,b)New

δ = kf (1−cf (a,b)New)

whereK(a,b)Old denotes the value ofK(a,b) before∆ f decreases, andS(a,b)New andK(a,b)New denote the value ofS(a,b) and
K(a,b) after∆ f decreases.

Thus, we have that

c(a,b)Old =
α+ γ+δ

β+ γ
and c(a,b)New=

α
β

such that the monotonicity conditionc(a,b)Old > c(a,b)New becomes as follows,

α+ γ+δ
β+ γ

>
α
β

(ii)

Observe thatβ > 0 andβ+γ > 0 (becauseβ = K(a,b)Newandβ+γ = K(a,b)Old). Therefore, through the application of very simple
algebraic operations,(ii) is equivalent to(α+ γ+δ)β > α(β+ γ), from which we obtain

(γ+δ)β > αγ (iii )

Notice also thatγ+δ = S(a,b)Old −S(a,b)New and for lemma 3 we haveS(a,b)Old −S(a,b)New> 0, such thatγ+δ > 0 always.

We prove also thatβ > α. In fact,

K(a,b)New= S(a,b)New+
(

∑
i∈C(bPa)New

ki + ∑
j∈C(bQa)New

(1−c j (a,b))k j

)

such that, remembering thatf ∈ C(bQa)New, we get that the quantity in between big parentheses is always positive. Therefore
K(a,b)New> S(a,b)New and consequentlyβ > α.

Coming back to condition(iii ), two cases are possible:

• γ ≤ 0: in this case(γ+δ)β > 0 andαγ ≤ 0 (notice thatα equalsS(a,b) after decreasing∆ f and, by Lemma 3,S(a,b) is always
non-negative), such that(iii ) holds;

• γ > 0: sinceβ > α andα ≥ 0, (iv) holds ifδ ≥ 0, which is always true.

Therefore, in any case(iii ) is true and we can conclude that, when decreasing∆ f , c(a,b) also decreases.

(c) Criterion f belongs toC(bQa) and it remains inC(bQa) after decreasing∆ f .
This case is analogous to the previous one, becausecf (a,b) changes its new value and becomescf (a,b)−∆, with ∆ > 0. Thus, when
decreasing∆ f , c(a,b) also decreases.

(d) Criterion f moves fromC(bQa) to C(bPa).

Let C̄(bPa)Old, L(a,b)Old, andO(a,b)Old denote the sets̄C(bPa), L(a,b), andO(a,b), respectively, before decreasing∆ f , and let
C̄(bPa)New, L(a,b)New, andO(a,b)New denote the same sets after decreasing∆ f . We have,

C̄(bPa)New= C̄(bPa)Old \{ f }

L(a,b)New= L(a,b)Old \
{

{ j , f } : j ∈ C̄(bPa)Old \{ f }
}

O(a,b)New= O(a,b)Old \
{

( f ,h) : h∈C(bPa)Old
}

∪
{

(i, f ) : i ∈C(bPa)Old \{ f }
}

Therefore all the summations in the numerator and in the the denominatior of (6) are affected.

Consider the following additional notation,
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α = S(a,b)New

β = K(a,b)New

γ = K(a,b)Old −K(a,b)New

δ = kf cf (a,b)

whereK(a,b)Old denotes the value ofK(a,b) before∆ f decreases, andS(a,b)New andK(a,b)New denote the value ofS(a,b) and
K(a,b) after∆ f decreases.

Thus, we have that

c(a,b)Old =
α+ γ+δ

β+ γ
and c(a,b)New=

α
β

such that from the monotonicity conditionc(a,b)Old > c(a,b)New becomes as follows,

α+ γ+δ
β+ γ

>
α
β

(iv)

Observe thatβ > 0 andβ+γ > 0 (becauseβ = K(a,b)Newandβ+γ = K(a,b)Old). Therefore, through the application of very simple
algebraic operations,(iv) is equivalent to(α+ γ+δ)β > α(β+ γ), from which we obtain

(γ+δ)β > αγ (v)

Notice also thatγ+δ = S(a,b)Old −S(a,b)New and for lemma 3 we haveS(a,b)Old −S(a,b)New> 0, such thatγ+δ > 0 always.

As proved in previous point (b), remember thatβ > α.

Coming back to condition(v), two cases are possible:

• γ ≤ 0: in this case(γ+δ)β > 0 andαγ ≤ 0 (notice thatα equalsS(a,b) after decreasing∆ f and, by Lemma 3,S(a,b) is always
non-negative), such that(v) holds;

• γ > 0: since, as proved in previous point (b),β > α, andα ≥ 0, (v) holds ifδ ≥ 0, which is always true.

Therefore, in any case(v) is true and we can conclude that, when decreasing∆ f , c(a,b) also decreases.

�
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