UNIVERSITE PARIS

%4 DAUPHINE

Laboratoire d'Analyse et Modélisation de Systémes pour
I'Aide a la Décision
CNRS UMR 7024

CAHIER DU LAMSADE
249

mars 2007

A Hierarchical Model for Transactional Web Service

Composition in P2P Networks

Joyce E1 Haddad, Maude Manouvrier, Marta Rukoz

CENTRE NATHNAL
Ik LA RECHERUHE
SCIENTIFIQUE

A Hierarchical Model for Transactional Web Service Composition
in P2P Networks

Joyce El Haddad'

Maude Manouvrier

Marta Rukoz"?

'LAMSADE, University of Paris Dauphine, France
{elhaddad manouvrier}@lamsade.dauphine. fr

“University of Paris X Nanterre, France
marta.castillo@u-paris10.fr

Abstract

The recent approaches for Web services composition
tend 1o integrate heterogeneous business processes
executed in Peer-to-Peer networks. In such networks,
component Web services are invoked on independent
peers and are orchestrated according to the
transactional requirements defined by the designers or
the users of the composite Web service. Since component
Web sewices can be dynamically invoked and are
generally implemented as black boxes, concurrency
between them may appear. This paper presents the
transactional execution model of composite Web services
exploiting the tramnsactional properties of their
component Web services. The proposed concurrency
control is ensured by a decentralized serialization graph
based on an optimistic protocol and on the hierarchical
structure of the composition. The globally correct
execution of the composite Web service is achieved by
communication among dependent subtransactions and
the peers they have accessed.

1. Introduction

With the proliferation of e-business technologies,
service-oriented computing is becoming increasingly
popular. Access to data and documents is provided by
services which can range from simple read/write
operations on data items to complex business functions
like scheduling a trip. An important challenge is to
combine service invocations into a coherent whole by
means of composition. Services that enter into
compositions with other services may have transactional
properties. These transactional properties may be
exploited in order to derive composite services which
themselves exhibit certain transactional properties.

This poses, however, several new research problems.
For instance, how can one at the same time create Web

service compositions tailored to each user and ensure
their correct execution. Moreover, this kind of “a la
carte” composition brings about issues such as managing
concurrent access to resources and ensuring a correct
execution in accordance with users’ requests and
preferences. These issues are even more difficult to
resolve in a peer-to-peer environment that inherently
lacks global control.

Most approaches to Web service composition can be
classified into two main classes: those based on
workflows [1] [2] [8] and those based on advanced
transactional models [6] [7] [14] [16]. The first class
enables a certain degree of flexibility, but lacks sound
mechanisms for correctness and concurrency control. On
the other hand, advanced transactional models [9] [11]
handle concurrency but are found lacking functionality
and performance when used for applications that involve
dynamic composition of heterogeneous services in a peer-
to-peer context. Their limitations come mainly from their
inflexibility to incorporate different transactional
semantics as well as different interactions patterns into
the same structured transaction.

To the best of our knowledge, defining a transaction
with a particular set of properties and ensuring that every
execution will preserve these properties remains a
difficult and open problem. Our work is a step towards
solving this problem. As will be seen, we support user-
tailored composition, by creating a multi-level hierarchy
of Web services, similar to a workflow specification,
where composition can be specified using logical
connectors. At the same time, we take advantage of
results in database open nested transaction protocols [15]
to manage concurrent accesses and ensure correctness. In
this paper, we propose a transactional approach for
reliable Web services compositions by ensuring the
constraints required by the users. From a transactional
point of view, we consider a composite Web service as a
structured transaction and component Web services as

subtransactions. We use the user’s requirements as a
correctness criterion. Indeed, the constraints and
preferences specified by the users over the set of services
that participate in a transaction have to be a part of the
execution of the composite service.

The remainder of the paper is organized as follows.
Section 2 introduces a motivating example and gives the
main point which has driven our approach. In section 3,
we present the composite Web service transaction model.
Section 4 describes our concurrency control of the
composite Web services model and illustrates how our
approach proceeds, using the user’s requirements, to
compose reliable Web services. In section 7, we discuss
some related work. Section 8 concludes and gives
perspectives.

2. Motivating example

In order to analyze the requirements of composite
Web services transactions, we consider as a working and
a motivating example a scenario of an online trip
reservation. It involves three Web-based autonomous
businesses that provide specialized services: .S; providing
flight reservation, S providing hotel reservation and S,
providing B&B accommodation. These services can be
composed into several composite Web services in order to
provide packages which can be chosen by the customers
such as:

e Packagel that consists of booking a flight and a
reservation of a room hotel;
e Package? that consists of booking a flight and a

reservation of either a room in an hotel or in a B&B;
e Package3 that simply consists of booking a flight

ticket.

As illustrated in Figure 1, Packagel is a workflow
skeleton composed of Web services S; and S,. Package?
a workflow skeleton composed of Web services .S;, S, and
S;. Package3 is the elementary Web service S;.

Example. Let us consider the example of a trip
scheduling where a customer wants to reserve for three
different persons at the same time. The trip scheduling
consists of booking a Packagel for a first person, a
Package? for a second person and only a flight for the
customer himself. In this example, the customer wants to
be sure that the trip is valid if he has his flight ticket and
at least one of the two other persons could have his
package. As depicted in Figure 2, the reservation request
of the customer (Packagel OR Package2) AND
Package3 is defined using the AND-split and the OR-
split patterns. If the first part of the trip scheduling fails
(i.e. (Packagel OR Package? is false) then the customer
is stuck with a flight ticket. In that case, nobody travels

and it is a valid option to cancel the whole trip.
However, if someone of the first part has its package
valid and the customer has his flight ticket too, then the
whole trip is valid.

flight booking

User’s
request
S2
hotel booking

(a) Workflow of Packagel

S1
flight booking
User’s A /
request N S2
D \ X / hotel booking
O
R
\ S,
B&B booking

(b) Workflow of Package2

User’s S1
request flight booking

(c) Workflow of Package3

S

o Zz»

Figure 1 - Packages for online trip reservations.

Package3
A
User’s N
request D

Packagel

Package2

Figure 2 - Online trip reservation request.

The following points introduce our approach and its
concepts.
Example. Back to the example of trip scheduling, the
customer wishes to establish a transactional dependency
between the services that corresponds to its preferences
(Packagel OR Package2) AND Package3. The only
possible outcome of the combined use of the Web

services with traditional ACID propriety (i.e. atomicity is

all-or-none) is:

o the three [flight vreservations, the two hotel
reservations or one hotel reservation and one B&B
reservation are committed.

However, the customer wishes 1o establish a

transactional dependency between the services so that

the following defined outcomes of the combined use of
the Web services are possible:

o the three flight vreservations, the two hotel
reservations or one hotel reservation and one B&B
reservation are committed;

o the two flight veservations and either the one hotel
reservation or the one B&B reservation are
committed:

o the two flight veservations and the one hotel
reservation are committed.

This example motivates our research to provide users
with a mean to express their acceptable atomicity level
and the correct execution of the composite service
regards to their preferences. In the rest of the paper we
present an appropriate transactional model for the
composition of Web services with transactional
properties that solves the above issues.

3. Hierarchical transactions for Web services

This section summarizes the basic assumptions of our
approach.

3.1. Architecture

We adopt peer-to-peer architecture as it is widely used
for various Web-based distributed applications. Peer-to-
peer has many advantages including, dynamic
communication, enhanced reliability without suffering
from single point of failures, and load sharing among
peer systems. The proposed architecture comprises
various components including user application (i.e. the
customer), service packages (i.e. composite Web services)
and system model (i.e. peer or component Web services).
In the following, we describe theses components.

3.1.1. User application and service packages. A user
application component acts as a consumer of the
(composite) Web service. It invokes operations on the
(composite) service in order to perform various tasks. For
example, a user may use the (composite) service to book
a flight, reserve a room in a hotel or in a B&B. In other
terms, each composite Web service can be viewed as a
black box. Its interface provides several packages, which
can be selected and/or combined by the users. A service
package corresponds to the invocation of one or several
component Web services.

Component Web services of a composite service are
generally developed by individual organizations. In the
proposed model each (composite) service is self-
coordinated, autonomous and performs various functions
including: (1) receiving service activation requests from
the user application or from a peer, (ii) invoking
operations on the underlying component services, (iii)
receiving notification of the execution completion from
peer and changing its state accordingly, (iv) exchanging
input and output data and (v) other message
communication such as reporting failures, cancellation of
requests, and stopping the service execution.

3.1.2. System Model. Our model is based on the peer-to-

peer environment of [13] with the following assumptions:

e Without loss of generality, each peer provides one
service. This service can be invoked using its
interface and is executed as local database
transaction.

e The peers are independent and services are not
replicated on different peers.

e A peer may provide a compensation service that
semantically undoes the effect of the invocation of the
original service. The operation of the compensation
service strongly depends on the semantics of the
original service. The compensation might also be an
"empty" service.

e FEach service provides one of two kinds of resources:
resources handling acquisition operations (e.g. flight
tickets) and resources handling read/write operations
(e.g. bank account). For the latter, each service
maintains only one resource. For the former, each
service can maintain several resources. In both cases
and for each resource, a peer maintains a log file
where it stores the identifiers of the transactions
invoking the service on this resource. Using this
information, a peer can derive conflicts between
transactions that have invoked the same service on
the same resource.

3.2. Transactional composite Web service

Returning to our online trip reservation scenario from
above, where a customer wants to schedule a travel
according to its following restriction: (Packagel OR
Package2) AND Package3. Usually, interactions between
the services that offer the resources and the users
interested in them are encapsulated within a transaction.
Since our system model is based on a peer-to-peer
network, the open nested transaction model [15] seems to
be best suited. Under this model, a transaction can launch
any number of subtransactions, which, in turn, can
launch any number of subtransactions, thus forming a

transaction hierarchy. Each subtransaction can in turn be
an open nested transaction. The transaction which is not
enclosed in any transaction is called the root transaction.
Each leaf subtransaction is viewed as a normal flat
transaction in the system and corresponds to a service
invocation. That is, only leaves of the transaction
hierarchy can perform the Web services invocations and
are executed independently. Non-leaf subtransactions
organize the control flow and determine when to execute
subtransactions. Transactions having subtransactions are
called parents, and their subtransactions are their
children. In the following, we use the term transaction to
denote both root transaction and subtransactions. The
transaction identifiers reflect the hierarchy: the children
of a transaction 7} are identified by T}, k=1.

Example. Consider again the example of the online trip
reservation. As depicted is Figure 3, the root transaction
T corresponds to the customer request and the logical
expression (T;; v T1n) A Ti3) to its vestriction. This
transaction is a hierarchy of three subtransactions: T,
modelling Packagel, T;, modelling Package? and T3
modelling Package3. The logical expressions of T;;, T},
T3 correspond to the packages’ workflow patterns.

User

Composite Web Service Coordinators

T T
13
12<T121A T2
A
T i Q
v (T, AT)
/ 1217 1123 !
Tir Tz Tz Tz Ty !

QLLL Q

Services
©n
—
\
\
Z \
S \
%
w

Peer P 1
Peer P 5
Peer P 3

Figure 3- Example of a transaction hierarchy.

To exploit the inherent potential of open nested
transactions and their advantages, the degree of intra-
transaction parallelism should be as high as possible. In
such transactional model only siblings may be performed

concurrently. Since some transactions in a hierarchy are
executed in parallel, concurrency control among them is
needed.

3.3. Composite Web service orchestration

Web service composition is generally accomplished in
different phases. The first phase handles the
orchestration of the component Web services which are
discovered. It selects appropriate services and constructs
the execution flow for those services. The second phase
presented in the next Section concerns the concurrency
control of the composite Web service execution.

Component Web services are executed according to
the execution order required by the composite service.
For instance, in the online travel reservation example, a
flight reservation service could be executed prior to the
execution of a hotel reservation service. The execution
flow of a composite service is constructed such that it
conforms to the execution requirements of the customer
(i.e. user application). We define some basic rules in
order to construct an execution flow for the component
services and the related transactions:

e Sequential (S;;S;): A component service, S,, must
follow the execution of another component service,
S;. For instance, a flight reservation service should be
executed before a B&B accommodation service which
should be executed after the execution of an hotel
reservation service. Therefore, as depicted in Figure
3, transaction 7, corresponding to the hotel
reservation service is executed in sequential with 7755
that corresponds to the B&B accommodation service.

e Parallel (S;//S,): This allows component services, S;
and S, to be executed concurrently. For example, the
flight reservation service and the hotel reservation
service can be executed in parallel. Therefore, as
depicted in Figure 3, transaction 7;; corresponding
to the flight reservation service is executed in parallel
with 77, that corresponds to the hotel reservation
service.

4. Execution model

This section addresses the concurrency control issue
between the transactions of the hierarchy. This is ensured
by the collaboration of peers and of transactions. In fact,
we assume that there is a conflict between two or more
transactions when they invoke the same service on the
same resource. Our approach is based on an optimistic
concurrency control. Thus, a transaction invokes a
service without checking for conflicts, i.e. conflicts are
detected afterwards. Indeed, each transaction of the
hierarchy manages its own serialization graph

comprising the conflicts in which the transaction is
involved in.

4.1. Peer resource management

As mentioned above, for each resource of a service S;
a peer P, maintains a log file where it stores the
identifiers of the active transactions invoking S; for this
resource. Since service S; maintains either »; acquisition
resources (i.e. m=>1) or one read/write resource (i.c.
n;=1), an instance of a log file for a resource contains the
queue of transaction invocations.

When the peer service provides m;>/ resource
acquisitions, the completion of a transaction decreases
the value of »,. The completion of #; transactions involves
the failure of all the transactions following the completed
ones on the same service invocation.

When the peer service provides a read/write resource
(i.e n; = 1), the failure of a transaction 7; decreases the
value of »; and involves the failure of all the following
transactions invoking the same service.

4.2. Peer transactional layer

The message exchange between peers and leaf
transactions performs the following:

e When service S; of peer P; is invoked by an active
transaction 7;, then if the execution of S; is not
possible (n,=0), peer P, sends to 7; an error message.
Otherwise, peer P, stores the service invocation of 7}
into its local log file, executes S; and sends its log file
to 7, with the service result. Figure 3 presents an
example. The log file of service S; points out that
transaction 77;;; precedes transaction 7;; which
precedes transaction 7, on the invocation of service
S;. When peer P; receives the invocation of service .S;
by transaction 77,;, it sends to 7;,; the result service
invocation and its log file indicating that transactions
T,;; and T;; have invoked the same service on the
same resource before 77;5;.

e When peer P; receives a message indicating that a
transaction 7, completes (resp. fails), P; updates its
log file. Then, peer P; analyzes its log file and
informs all the transactions following 7; on the same
service resource that either they have to fail, if »,=0,
or that 7; is completed (resp. has failed), if »,>0.
Moreover, if a compensate service exists, the failure
of 7; involves the invocation of the compensate
service by a new transaction. For example, let suppose
peer P; of Figure 3 receives a message indicating that
transaction 7;;; completes. If only one flight seat is
available (n;=1 before T;;; completes), then peer P,
decreases the value of n; and sends to 73 and Tj»; a

message indicating they have to fail. In return, if P;
receives a message indicating that transaction 77;;; is
failed, then it invokes a compensation service, if such
service exists, and informs 7;; and 7;»; that 7;;; has
been failed.

4.3. Serialization graph construction

As we mentioned before, we use an optimistic
concurrency control, where each transaction manages its
own serialization graph. This graph allows a transaction
to detect non-serializable execution between their
subtransactions. In this case, one of its subtransactions
has to fail.

The graph of a leaf transaction is build from the log
file sent by the peers whose services have been invoked.
The serialization graph of a non-leaf transaction is
induced by the graphs sent by its children. In both cases,
two steps appear. Firstly, a transaction 7; updates its
graph by merging its previous graph with the graph(s) or
the log file received. Secondly, the transaction 7; replaces
the identifiers of the transactions appearing in the graph
by the identifiers of transactions appearing on the same
level than 7} in the hierarchy (i.e. reducing the size of
transaction identifiers from the end). The serialization
graphs of the example transactions of Figure 3 are
represented in Figure 4. The graph of leaf transaction 773
is computed from the message of peer P; indicating that
the invocation of S; by 773 is preceded by the invocation
of the same service by 7;;; on the same resource. Thus,
the graph of T3 is T;;; — T3 After restructuring the
transaction identifiers, the graph becomes 7;; — 77s.

The inferred serialization graphs are transferred
bottom-up: from the peers to the leaves and then up to
the root via the intermediate transactions.

Serialization graph of T infered from peer messages: @ andsentto Ty

Serialization graph of T |, infered from peer messages: andsentto Ty
Serialization graph of T |, infered from its sub—transaction graphs: andsentto T
Serialization graph of T |5, infered from peer messages: @—’ andsentto T2

Serialization graph of T |5, infered from peer messages: andsentto Ty

Serialization graph of T |,y infered from peer messages: andsentto T
Serialization graph of T, infered from its sub-transaction graphs: @—'®4—®

andsentto T

Serialization graph of T3 infered from peer messages:
replaced by: andsentto T

Serialization graph of T infered from its sub-iransaction graphs: 0

C—C)

Figure 4. Serialization graphs of the
transactions.

When a transaction detects a cycle in its serialization
graph, two cases appear. First, the logical expression of
the transaction is a conjunction of its subtransactions. In
this case, any failure of one of its children involves a
failure of the transaction. In the second case, if a
disjunction appears in the logical expression of the
transaction, then a victim can be chosen among the
children of the {transaction. The chosen victim
transaction must fail in order to delete the cycle in the
graph, after receiving an “Error!” message from its
parent transaction.

4.4. State transitions of transactions

The state diagram of a Web service transaction is
represented by Figure 5. It contains seven states. The
Initial state of the diagram means that the transaction
does not have started its execution yet.

When a transaction changes its state, it informs its
parent about this change by sending its serialization
graph. In addition, leaf transactions inform the peers
whose services have been invoked.

[] Active Execute

Initial

Completed @

Committed

Failed

Figure 5. State diagram of a WS transaction.

In certain cases, a transaction changes its state if and
only if the following two conditions are valid: (1) the

evaluation of the logical expression of the transaction is
true and (2) no cycle appears in the serialization graph of
the transaction. In the following, we call this verification
Execution Control Consistency (ECC). The logical
expression of a leaf transaction is true if the service has
been correctly invoked by the transaction. The transitions
between states depend on the messages received or sent
by a transaction and on the position of the transaction in
the hierarchy, as explained below.

Transition between Initial state and Active state:

® For the root transaction: When the user’s request is
initiated the root transaction becomes Active, sends
an “Fxecute!” message to all its children and waits
for their answers.

® For leaf transactions: After receiving an “FExecute!”
message from its parent, a leaf transaction becomes
Active, sends an invocation message to the peer and
waits for the peer’s answer.

® For non-leaf transactions: After receiving an
“Execute!” message from its parent, a non-leaf
transaction broadcasts the “Execute!” message to its
children and waits for their answers.

Transition between Active state and Executed state:

® For leaf transactions: After receiving a message from
the peer indicating that its service has been correctly
executed. The transaction updates its serialization
graph from the informations sent by the peer, sends
it to its parent with an “Fxecuted” message and
changes to Fxecuted state.

® For non-leaf transactions: After receiving a message
“Executed” from (at least one of) its children and if
the ECC is verified. Each non-leaf transaction
(except the root), sends an “Executed” message to its
parent and changes to Executed state. For example,
if transaction 7, receives two messages indicating
that both sub-transactions 7;,; and 75, (or T;5; and
T12;) have been executed then 7, changes to
Executed state.

In the rest, each time that a transaction evaluates its
logical expression, it sends a message to each of its
children transactions. This message is either an “Error!”
message intended to the children of the invalid part of its
logical expression, or a “Complete!” or “Commit!”
message intended to the children of the valid part of its
logical expression.

Transition between FExecuted state and Wait-To-
Completed state

® For the root transaction: After sending a
“Complete!” message to its children. The root
transaction goes to Wait-to-Completed state.

® For the other transactions: When receiving a
“Complete!” message from its parent transaction. In
addition, each non-leaf transaction sends a
“Complete!” or an “Error!” message to its children,

depending on the evaluation of its logical
expression.
Transition between Wait-To-Completed state to

Completed state:

e For all the transactions: The transition to state
Completed 1s possible if no other transaction
precedes the transaction in its serialization graph. In
the following, this situation is called No
Dependence.

e For leaf transactions: After sending a message
“Completed” to the peer whose service has been
invoked, and if there is No Dependence. For
example, transactions 77;;, 75, and 7,3 can go to
state Completed after receiving a “Complete!”
message from their parent transaction, because No
Dependence appears.

e For non-leaf transactions: After receiving a message
“Completed” from (at least one of) its children and if
the ECC is verified and if there is No Dependence.

Transition between Completed state and Committed state:

e For the root transaction: As soon as the transaction
has sent “Commit!” to its children.

e For the other transactions: After receiving a
“Commit!” message from its parent transaction. This
message is broadcasts to the Completed children by
non-leaf transactions or to the peers by leaf
transactions.

Transition between Active/Executed/Wait-To-

Completed/Completed states and Failed state:

e For leaf transactions: After receiving an “Error!”
message from the peer or from its parent transaction.
For example, if there is only one flight seat available,
peer P; sends an “Error!” message to transactions
T3 and Ty, after receiving a “Completed” message
from 7;;;. When a peer allows the compensation of
transactions, the transition to state Failed of a leaf
transaction involves the execution of a compensation
transaction (invoking a compensation service).

e For the other transactions: After receiving an
“Error!” message from its parent, or if the
evaluation of the logical expression of the
transaction 1is false. The logical expression
evaluation is done by a transaction after receiving a

message from one of its children or after choosing
one of its children to be a victim in case of cycle in
its serialization graph. For example, when 773
informs its parent transaction it has failed, the state
of T, becomes Failed because the logical expression
of 7, becomes false after the failure of 7.

5. Related work

Designing a set of service to achieve a composite Web
service has been tackled by workflow systems and by
advanced transactional models. These two classes of
approaches are complementary but suffer from
concurrency control for the first one and from
inflexibility of compositions for the second one.

Workflows are flexible but lack transactional
reliability. To overcome this limitation, the approach of
[11 [2] proposes to wvalidate the transactional
requirements of the user once a composition of Web
service has been created. On the other hand, the
approach of [8] integrates the wuser transactional
requirements as a part of the composite Web service
building process.

Among advanced transactional models, emerging
standards, such as WS-Transaction [4], BTP [10] [12],
and WS-TMX [3], propose two-phase centralized
orchestration of composite Web services [5]. To
overcome the bottleneck associated with a centralized
controller, several approaches [6] [13] [14] propose a
decentralized orchestration of composite Web services. In
[6], the authors use an extension of the two-phase
coordination protocol. In addition, their approach allows
the user to express maximality and minimality
constraints over the set of services expected to the
validation phase. However, this model is limited to a
sequential execution of transactions. In contrast, in [14],
the authors present a multi-level model for service
composition that does not support users’ constraints.
Another related work is presented in [13] describing a
decentralized coordination of web services in peer-to-peer
environment. This approach is based on serialization
graph testing but does not take into account user
preferences and is also limited to a sequential execution
of transactions.

As a consequence, none of these aforementioned
approaches is able to implement an “a la carte”
composite web service, such as expressed our online trip
example. Indeed, our model allows users to express their
constraints over the set of composite Web services. It is
based on open nested transaction model [15] in a peer-to
—peer context as for [13]. Moreover, our approach takes
advantage from the transaction hierarchy to achieve
global concurrency control .

6. Conclusion

This article has presented a transactional execution
model for user-tailored composite Web services. Since
component Web services can be dynamically invoked and
are generally implemented as black boxes, concurrency
between them may appear. To deal with this, we use an
optimistic protocol and the hierarchical structure of the
composition to ensure global concurrency control. The
globally correct execution of the composite Web service
is achieved by communication among dependent
subtransactions and the peers they have accessed.

This article has presented the basic concepts of our
approach. For the moment, the user’s request is
translated into a logical expression over the transaction
hierarchy, without any analyzing of its semantic. This
issue is our future research challenge.

Acknowledgements

The authors would like to thank Claudia Bauzer-
Medeiros (Univ. Campinas - Brazil) for her helpful
suggestions.

References

[1] Bhir, S., Perrin, O. and Godart, C., “Extending workflow
patterns with transactional dependencies to define reliable
composite Web services”, In Proc. of the Advanced Int.
Conf. On Telecom. And on Internet and Web Appli. And
Services (AICT/ICIW 2006), Guadeloupe (France), 2006

[2] Bhir, S., Gaaloul, W. and Godart, C., “Discovering and
Improving Recovery Mechanisms of Composite Web
Services”, In Proc. of IEEE Int. Conf on Web Services
ACWS 2006), Chicago (USA), 2006, pp. 99-110.

[3] Bunting, D., Chapman, M. Hurley, O., Little, M.,
Mischkinsky, J., Newcomer, E., Webber, J., and Swenson,
K., “Web Services Transaction Management (WS-TXM)”,
Technical report, 2003

[4] Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J.,
Storey, T. and Thatte, S., “Web Services Transaction (WS-
Transaction)”. Technical report, 2002

[5] Chafle, G., Chandra, S., Mann V. and Gowri Nanda, M.,
Decentralized orchestration of composite Web services™, In
Proc. of the 13th Int. World Wide Web Conf (WWW
2004), New-York (USA), 2004, pp. 134-143

[6] Fauvet, M.C., Duarte, H., Dumas, M., and Benatallah, B.,
“Handling Transactional Properties in Web Service
Composition”. in Proc. of the Int. Conf. WISE2005, New
York City (NY), P. 273-289, November, 2005

[7] Hrastnik, P. and Winiwarter, W.., “TWSO — Transactional
Web Service Orchestrations™, Journal of Digital Information
Management, 4(1), 2006

[8] Montagut, F. and Molva, R., “Augmenting Web services
composition with transactional requirements”, /n Proc.

ofIEEE Int. Conf. on Web Services (ICWS 2006), Chicago
(USA), September 18-22, 2006

[9] Moss, J., Nested transactions: an approach to reliable
distributed computing. Massachusetts Institute of
Technology, Cambridge, MA, USA, 1985

[10] OASIS, “Business Transaction Protocol (BTP) Specification
Version 1.0.”, Technical report, 2002

[11] Papazoglou, M., “Web Services and Business
Transactions”, World Wide Web: Internet and Web
Information Systems, 6(1), pp. 49-91,2003

[12] Potts, M., Cox, B., and Pope, B., “Business transaction
protocol primer”, Technical report, OASIS Committee, 2002

[13] Tirker, C., Haller, K., Schuler, C., and Schek, H.-J., “How
can we support Grid Transactions? Towards Peer-to-Peer
Transaction Processing”, In Second Biennial Conf. on
Innovative Data Systems Research (CIDR 20035), Asilomar,
CA (USA), pp. 174-185,2005

[14] Vidyasankar, K., and Vossen, G. “A multi-level model for
Web service composition™. In Proc. of the IEEE
International Conference on Web Services (ICWS'04),
2004

[15] Weikum, G. and Schek, H.-J., “Concepts and Applications
of Multilevel Transactions and Open Nested Transactions”,
In Database Transaction Models for Advanced Applications,
pp- 515-553,1992

[16] Younas, M. and Chao, K-M., “A tentative commit protocol
for composite Web services™. Journal of Computer and
System Sciences, 72:1226--1237, 2006

