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for Systems Research, Polish Academy of Sciences, 01-447 Warsaw, Poland, Phone: +48 61 8790790 or +48 61 6652375,
Fax: +48 61 8771525 E-mail: roman.slowinski@cs.put.poznan.pl



Contents

Abstract 1

1 Introduction 1

Introduction 1

2 Motivation 3

3 Mathematical background on preference modelling 3

3.1 Elementary notation and problem statement . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Preference relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Ordinal regression: The foundations of the UTA method 4

4.1 Preference information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 An additive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Checking for compatible value functions through linear programming . . . . . . . . . 5

5 On the UTAGMS method 7

5.1 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 The ordinal regression via linear programming . . . . . . . . . . . . . . . . . . . . . . 7
5.3 Computation of the relations %N and %P . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 GRIP methodology 9

6.1 Main features of GRIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 The preference information provided by the decision maker . . . . . . . . . . . . . . . 10
6.3 Constraints and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3.2 Fundamental properties of necessary and possible binary relations . . . . . . . 13

6.4 Computational issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.5 A theoretical comparison of GRIP with the Analytical Hierarchy Process . . . . . . . 21
6.6 A theoretical comparison with MACBETH . . . . . . . . . . . . . . . . . . . . . . . . 22
6.7 Other characteristics of GRIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Conclusion and directions for future research 26

Conclusion and directions for future research 26

Acknowledgements 26

References 28

ii



Building a Set of Additive Value

Functions Representing a Reference

Preorder and Intensities of Preference:

GRIP Method

Abstract

We present a method called GRIP (Generalized Regression with Intensities of Prefer-
ence) for ranking a set of actions evaluated on multiple criteria. GRIP builds a set of
additive value functions compatible with preference information composed of a partial
preorder and required intensities of preference on a subset of actions, called reference
actions. It constructs not only the preference relation in the considered set of actions,
but it also gives information about intensities of preference for pairs of actions from this
set for a given Decision Maker (DM). Distinguishing necessary and possible consequences
of prefernce information on the all set of actions, GRIP answers questions of robustness
analysis. The proposed methodology can be seen as an extension of UTA method based
on ordinal regression. GRIP can also be compared to AHP method, which requires pair-
wise comparison of all actions and criteria, and yields a priority ranking of actions. As
for the preference information being used, GRIP can be compared, moreover, to MAC-
BETH method which also takes into account a preference order of actions and intensity
of preference for pairs of actions. The preference information used in GRIP does not
need, however, to be complete: the DM is asked to provide comparisons of only those
pairs of reference actions on particular criteria for which his/her judgment is sufficiently
certain. This is an important advantage comparing to methods which, instead, require
comparison of all possible pairs of evaluations on all the considered criteria. Moreover,
GRIP works with a set of general additive value functions compatible with the preference
information, while other methods use a single and less general value function, such as the
weighted-sum.

Keywords: Multiple criteria decision aiding, Preference model, Value function, Ordinal
regression, Intensity of preference

1 Introduction

Ranking a finite set of actions evaluated on a finite set of criteria is a problem of uttermost importance
in many areas of real-world decision-making situations (see Figueira et al. 2005). Among many
approaches that have been designed to deal with the ranking problem, two of them seem to prevail.
The first one exploits the idea of assigning a score to each action, as it is the case of MAUT - Multi-
Attribute Utility Theory (see Keneey and Raiffa 1976). The second relies on the principle of pairwise
comparison of actions, as it is the case of outranking methods (see Roy 1996). The value function
and the outranking relation are two preference models underlying these two main approaches. In
order to build such models, preference information from the Decision Maker (DM) is required.

1



The preference information may be either direct or indirect, depending whether it specifies directly
values of some parameters used in the preference model (e.g. trade-off weights, aspiration levels,
discrimination thresholds, etc.) or whether it specifies some examples of holistic judgments from
which compatible values of the preference model parameters are induced. Eliciting direct preference
information from the DM can be counterproductive in real-world decision making situations because
of a high cognitive effort required. Consequently, asking directly the DM to provide values for the
parameters seems to make the DM uncomfortable. Eliciting indirect preference is less demanding of
the cognitive effort. Indirect preference information is mainly used in the ordinal regression paradigm.
According to this paradigm, a holistic preference information on a subset of some reference or training
actions is known first and then a preference model compatible with the information is built and
applied to the whole set of actions in order to rank them.

The ordinal regression paradigm is concordant with the posterior rationality postulated by March
(1978). It has been known for at least fifty years in the field of multidimensional analysis. It is
also concordant with the induction principle used in machine learning. This paradigm has been
applied within the two main Multiple Criteria Decision Analysis (MCDA) approaches mentioned
above: those using value function as preference model (Srinivasan and Shocker 1973, Pekelman and
Sen 1974, Jacquet-Lagrèze and Siskos 1982, Siskos et al. 2005), and those using outranking relation
as preference model (Kiss et al. 1994, Mousseau and S lowiński 1998). This paradigm has also been
used since mid ninetieth’s in MCDA methods involving a new, third family of preference models –
a set of dominance decision rules induced from rough approximations of holistic preference relations
(Greco et al. 1999, 2001, 2003, 2005, and S lowiński et al. 2005).

Recently, the ordinal regression paradigm has been revisited with the aim of considering the whole
set of value functions compatible with the preference information provided by the DM, instead of
a single compatible value function used, for example, in UTA-like methods (Jacquet-Lagrèze and
Siskos 1982, and Siskos et al. 2005). This extension has been implemented in a method called

UTAGMS (Greco et al. 2003, 2005). This method is not revealing to the DM one compatible value
function, but it is using the whole set of compatible (general, not piecewise linear only) additive value
functions to set up a necessary weak preference relation and a possible weak preference relation in the
whole set of considered actions. Moreover, in UTAGMS, the preference information has the form of a
partial preorder (instead of a complete preorder) in a subset of reference actions. The necessary and
possible weak preference relations are exploited such that one finally obtains two rankings in the set
of actions: the necessary ranking (partial preorder) identifying preference statements being true for
all compatible value functions, and the possible ranking (complete and negatively transitive binary
relation) identifying preference statements being true for at least one compatible value function.
Distinguishing necessary and possible consequences of preference information on the all set of actions,
UTAGMS answers questions of robustness analysis (Roy 1998).

In this paper, we present a new method called GRIP (Generalized Regression with Intensities of
Preference) which also belongs to the class of methods based on indirect preference information and

the ordinal regression paradigm. GRIP generalizes both UTA and UTAGMS methods by adopting
all features of UTAGMS and taking into account additional preference information in the form of
comparisons of intensities of preference between some pairs of reference actions. These comparisons
are expressed in two possible ways (not exclusive): comprehensively, i.e. on all criteria, and partially,
i.e. on particular criteria.

GRIP can be compared to the AHP method (Saaty 2005), which requires, from the DM, preference
information composed of pairwise comparisons of all actions and criteria on a fixed ratio scale, and
constructs a weighted-sum value function producing a priority ranking of actions.

From the viewpoint of the type of preference information being used, the GRIP method can be
also compared, moreover, to the MACBETH method (Bana e Costa and Vansnick 1994; Bana e
Costa et al. 2005), which also involves a preference order in the set of actions and the intensity of
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preference for pairs of actions. Unlike in MACBETH, however, the preference information in GRIP
does not need to be complete, i.e. the preference order may be partial and may concern just reference
actions, not all actions, and, moreover, information about intensities of preference may also concern
some pairs of reference actions, not all possible pairs of evaluations. This is an important feature of
GRIP, answering to the current demand commonly addressed to decision aiding methods: “try to
help DMs using incomplete although reliable information”.

The paper is organized in the following way. In section 2, we present motivations that led us
to built up a new method. In section 3, we recall some useful concepts concerning mathematical
modelling of preferences, with an adequate notation. Sections 4 and 5 are devoted to the UTA and
UTAGMS methods, respectively. In section 6, we present the new GRIP method and we provide a
theoretical comparison of GRIP with AHP and MACBETH. Finally, section 7 provides conclusions
and avenues for future research.

2 Motivation

Apart from the reasons that motivated the proposal of UTAGMS method (Greco et al. 2005), there
are two major issues that led us to conduct research on this very topic:

• Preference information. There is a need, observed in practice, of handling information related
to intensity of preferences that was not considered in the UTA family of methods. In many real-
life decision-making situations, DMs are willing to provide more information than a preorder
on a set of reference or training actions. Thus, it is frequent to observe assertions of the type
“x is preferred to y at least as much as w is preferred to z”, expressed on particular criteria
(partially) and/or on all criteria together (comprehensively).

• Technical aspects. The additional constraints related to requirements about intensity of pref-
erence can reduce the feasible polyhedron of all value functions compatible with preference
information - the polyhedron which, in general, can be quite large. This can be useful for both
classical UTA method and UTAGMS method.

Similarly to UTAGMS, it would be desirable to design an interactive procedure based on the
GRIP methodology enabling progressive articulation of DM’s preferences along with narrowing the
range of compatible value functions, in the spirit of a constructive (or learning) process.

3 Mathematical background on preference modelling

This section aims to recall some basic concepts of MCDA and mathematical preference modelling,
along with an adequate notation.

3.1 Elementary notation and problem statement

We are considering a multiple criteria decision problem where a finite set of actions A = {x, . . . , y, . . . ,
w, . . . , z} is evaluated on a family F = {g1, g2, . . . , gm} of m criteria. Let I = {1, 2, . . . , m} denote
the set of criteria indices. We assume, without loss of generality, that the greater gi(x), the better
action x on criterion gi, for all i ∈ I, x ∈ A. A DM is willing to rank the actions of A from the best
to the worst, according to his/her preferences. The ranking can be complete or partial, depending
on the preference information provided by the DM and on the way of exploiting this information.
The family of criteria F is supposed to satisfy consistency conditions, i.e. completeness (all relevant
criteria are considered), monotonicity (the better the evaluation of an action on considered criteria,
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the more it is preferable to another), and non-redundancy (no superfluous criteria are considered)
(see Roy and Bouyssou 1993).

Such a decision-making problem statement is called multiple criteria ranking problem. It is known
that the only information coming out from the formulation of this problem is the dominance ranking.
Let us recall that in the dominance ranking, action x ∈ A is preferred to action y ∈ A, x ≻ y, if and
only if gi(x) ≥ gi(y) for all i ∈ I, with at least one strict inequality. Moreover, x is indifferent to y,
x ∼ y, if and only if gi(x) = gi(y) for all i ∈ I. Hence, for any two actions x, y ∈ A, one of the four
situations may arise in the dominance ranking: x ≻ y, y ≻ x, x ∼ y and x?y, where the last one
means that x and y are incomparable. Usually, the dominance ranking is very poor, i.e. the most
frequent situation is x?y.

In order to enrich the dominance ranking, the DM has to provide preference information which is
used to construct an aggregation model making the actions more comparable. Such an aggregation
model is called preference model. It induces a preference structure on set A, whose proper exploitation
permits to work out a ranking proposed to the DM.

In what follows, the evaluation of each action x ∈ A on each criterion gi ∈ F will be denoted
either by gi(x) or xi.

3.2 Preference relation

Let Gi denote the value set (scale) of criterion gi, i ∈ I. Consequently,

G =
∏

i∈I

Gi

represents the evaluation space, and x ∈ G denotes a profile of an action in such a space. We consider
a weak preference relation % on A which means, for each pair of vectors, x, y ∈ G,

x % y ⇔ “x is at least as good as y”.

This weak preference relation can be decomposed into its asymmetric and symmetric parts, as follows,

1) x ≻ y ≡ [x % y and not y % x] ⇔ “x is preferred to y”, and

2) x ∼ y ≡ [x % y and y % x] ⇔ “x is indifferent to y”.

From a pragmatic point of view, it is reasonable to assume that Gi ∈ R, for i = 1, . . . , m. More
specifically, we will assume that the evaluation scale on each criterion gi is bounded, such that
Gi = [αi, βi], where αi, βi, αi < βi are the worst and the best (finite) evaluations, respectively. Thus,
gi : A → Gi, i ∈ I, therefore, each action x ∈ A is associated with an evaluation vector denoted by
g(x) = (x1, x2, . . . , xm) ∈ G.

4 Ordinal regression: The foundations of the UTA method

This section presents an outline of the principle of the ordinal regression via linear programming, as
proposed in the original UTA method (see Jacquet-Lagrèze and Siskos 1982).

4.1 Preference information

The preference information is given in the form of a complete preorder on a subset of reference
actions AR ⊆ A (where |AR| = p), called reference preorder. The reference actions are usually those
contained in set A for which the DM is able to express holistic preferences. Let AR = {a, b, c, . . .} be
the set of reference actions.
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4.2 An additive model

The additive value function is defined on A such that for each g(x) ∈ G,

U(g(x)) =
∑

i∈I

ui(gi(x)), (1)

where, ui are non-decreasing marginal value functions, ui : Gi → R, i ∈ I. For the sake of simplicity,
we shall write (1) as follows,

U(x) =
∑

i∈I

ui(xi) (1

In the UTA method, the marginal value functions ui are assumed to be piecewise linear functions.
The ranges [αi, βi] are divided into γi ≥ 1 equal sub-intervals,

[x0
i , x

1
i ], [x1

i , x
2
i ], . . . [xγi−1

i , xγi

i ]

where,

xj
i = αi +

j

γi

(βi − αi), j = 0, . . . , αi, and i ∈ I.

The marginal value of an action x ∈ A is obtained by linear interpolation,

ui(x) = ui(x
j
i ) +

xi − xj
i

xj+1
i − xj

i

(ui(x
j+1
i ) − ui(x

j
i )), for xi ∈ [xj

i , x
j+1
i ]. (2)

The piecewise linear additive model is completely defined by the marginal values at the break-
points, i.e. ui(x

0
i ) = ui(αi), ui(x

1
i ), ui(x

2
i ), ..., ui(x

γi

i ) = ui(βi).
In what follows, the principle of the UTA method is described as it was recently presented by

Siskos et al. (2005).
Therefore, a value function U(x) =

∑n

i=1 ui(xi) is compatible if it satisfies the following set of
constraints

U(a) > U(b) ⇔ a ≻ b
U(a) = U(b) ⇔ a ∼ b

}

∀ a, b ∈ AR

ui(x
j+1
i ) − ui(x

j
i ) ≥ 0, i = 1, ..., n, j = 1, ..., γi − 1

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1

(3)

4.3 Checking for compatible value functions through linear program-

ming

To verify if a compatible value function U(x) =
∑n

i=1 ui(xi) restoring the reference preorder % on AR

exists, one can solve the following linear programming problem, where ui(x
j
i ), i = 1, ..., n, j = 1, ..., γi,

are unknown, and σ+(a), σ−(a), a ∈ AR, are auxiliary variables:
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Min → F =
∑m

a∈AR (σ+(a) + σ−(a))
s.t.

U(a) + σ+(a) − σ−(a) ≥
U(b) + σ+(b) − σ−(b) + ε ⇔ a ≻ b

U(a) + σ+(a) − σ−(a) =
U(b) + σ+(b) − σ−(b) ⇔ a ∼ b















∀a, b ∈ AR

ui(x
j+1
i ) − ui(x

j
i ) ≥ 0, i = 1, ..., n, j = 1, ..., γi − 1

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1
σ+(a), σ−(a) ≥ 0, ∀a ∈ AR

(4)

where ε is an arbitrarily small positive value so that U(a) + σ+(a) − σ−(a) > U(b) + σ+(b) − σ−(b)
in case of a ≻ b.

If the optimal value of the objective function of program (4) is equal to zero (F ∗ = 0), then
there exists at least one value function U(x) =

∑n

i=1 ui(xi) satisfying (3), i.e. compatible with the
reference preorder on AR. In other words, this means that the corresponding polyhedron (3) of
feasible solutions for ui(x

j
i ), i = 1, ..., n, j = 1, ..., γi, is not empty.

Let us remark that the transition from the preorder % to the marginal value function exploits the
ordinal character of the criterion scale Gi. Note, however, that the scale of the marginal value function
is a conjoint interval scale. More precisely, for the considered additive value function, the admissible
transformations on the marginal value functions ui(xi) have the form u∗

i (xi) = k × ui(xi) + hi,
hi ∈ R, i = 1, . . . , n, k > 0, such that for all [x1, ..., xn], [y1, ..., yn] ∈

∏n
i=1 Gi

n
∑

i=1

ui(xi) ≥
n

∑

i=1

ui(yi) ⇔
n

∑

i=1

u∗
i (xi) ≥

n
∑

i=1

u∗
i (yi).

An alternative way of representing the same preference model is:

U(x) =
∑

i∈I

wiûi(x) where û(αi) = 0, û(βi) = 1, wi ≥ 0 ∀i ∈ I, and
∑

i∈I

wi = 1 (5)

Note that the correspondence between (5) and (1′) is such that wi = ui(βi), ∀i ∈ G. Due to
the cardinal character of the marginal value function scale, the parameters wi can be interpreted as
tradeoff weights among marginal value functions ûi(x). We will use, however, the preference model
(1′) with normalization constraints bounding U(x) to the interval [0, 1].

When the optimal value of the objective function of the program (4) is greater than zero (F ∗ > 0),
then there is no value function U(x) =

∑

i∈I ui(xi) compatible with the reference preorder on AR.
In such a case, three possible moves can be considered:

• increasing the number of linear pieces γi for one or several marginal value functions ui could
make it possible to find an additive value function compatible with the reference preorder on
AR,

• revising the reference preorder on AR could lead to find an additive value function compatible
with the new preorder,

• searching over the relaxed domain F ≤ F ∗ + η could lead to an additive value function giving
a preorder on AR sufficiently close to the reference preorder (in the sense of Kendall’s τ).
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5 On the UTAGMS method

The preference information provided by the DM is similar to that of UTA, but the output is quite
different (see Greco et al. 2005).

In UTAGMS, the preference information has the form of a partial preorder in a set of reference
actions AR ⊆ A (i.e., a set of pairwise comparisons of reference actions). As a result, one obtains
two rankings on set A, such that for any pair of actions x, y ∈ A,

i) in a necessary ranking (partial preorder): x is ranked at least as good as y if and only if,
U(x) ≥ U(y) for all the value functions compatible with the preference information provided
by the DM;

ii) in a possible ranking (strongly complete and negatively transitive relation): x is ranked at least
as good as y if and only if, U(x) ≥ U(y) for at least one value function compatible with the
preference information.

5.1 Main features

The main features of UTAGMS are the following.

• Possibility to deal with a general additive value function: a feasible space of value functions is
identified and any additive function belonging to that set is called a compatible value function.

• The preference information can be given as a partial preorder on the set of reference actions.

• Consideration of stability of preferences: two preference relations - necessary and possible - are
considered to take into account certain or conceivable preferences, respectively.

• Representation of incomparability between actions: the necessary preference is not complete,
in general.

• Robust conclusions: the necessary and possible preference relations are based on all compatible
value functions, rather than on only one among the many possible functions, as it is usual in
MCDA.

• Interaction with the DM: the DM can modify the preference information verifying its impact
on the preference relations in the set of considered actions.

5.2 The ordinal regression via linear programming

The preference information is given by the DM in the form of a partial preorder % on the set of
reference actions AR ⊆ A.

A value function is called compatible if it is able to restore partial preorder % on AR. Each
compatible value function induces, moreover, a complete preorder on the whole set A.

In particular, for any two actions x, y ∈ A, a compatible value function orders x and y in one of
the following ways: x ≻ y, y ≻ x, x ∼ y. With respect to x, y ∈ A, it is thus reasonable to ask the
following two questions:

• Are x and y ordered in the same way by all compatible value functions?

• Is there at least one compatible value function ordering x at least as good as y (or y at least
as good as x)?
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Having answers to these questions for all pairs of actions (x, y) ∈ A × A, one gets a necessary
weak preference relation %N , whose semantics is U(x) ≥ U(y) for all compatible value functions,
and a possible weak preference relation %P in A, whose semantics is U(x) ≥ U(y) for at least one
compatible value function.

Let us remark that preference relations %N and %P are meaningful only if there exists at least
one compatible value function. Observe also that in this case, for any a, b ∈ AR,

a % b ⇒ a %N b

and

a ≻ b ⇒ not (b %P a).

In fact, if a % b, then for any compatible value function, U(a) ≥ U(b) and, therefore, a %N b.
Moreover, if a ≻ b, then for any compatible value function, U(a) > U(b) and, consequently, there is
no compatible value function such that U(b) ≥ U(a), which means not(b %P a).

Formally, a general additive compatible value function is an additive value function U(x) =
∑n

i=1 ui(xi) satisfying the following set of constraints:

U(a) > U(b) ⇔ a ≻ b
U(a) = U(b) ⇔ a ∼ b

}

∀a, b ∈ AR

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1































(EAR

)

where τi is the permutation on the set of indices of actions from AR that reorders them according to
the increasing evaluation on criterion gi, i.e.

gi(aτi(1)) ≤ gi(aτi(2)) ≤ . . . ≤ gi(aτi(m−1)) ≤ gi(aτi(m))

Remark that, due to this formulation of the ordinal regression problem, no linear interpolation
is required to express the marginal value of any reference action. Thus, one cannot expect that
increasing the number of characteristic points will bring some “new” compatible additive value func-
tions. In consequence, UTAGMS considers all compatible additive value functions while classical UTA
ordinal regression (4) deals with a subset of the whole set of compatible additive value functions,
more precisely the piecewise linear additive value functions relative to the considered characteristic
points.

5.3 Computation of the relations %N and %P

In order to compute binary relations %P and %N , UTAGMS proceeds as follows. For all actions
x, y ∈ A, let πi be a permutation of the indices of actions from set AR ∪ {x, y} that reorders them
according to increasing evaluation on criterion gi, i.e.

gi(aπi(1)) ≤ gi(aπi(2)) ≤ ... ≤ gi(aπi(ω−1)) ≤ gi(aπi(ω))

where,

• if AR ∩ {x, y} = ∅, then ω = m + 2
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• if AR ∩ {x, y} = {x} or AR ∩ {x, y} = {y}, then ω = m + 1

• if AR ∩ {x, y} = {x, y}, then ω = m.

Then, we can fix the characteristic points of ui(gi), i = 1, ..., n, in

g0
i = αi, gj

i = gi(aπi(j)) for j = 1, ..., ω, gω+1
i = βi

Let us consider the following set E(x, y) of ordinal regression constraints, with ui(g
j
i ), i =

1, ..., n, j = 1, ..., ω + 1, as variables:

U(a) ≥ U(b) + ε ⇔ a ≻ b
U(a) = U(b) ⇔ a ∼ b

}

∀a, b ∈ AR

ui(g
j
i ) − ui(g

j−1
i ) ≥ 0, i = 1, ..., n, j = 1, ..., ω + 1

ui(g
0
i ) = 0, i = 1, ..., n

∑n

i=1 ui(g
ω+1
i ) = 1























(E(x, y))

where, ε is an arbitrarily small positive value, as in (4).

The above set of constraints depends on the pair of actions x, y ∈ A because their evaluations
gi(x) and gi(y) give coordinates for two of (ω + 1) characteristic points of marginal value function
ui(xi), for each i = 1, . . . , n. Note that for all x, y ∈ A, E(x, y) = E(y, x).

Let us suppose that the polyhedron defined by the set of constraints E(x, y) is not empty. In this
case we have that:

x %N y ⇔ d(x, y) ≥ 0

where

d(x, y) = min{U(x) − U(y)}
s.t. set E(x, y) of constraints

(6)

and

x %P y ⇔ D(x, y) ≥ 0

where D(x, y) = max{U(x) − U(y)}
s.t. set E(x, y) of constraints

(7)

6 GRIP methodology

In this section we present a comprehensive description of the proposed GRIP methodology, including
its main features, the preference information provided by the DM, the constraints and the funda-
mental properties, the definition of the linear programming problem, and a theoretical comparison
with AHP and MACBETH methodologies.
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6.1 Main features of GRIP

GRIP generalizes both UTA and UTAGMS methods by adopting all features of UTAGMS and taking
into account additional preference information in form of comparisons of intensities of preference
between some pairs of reference actions. For actions x, y, w, z ∈ A, these comparisons are expressed
in two possible ways (not exclusive):

1) Comprehensively, on all criteria, like “x is preferred to y at least as much as w is preferred to
z”.

2) Partially, on each criterion, like “x is preferred to y at least as much as w is preferred to z, on
criterion gi ∈ F ”.

6.2 The preference information provided by the decision maker

DM is expected to provide the following preference information,

• A partial preorder % on AR whose meaning is: for x, y ∈ AR

x % y ⇔ x is at least as good as y.

Moreover, ≻ (preference) is the asymmetric part of % and ∼ (indifference) is the symmetric
part given by % ∩ %−1 (%−1 is the inverse of %, i.e. for all x, y ∈ AR, x %−1 y ⇔ y % x).

• A partial preorder %∗ on AR × AR, whose meaning is: for x, y, w, z ∈ AR,

(x, y) %∗ (w, z) ⇔ x is preferred to y at least as much as w is preferred to z.

Also in this case, ≻∗ is the asymmetric part of %∗ and ∼∗ is the symmetric part given by
%∗ ∩ %∗−1

(%∗−1

is the inverse of %∗, i.e. for all x, y, w, z ∈ AR, (x, y) %∗−1

(w, z) ⇔ (w, z) %∗

(x, y)).

• A partial preorder %∗
i on AR ×AR, whose meaning is: for x, y, w, z ∈ AR, (x, y) %∗

i (w, z) ⇔ x
is preferred to y at least as much as w is preferred to z on criterion gi, i ∈ I.

The intensities of preferences can be handled by using a MACBETH-like procedure.
In the following, we also consider the weak preference relation %i being a complete preorder whose

meaning is: for all x, y ∈ A,

x %i y ⇔ x is at least as good as y on criterion gi, i ∈ I.

Weak preference relations %i, i ∈ I, is not provided by the DM, but it is obtained directly from
the evaluation of actions x and y on criterion gi, i.e., x %i y ⇔ gi(x) ≥ gi(y).

6.3 Constraints and properties

In this subsection, we present a set of constraints that interprets the preference information in terms
of conditions on the compatible value functions. After that, we give fundamental properties of six
ordering relations resulting from the set of compatible value functions. These relations are core
relations of the method proposed in this paper.
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6.3.1 Constraints

The value function U : A → [0, 1] should satisfy the following constraints corresponding to DM’s
preference information,

a) U(w) > U(z) if w ≻ z

b) U(w) = U(z) if w ∼ z

c) U(w) − U(z) > U(r) − U(s) if (w, z) ≻∗ (r, s)

d) U(w) − U(z) = U(r) − U(s) if (w, z) ∼∗ (r, s)

e) ui(w) ≥ ui(z) if w %i z, i ∈ I

f) ui(w) − ui(z) > ui(r) − ui(s) if (w, z) ≻∗
i (r, s), i ∈ I

g) ui(w) − ui(z) = ui(r) − ui(s) if (w, z) ∼∗
i (r, s), i ∈ I

Let us remark that within UTA-like methods, constraint a) is written as U(w) ≥ U(z) + ε, where
ε > 0 is a threshold exogenously introduced. Analogously, constraints c) and f) should be written
as,

U(w) − U(z) ≥ U(r) − U(s) + ε

and

ui(w) − ui(z) ≥ ui(r) − ui(s) + ε.

However, we would like to avoid the use of any exogenous parameter and, therefore, instead of
setting an arbitrary value of ε, we consider it as an auxiliary variable, and we test the feasibility of
constraints a), c), and f) (see 5.4). In this way, we take into account all possible value functions,
even those having a very small preference threshold ε. This way is also safer from the viewpoint of
“objectivity” of the whole methodology. In fact, the value of ε is not meaningful in itself and it is
useful only because it permits to discriminate preference from indifference.

Moreover, the following normalization constraints should also be taken into account:

h) ui(x
∗
i ) = 0, where x∗

i is such that x∗
i = min{gi(x) : x ∈ A}

i)
∑

i∈I ui(y
∗
i ) = 1, where y∗

i is such that y∗
i = max{gi(x) : x ∈ A}

If the constraints from a) to i) are fulfilled, then the partial preorders % and %∗ on AR can be
extended on A in two different ways as follows:

1) Through the choice of one value function U considered the “best” among all the compatible
value functions U satisfying constraints from a) to i) and setting, for all x, y, w, z ∈ X,

• x % y ⇔ U(x) ≥ U(y), and

• (x, y) %∗ (w, z) ⇔ U(x) − U(y) ≥ U(w) − U(z)

(for a survey about different methodologies to choose the “best” value function consistent with
preference information, see Jacquet-Lagrèze and Siskos 1982; Siskos et al. 2005).
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2) Through the identification of two weak preference relations %N and %P and two binary relations
comparing intensity of preference %∗N

and %∗P

as follows (see Greco et al. 2003, 2005), called
necessary (N) and possible (P ), respectively:

a) For each, x, y ∈ A, x %N y (“x is necessarily at least as good as y”) means that U(x) ≥
U(y) for any compatible value function U . The following holds,

x %N y ⇔ inf{U(x) − U(y)} ≥ 0,

where, the infimum is calculated on the set of value functions satisfying constraints from
a) to i).

b) For each, x, y ∈ A, x %P y (“x is possibly at least as good as y”) means that U(x) ≥ U(y)
for at least one compatible value function U . The following holds,

x %P y ⇔ inf{U(y) − U(x)} ≤ 0,

where, the infimum is calculated on the set of value functions satisfying constraints from
a) to i).

Remark: Observe that inf{U(y) − U(x)} ≤ 0 means that it is false that for all U ,
U(y)−U(x) > 0, i.e. there exists at least one U for which U(y)−U(x) ≤ 0 or, equivalently,
U(x) − U(y) ≥ 0. Observe also that, writing sup{U(x) − U(y)} ≥ 0 is not equivalent to
write inf{U(y) − U(x)} ≤ 0. In fact, we can have sup{U(x) − U(y)} ≥ 0 also in case
where for all U , U(x) − U(y) < 0. For example, if the value of U(x) − U(y) ∈ [a, 0[,
where a is any negative number, we have that U(x) −U(y) < 0 always and, nevertheless,
sup{U(x) − U(y)} ≥ 0.

c) For each, x, y, w, z ∈ A, (x, y) %N (w, z) (“x is preferred to y necessarily at least as much
as w is preferred to z”) means that U(x)−U(y) ≥ U(w)−U(z) for any compatible value
function U . The following holds,

(x, y) %∗N

(w, z) ⇔ inf
{(

U(x) − U(y)
)

−
(

U(w) − U(z)
)}

≥ 0,

where, the infimum is calculated on the set of value functions satisfying constraints from
a) to i).

d) For each, x, y, w, z ∈ A, (x, y) %P (w, z) (“x is preferred to y possibly at least as much as
w is preferred to z”) means that U(x) − U(y) ≥ U(w) − U(z) for at least one compatible
value function U . The following holds,

(x, y) %∗P

(w, z) ⇔ inf
{(

U(w) − U(z)
)

−
(

U(x) − U(y)
)}

≤ 0,

where, the infimum is calculated on the set of value functions satisfying constraints from
a) to i).

e) For each, x, y, w, z ∈ A, (x, y) %∗N

i (w, z) (“with respect to i ∈ I, x is preferred to y
necessarily at least as much as w is preferred to z”) means that ui(x)−ui(y) ≥ ui(w)−ui(z)
for all compatible value functions. The following holds,

(x, y) %∗N

i (w, z) ⇔ inf
{(

ui(x) − ui(y)
)

−
(

ui(w) − ui(z)
)}

≥ 0,

where, the infimum is calculated on the set of value functions satisfying constraints from
a) to i).
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f) For each, x, y, w, z ∈ A, (x, y) %∗P

i (w, z) (“with respect to i ∈ I, x is preferred to y
possibly at least as much as w is preferred to z”) means that ui(x)−ui(y) ≥ ui(w)−ui(z)
for at last one compatible value function. The following holds,

(x, y) %∗P

i (w, z) ⇔ inf
{(

ui(w) − ui(z)
)

−
(

ui(x) − ui(y)
)}

≤ 0,

where, the infimum is calculated on the set of value functions satisfying constraints from
a) to i).

6.3.2 Fundamental properties of necessary and possible binary relations

The following theorem presents some basic properties concerning binary relations %N , %P , %∗N

, and
%∗P

.

Theorem 6.1. If constraints a) to i) are satisfied, then the following properties hold:

1) for all x, y ∈ A, x %N y ⇒ x %P y, i.e. if the weak preference of x over y is necessary, then it
is possible too (Greco et al. 2003, 2005);

2) for all x, y ∈ AR, x % y ⇒ x %N y, i.e. if the weak preference of x over y is specified by the
DM, then it is necessary too (it should be noticed that for 1. it must be possible too) (Greco et
al. 2003, 2005);

3) %N is a partial preorder (i.e. the relation is transitive and reflexive) and %P is strongly complete
(i.e. for each x, y ∈ A at least one of the following two relations is true, x %P y or y %P x)
and negatively transitive (i.e. for each x, y, z ∈ A, if not x %P y and not y %P z, then not
x %P z) (Greco et al. 2003, 2005);

4) for all x, y ∈ A, x %N y or y %P x (Greco et al. 2003, 2005);

5) for all x, y, z ∈ A, [x %N y and y %P z] ⇒ x %P z;

6) for all x, y, z ∈ A, [x %P y and y %N z] ⇒ x %P z;

7) for all x, y, w, z ∈ A, (x, y) %∗N

(w, z) ⇒ (x, y) %∗P

(w, z);

8) for all x, y, w, z ∈ AR, (x, y) %∗ (w, z) ⇒ (x, y) %∗N

(w, z);

9) %∗N

is a partial preorder and %∗P

is strongly complete and negatively transitive;

10) for all x, y ∈ A, (x, y) %N (w, z) or (w, z) %P (x, y);

11) for all x, y, z, w, r, s ∈ A, [(x, y) %∗N

(w, z) and (w, z) %∗P

(r, s)] ⇒ (x, y) %∗P

(r, s);

12) for all x, y, z, w, r, s ∈ A, [(x, y) %∗P

(w, z) and (w, z) %∗N

(r, s)] ⇒ (x, y) %∗P

(r, s);

13) for all x, x′, y, z, w ∈ A, [x′ %N x and (x, y) %∗N

(w, z)] ⇒ (x′, y) %∗N

(w, z);

14) for all x, x′, y, z, w ∈ A, [x′ %N x and (x, y) %∗P

(w, z)] ⇒ (x′, y) %∗P

(w, z);

15) for all x, x′, y, z, w ∈ A, [x′ %P x and (x, y) %∗N

(w, z)] ⇒ (x′, y) %∗P

(w, z);

16) for all x, y, y′, z, w ∈ A, [y %N y′ and (x, y) %∗N

(w, z)] ⇒ (x, y′) %∗N

(w, z);

17) for all x, y, y′, z, w ∈ A, [y %N y′ and (x, y) %∗P

(w, z)] ⇒ (x, y′) %∗P

(w, z);
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18) for all x, y, y′, z, w ∈ A, [y %P y′ and (x, y) %∗N

(w, z)] ⇒ (x, y′) %∗P

(w, z);

19) for all x, y, z, w, w′ ∈ A, [w %N w′ and (x, y) %∗N

(w, z)] ⇒ (x, y) %∗N

(w′, z);

20) for all x, y, z, w, w′ ∈ A, [w %N w′ and (x, y) %∗P

(w, z)] ⇒ (x, y) %∗P

(w′, z);

21) for all x, y, z, w, w′ ∈ A, [w %P w′ and (x, y) %∗N

(w, z)] ⇒ (x, y) %∗P

(w′, z);

22) for all x, y, z, z′, w ∈ A, [z′ %N z and (x, y) %∗N

(w, z)] ⇒ (x, y) %∗N

(w, z′);

23) for all x, y, z, z′, w ∈ A, [z′ %N z and (x, y) %∗P

(w, z)] ⇒ (x, y) %∗P

(w, z′);

24) for all x, y, z, z′, w ∈ A, [z′ %P z and (x, y) %∗N

(w, z)] ⇒ (x, y) %∗P

(w, z′);

25) for all x, x′, y ∈ A, (x′, y) %∗N

(x, y) ⇔ x′ %
N

x;

26) for all x, x′, y ∈ A, (x′, y) %∗P

(x, y) ⇔ x′ %
P

x;

27) for all x, y, y′ ∈ A, (x, y) %∗N

(x, y′) ⇔ y′ %
N

y;

28) for all x, y, y′ ∈ A, (x, y) %∗P

(x, y′) ⇔ y′ %
P

y;

29) %∗N

i is a partial preorder and %∗P

i is strongly complete and negatively transitive, for all i ∈ I;

30) for all x, y, w, z ∈ A, (x, y) %N
i (w, z) or (w, z) %P

i (x, y), for all i ∈ I;

31) for all x, y, w, z, r, s ∈ A, [(x, y) %∗N

i (w, z) and (w, z) %∗P

i (r, s)] ⇒ (x, y) %∗P

i (r, s),
for all i ∈ I;

32) for all x, y, w, z, r, s ∈ A, [(x, y) %∗P

i (w, z) and (w, z) %∗N

i (r, s)] ⇒ (x, y) %∗P

i (r, s),
for all i ∈ I;

33) for all x, x′, y, w, z ∈ A, [gi(x
′) ≥ gi(x) and (x, y) %∗N

i (w, z)] ⇒ (x′, y) %∗N

i (w, z),
for all i ∈ I;

34) for all x, x′, y, w, z ∈ A, [gi(x
′) ≥ gi(x) and (x, y) %∗P

i (w, z)] ⇒ (x′, y) %∗P

i (w, z),
for all i ∈ I;

35) for all x, y, y′, w, z ∈ A, [gi(y) ≥ gi(y
′) and (x, y) %∗N

i (w, z)] ⇒ (x, y′) %∗N

i (w, z),
for all i ∈ I;

36) for all x, y, y′, w, z ∈ A, [gi(y) ≥ gi(y
′) and (x, y) %∗P

i (w, z)] ⇒ (x, y′) %∗P

i (w, z),
for all i ∈ I;

37) for all x, y, w, w′, z ∈ A, [gi(w) ≥ gi(w
′) and (x, y) %∗N

i (w, z)] ⇒ (x, y) %∗N

i (w′, z), for all
i ∈ I;

38) for all x, y, w, w′, z ∈ A, [gi(w) ≥ gi(w
′) and (x, y) %∗P

i (w, z)] ⇒ (x, y) %∗P

i (w′, z), for all
i ∈ I;

39) for all x, y, w, z, z′ ∈ A, [gi(z
′) ≥ gi(z) and (x, y) %∗N

i (w, z)] ⇒ (x, y) %∗N

i (w, z′),
for all i ∈ I;

40) for all x, y, w, z, z′ ∈ A, [gi(z
′) ≥ gi(z) and (x, y) %∗P

i (w, z)] ⇒ (x, y) %∗P

i (w, z′),
for all i ∈ I;
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41) for all x, x′, y ∈ A, gi(x
′) ≥ gi(x) ⇒ (x′, y) %∗N

i (x, y), for all i ∈ I;

42) for all x, x′, y ∈ A, (x′, y) ≻∗P

i (x, y) ⇒ gi(x
′) > gi(x), for all i ∈ I;

43) for all x, y, y′ ∈ A, gi(y) ≥ gi(y
′) ⇒ (x, y) %∗N

i (x, y′), for all i ∈ I;

44) for all x, y, y′ ∈ A, (x, y) ≻∗P

i (x, y′) ⇒ gi(y) > gi(y
′), for all i ∈ I.

�

The proof of this theorem is provided in the Appendix. Now, let us explain the contents of the
theorem with respect to their relevance from the point of view of MCDA.

1) corresponds to the general idea that if something is necessary, then it must be also possible:
within MCDA this implies that if a weak preference is necessary, then it is possible too (Greco
et al. 2003, 2005);

2) since we are considering a set of value functions compatible with the preferences expressed by
the DM, then if the weak preference of x over y is specified by the DM, then each compatible
value function must represent the weak preference of x over y, which is thus necessary (and,
for 1), possible too) (Greco et al. 2003, 2005);

3) expresses the preference structure of %N and %P , that is %N is a partial preorder (i.e. the
relation is transitive and reflexive), and %P is strongly complete and negatively transitive
(Greco et al. 2003, 2005);

4) expresses a specific completeness condition for %N and %P , that is for all x, y ∈ A, x %N y or
y %P x (Greco et al. 2003, 2005);

5) expresses a specific transitivity condition for %N and %P , that is for all x, y, z ∈ A, [x %N y
and y %P z] ⇒ x %P z;

6) expresses a specific transitivity condition for %N and %P , that is for all x, y, z ∈ A, [x %P y
and y %N z] ⇒ x %P z;

7) analogously to 1), it expresses the general idea that if something is necessary, then it must
be possible too; differently from 1), it predicates this principle for %∗N

and %∗P

, that is, if
it is necessary that the intensity of preference of x over y is not smaller than the intensity of
preference of w over z, then it is possible too;

8) analogously to 2), since we are considering a set of value functions compatible with the prefer-
ences expressed by the DM, then if the fact that the intensity of preference of x over y is not
smaller than the intensity of preference of w over z is specified by the DM, then each compatible
value function must represent this fact, which is thus necessary (and, for 7), possible too);

9) analogously to 3), it expresses the preference structure of %∗N

and %∗P

, that is %∗N

is a partial
preorder and %∗P

is strongly complete and negatively transitive;

10) analogously to 4), it expresses a specific completeness condition; differently from 4), it pred-
icates this condition for %∗N

and %∗N

, that is for all x, y, w, z ∈ A, (x, y) %N (w, z) or
(w, z) %P (x, y);
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11) analogously to 5), it expresses a specific transitivity condition; differently from 5) it expresses
this condition for %∗N

and %∗P

, that is for all x, y, z, w, r, s ∈ A, [(x, y) %∗N

(w, z) and
(w, z) %∗P

(r, s)] ⇒ (x, y) %∗P

(r, s);

12) analogously to 6), it expresses a specific transitivity condition; differently from 6) it expresses
this condition for %∗N

and %∗P

, that is for all x, y, z, w, r, s ∈ A, [(x, y) %∗P

(w, z) and
(w, z) %∗N

(r, s)] ⇒ (x, y) %∗P

(r, s);

13) states a property relating %N and %∗N

; more precisely, if the intensity of preference of x over y
is necessarily not smaller than the intensity of preference of w over z (i.e. (x, y) %∗N

(w, z)) and
we replace x by x′, with x′ necessarily at least as good as x (i.e. x′ %N x), then the intensity
of preference of x′ over y is necessarily not smaller than the intensity of preference of w over z
(i.e. (x′, y) %∗N

(w, z));

14) states a property relating %N and %∗P

; more precisely, if the intensity of preference of x over y
is possibly not smaller than the intensity of preference of w over z (i.e. (x, y) %∗P

(w, z)) and
we replace x by x′, with x′ necessarily at least as good as x (i.e. x′ %N x), then the intensity
of preference of x′ over y is possibly not smaller than the intensity of preference of w over z
(i.e. (x′, y) %∗P

(w, z));

15) states a property relating %P , %∗N

and %∗P

; more precisely, if the intensity of preference of x
over y is necessarily not smaller than the intensity of preference of w over z (i.e. (x, y) %∗N

(w, z))
and we replace x by x′, with x′ possibly at least as good as x (i.e. x′ %N x), then the intensity
of preference of x′ over y is possibly not smaller than the intensity of preference of w over z
(i.e. (x′, y) %∗P

(w, z));

16) analogously to 13), it states a property relating %N and %∗N

; more precisely, if the intensity of
preference of x over y is necessarily not smaller than the intensity of preference of w over z (i.e.
(x, y) %∗N

(w, z)) and, differently from 13), we replace y by y′, with y necessarily at least as
good as y′ (i.e. y %N y′), then the intensity of preference of x over y′ is necessarily not smaller
than the intensity of preference of w over z (i.e. (x, y′) %∗N

(w, z));

17) analogously to 14), it states a property relating %N and %∗P

; more precisely, if the intensity of
preference of x over y is possibly not smaller than the intensity of preference of w over z (i.e.
(x, y) %∗P

(w, z)) and, differently from 14), we replace y by y′, with y necessarily at least as
good as y′ (i.e. y %N y′), then the intensity of preference of x over y′ is possibly not smaller
than the intensity of preference of w over z (i.e. (x, y′) %∗P

(w, z));

18) analogously to 15), it states a property relating %P , %∗N

and %∗P

; more precisely, if the
intensity of preference of x over y is necessarily not smaller than the intensity of preference of
w over z (i.e. (x, y) %∗N

(w, z)) and, differently from 15), we replace y by y′, with y possibly
at least as good as y′ (i.e. y %N y′), then the intensity of preference of x over y′ is possibly not
smaller than the intensity of preference of w over z (i.e. (x, y′) %∗P

(w, z));

19) analogously to 13) and 16), it states a property relating %N and %∗N

; more precisely, if the
intensity of preference of x over y is necessarily not smaller than the intensity of preference of
w over z (i.e. (x, y) %∗N

(w, z)) and, differently from 13) and 16), we replace w by w′, with w
necessarily at least as good as w′ (i.e. w %N w′), then the intensity of preference of x over y is
necessarily not smaller than the intensity of preference of w′ over z (i.e. (x, y) %∗N

(w′, z));

20) analogously to 14) and 17), it states a property relating %N and %∗P

; more precisely, if the
intensity of preference of x over y is possibly not smaller than the intensity of preference of w
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over z (i.e. (x, y) %∗P

(w, z)) and, differently from 14) and 17), we replace w by w′, with w
necessarily at least as good as w′ (i.e. w %N w′), then the intensity of preference of x over y is
possibly not smaller than the intensity of preference of w′ over z (i.e. (x, y) %∗P

(w′, z));

21) analogously to 15) and 18), it states a property relating %P , %∗N

and %∗P

; more precisely, if
the intensity of preference of x over y is necessarily not smaller than the intensity of preference
of w over z (i.e. (x, y) %∗N

(w, z)) and, differently from 15) and 18), we replace w by w′, with
w possibly at least as good as w′ (i.e. w %P w′), then the intensity of preference of x over y is
possibly not smaller than the intensity of preference of w′ over z (i.e. (x, y) %∗P

(w′, z));

22) analogously to 13), 16) and 19), it states a property relating %N and %∗N

; more precisely, if the
intensity of preference of x over y is necessarily not smaller than the intensity of preference of
w over z (i.e. (x, y) %∗N

(w, z)) and, differently from 13), 16) and 19), we replace z by z′, with
z′ necessarily at least as good as z (i.e. z′ %N z), then the intensity of preference of x over y
is necessarily not smaller than the intensity of preference of w over z′ (i.e. (x, y) %∗N

(w, z′));

23) analogously to 14), 17) and 20), it states a property relating %N and %∗P

; more precisely, if
the intensity of preference of x over y is possibly not smaller than the intensity of preference of
w over z (i.e. (x, y) %∗P

(w, z)) and, differently from 14), 17) and 20), we replace z by z′, with
z′ necessarily at least as good as z (i.e. z′ %N z), then the intensity of preference of x over y
is possibly not smaller than the intensity of preference of w over z′ (i.e. (x, y) %∗P

(w, z′));

24) analogously to 15), 18) and 21), it states a property relating %P , %∗N

and %∗P

; more precisely,
if the intensity of preference of x over y is necessarily not smaller than the intensity of preference
of w over z (i.e. (x, y) %∗N

(w, z)) and, differently from 15), 18) and 21), we replace z by z′,
with z′ possibly at least as good as z (i.e. z′ %P z), then the intensity of preference of x over
y is possibly not smaller than the intensity of preference of w over z′ (i.e. (x, y) %∗P

(w, z′));

25) relates %∗N

and %
N

; if we replace x by x′, the intensity of preference of x over x′ is necessarily
not smaller than the intensity of preference of x over y (i.e. (x′, y) %∗N

(x, y)), if and only if x′

is necessarily at least as good as x (i.e. x′ %
N

x);

26) relates %∗P

and %
P

in a way analogous to the one in which 25) relates %∗N

and %
N

; if we replace
x by x′, the intensity of preference of x over x′ is possibily not smaller than the intensity of
preference of x over y (i.e. (x′, y) %∗P

(x, y)), if and only if x′ is possibly at least as good as x
(i.e. x′ %

P

x);

27) similarly to 25), it relates %∗N

and %
N

; if, differently form 25), we replace y by y′, the intensity
of preference of x over y is necessarily not smaller than the intensity of preference of x over y′

(i.e. (x, y) %∗N

(x, y′)), if and only if y′ is necessarily at least as good as y (i.e. y′ %
N

y);

28) relates %∗P

and %
P

in a way analogous to the one in which 27) relates %∗N

and %
N

; if we
replace y by y′, the intensity of preference of x over y is possibly not smaller than the intensity
of preference of x over y′ (i.e. (x, y) %∗P

(x, y′)), if and only if y′ is possibly at least as good as
y (i.e. y′ %

P

y);

29) expresses the preference structures of %∗N

i and %∗P

i , i ∈ I; more precisely, %∗N

i is a partial
preorder and %∗P

i is strongly complete and negatively transitive;

30) expresses a specific completeness condition for %∗N

i and %∗P

i , that is for all x, y, w, z ∈ A,
(x, y) %∗N

i (w, z) or (w, z) %∗P

i (x, y), for all i ∈ I;
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31) expresses a specific transitivity condition for %∗N

i and %∗P

i , for all i ∈ I, that is, for all
x, y, w, z, r, s ∈ A, [(x, y) %∗N

i (w, z) and (w, z) %∗P

i (r, s)] ⇒ (x, y) %∗P

i (r, s);

32) expresses a specific transitivity condition for %∗N

i and %∗P

i , for all i ∈ I, that is, for all
x, y, w, z, r, s ∈ A, [(x, y) %∗P

i (w, z) and (w, z) %∗N

i (r, s)] ⇒ (x, y) %∗P

i (r, s);

33) relates the order between evaluations on criterion gi and %∗N

i , for all i ∈ I; more precisely,
for all x, x′, y, w, z ∈ A, if the intensity of preference of x over y with respect to criterion gi is
necessarily not smaller than that of w over z (i.e. (x, y) %∗N

i (w, z)), and we replace x by x′

with gi(x
′) ≥ gi(x), then also the intensity of preference of x′ over y with respect to criterion

gi is necessarily not smaller than that of w over z (i.e. (x′, y) %∗N

i (w, z));

34) relates the order between evaluations on criterion gi and %∗P

i , for all i ∈ I; more precisely, for
all x, x′, y, w, z ∈ A, if the intensity of preference of x over y with respect to criterion gi is
possibly not smaller than that of w over z (i.e. (x, y) %∗P

i (w, z)), and we replace x by x′ with
gi(x

′) ≥ gi(x), then also the intensity of preference of x′ over y with respect to criterion gi is
possibly not smaller than that of w over z (i.e. (x′, y) %∗P

i (w, z));

35) relates the order between evaluations on criterion gi and %∗N

i , for all i ∈ I; more precisely,
for all x, y, y′, w, z ∈ A, if the intensity of preference of x over y with respect to criterion gi is
necessarily not smaller than that of w over z (i.e. (x, y) %∗N

i (w, z)), and we replace y by y′

with gi(y) ≥ gi(y
′), then also the intensity of preference of x over y′ with respect to criterion

gi is necessarily not smaller than that of w over z (i.e. (x, y′) %∗N

i (w, z));

36) relates the order between evaluations on criterion gi and %∗P

i , for all i ∈ I; more precisely,
for all x, y, y′, w, z ∈ A, if the intensity of preference of x over y with respect to criterion gi is
possibly not smaller than that of w over z (i.e. (x, y) %∗N

i (w, z)), and we replace y by y′ with
gi(y) ≥ gi(y

′), then also the intensity of preference of x over y′ with respect to criterion gi is
possibly not smaller than that of w over z (i.e. (x, y′) %∗P

i (w, z));

37) relates the order between evaluations on criterion gi and %∗N

i , for all i ∈ I; more precisely,
for all x, y, y, w′, z ∈ A, if the intensity of preference of x over y with respect to criterion gi is
necessarily not smaller than that of w over z (i.e. (x, y) %∗N

i (w, z)), and we replace w by w′

with gi(w) ≥ gi(w
′), then also the intensity of preference of x over y with respect to criterion

gi is necessarily not smaller than that of w′ over z (i.e. (x, y) %∗N

i (w′, z));

38) relates the order between evaluations on criterion gi and %∗P

i , for all i ∈ I; more precisely,
for all x, y, y, w′, z ∈ A, if the intensity of preference of x over y with respect to criterion gi is
possibly smaller than that of w over z (i.e. (x, y) %∗N

i (w, z)), and we replace w by w′ with
gi(w) ≥ gi(w

′), then also the intensity of preference of x over y with respect to criterion gi is
possibly not smaller than that of w′ over z (i.e. (x, y) %∗P

i (w′, z));

39) relates the order between evaluations on criterion gi and %∗N

i , for all i ∈ I; more precisely,
for all x, y, y, w, z′ ∈ A, if the intensity of preference of x over y with respect to criterion gi is
necessarily not smaller than that of w over z (i.e. (x, y) %∗N

i (w, z)), and we replace z by z′

with gi(z
′) ≥ gi(z), then also the intensity of preference of x over y with respect to criterion gi

is necessarily not smaller than that of w over z′ (i.e. (x, y) %∗N

i (w, z′));

40) relates the order between evaluations on criterion gi and %∗P

i , for all i ∈ I; more precisely,
for all x, y, y, w, z′ ∈ A, if the intensity of preference of x over y with respect to criterion gi is
possibly not smaller than that of w over z (i.e. (x, y) %∗N

i (w, z)), and we replace z by z′ with
gi(z

′) ≥ gi(z), then also the intensity of preference of x over y with respect to criterion gi is
possibly not smaller than that of w over z′ (i.e. (x, y) %∗P

i (w, z′));
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41) states a property relating the order between evaluations on criterion gi and %∗N

i ; more pre-
cisely, for all x, x′, y ∈ A, if gi(x

′) ≥ gi(x), then, with respect to criterion gi, the intensity of
preference of x′ over y is necessarily not smaller than the intensity of preference of x over y
(i.e. (x′, y) %∗N

i (x, y));

42) states a property relating the order between evaluations on criterion gi and %∗P

i ; more pre-
cisely, for all x, x′, y ∈ A, if gi(x

′) ≥ gi(x), then, with respect to criterion gi, the intensity of
preference of x′ over y is possibly not smaller than the intensity of preference of x over y (i.e.
(x′, y) %∗P

i (x, y));

43) states a property relating the order between evaluations on criterion gi and %∗N

i ; more pre-
cisely, for all x, x, y′ ∈ A, if gi(y) ≥ gi(y

′), then, with respect to criterion gi, the intensity of
preference of x′ over y is necessarily not smaller than the intensity of preference of x over y
(i.e. (x, y) %∗N

i (x, y′));

44) states a property relating the order between evaluations on criterion gi and %∗P

i ; more pre-
cisely, for all x, x, y′ ∈ A, if gi(y) ≥ gi(y

′), then, with respect to criterion gi, the intensity of
preference of x′ over y is possibly not smaller than the intensity of preference of x over y (i.e.
(x, y) %∗P

i (x, y′)).

6.4 Computational issues

In order to conclude the truth or falsity of binary relations %N , %P , %∗N

, %∗P

, %∗N

i and %∗P

i , we
have to take into account that, for all x, y, w, z ∈ A and i ∈ I:

1) x %N y ⇔ inf
{

U(x) − U(y)
}

≥ 0,

2) x %P y ⇔ inf
{

U(y) − U(x)
}

≤ 0,

3) (x, y) %∗N

(w, z) ⇔ inf
{(

U(x) − U(y)
)

−
(

U(w) − U(z)
)}

≥ 0,

4) (x, y) %∗P

(w, z) ⇔ inf
{(

U(w) − U(z)
)

−
(

U(x) − U(y)
)}

≤ 0,

5) (x, y) %∗N

i (w, z) ⇔ inf
{(

ui(xi) − ui(yi)
)

−
(

ui(wi) − ui(zi)
)}

≥ 0,

6) (x, y) %∗P

i (w, z) ⇔ inf
{(

ui(wi) − ui(zi)
)

−
(

ui(xi) − ui(yi)
)}

≤ 0.

with the infimum calculated on the set of value functions satisfying constraints from a) to i). Let
us remark, however, that the linear programming is not able to handle strict inequalities such as
the above a), c), and f). Moreover, linear programming permits to calculate the minimum or the
maximum of an objective function and not an infimum. Therefore, to use linear programming for
testing the truth of binary relations %N , %P , %∗N

, %∗P

, %∗N

i and %∗P

i , we need to reformulate properly
the above properties from 1) to 6). With this aim, the following result (see Marichal and Roubens
2000) can be taken into account (the adopted notation is used only locally in this proposition and
does not inherit the meaning from other parts of the paper).
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Proposition 6.1. x ∈ R is a solution of the linear system,























n
∑

j=1

aijxj ≥ bi, i = 1, . . . , p

n
∑

j=1

cijxj > di, i = 1, . . . , q

iff there exists ε > 0, such that























n
∑

j=1

aijxj ≥ bi, i = 1, . . . , p

n
∑

j=1

cijxj ≥ di + ε, i = 1, . . . , q

In particular, a solution exists iff the following linear programming:

max ε subject to:























n
∑

j=1

aijxj ≥ bi, i = 1, . . . , p

n
∑

j=1

cijxj ≥ di + ε, i = 1, . . . , q

has an optimal solution (x∗, ε∗) with an optimal value ε∗ > 0. In this case x∗ is a solution of the first
system.

In order to use Proposition 5.1, first the constraints a), c) and f) have to be reformulated as
follows:

a′) U(x) ≥ U(y) + ε if x ≻ y;

c′) U(x) − U(y) ≥ U(w) − U(z) + ε if (x, y) ≻∗ (w, z);

f ′) ui(x) − ui(y) ≥ ui(w) − ui(z) + ε if (x, y) ≻∗
i (w, z).

with ε > 0.
After properties 1) − 6) have to be reformulated such that the search of the infimum is replaced

by the calculation of the minimum value of ε on the set of value functions satisfying constraints from
a) to i), with constraints a), c), and f) transformed to a′), c′), and f ′), plus constraints specific for
each point:

1′) x %N y ⇔ ε∗ > 0,
where ε∗ = min ε, subject to the constraints a′), b), c′), d), e), f ′), plus the constraint
U(x) ≥ U(y);

2′) x %P y ⇔ ε∗ ≤ 0,
where ε∗ = min ε, subject to the constraints a′), b), c′), d), e), f ′), plus the constraint
U(y) ≥ U(x) + ε;

3′) (x, y) %∗N

(w, z) ⇔ ε∗ > 0,
where ε∗ = min ε, subject to the constraints a′), b), c′), d), e), f ′), plus the constraint
(

(U(x) − U(y)
)

−
(

U(w) − U(z))
)

≥ 0;
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4′) (x, y) %∗P

(w, z) ⇔ ε∗ ≤ 0,
where ε∗ = min ε, subject to the constraints a′), b), c′), d), e), f ′), plus the constraint
(

(U(w) − U(z)
)

−
(

U(x) − U(y))
)

≥ ε;

5′) (x, y) %∗N

i (w, z) ⇔ ε∗ > 0,
where ε∗ = min ε, subject to the constraints a′), b), c′), d), e), f ′), plus the constraint
(

ui(xi) − ui(yi)
)

−
(

ui(wi) − ui(zi)
)

≥ 0;

6′) (x, y) %∗P

i (w, z) ⇔ ε∗ ≤ 0,
where ε∗ = min ε, subject to the constraints a′), b), c′), d), e), f ′), plus the constraint
(

(ui(wi) − ui(zi)
)

−
(

ui(xi) − ui(yi)
)

≥ ε.

6.5 A theoretical comparison of GRIP with the Analytical Hierarchy

Process

In AHP (Saaty 1980 and 2005), criteria should be compared pairwise with respect to their importance.
Actions are also compared pairwise on particular criteria with respect to intensity of preference. The
following nine point scale is used:

1 - equal importance-preference,

3 - moderate importance-preference,

5 - strong importance-preference,

7 - very strong or demonstrated importance-preference,

9 - extreme importance-preference.

2, 4, 6 and 8 are intermediate values between the two adjacent judgements. The difference of
importance of criterion gi over criterion gj is the inverse of the difference of importance of gj over
gi. Analogously, the intensity of preference of action x over action y is the inverse of the intensity
of preference of y over x. The above scale is a ratio scale. Therefore, the difference of importance
is read as the ratio of weights wi and wj corresponding to criteria gi and gj , and the intensity of
preference is read as the ratio of the attractiveness of x and the attractiveness of y, with respect to
the considered criterion gi. In terms of value functions, the intensity of preference can be interpreted
as the ratio ui(gi(x))

ui(gi(y))
. Thus, the problem is how to obtain values of wi and wj from ratio wi

wj
, and

values of ui(gi(x)) and ui(gi(y)) from ratio ui(gi(x))
ui(gi(y))

.
In AHP it is proposed that these values are supplied by principal eigenvectors of matrices com-

posed of the ratios wi

wj
and ui(gi(x))

ui(gi(y))
. The marginal value functions ui(gi(x)) are then aggregated by

means of a weighted-sum using the weights wi.
Comparing AHP with GRIP, we can say that with respect to single criteria the type of questions

addressed to the DM is the same: express intensity of preference in qualitative-ordinal terms (equal,
moderate, strong, very strong, extreme). However, differently from GRIP, this intensity of preference
is translated into quantitative terms (the scale from 1 to 9) in a quite arbitrary way. In GRIP, instead,
the marginal value functions are just a numerical representation of the original qualitative-ordinal
information, and no intermediate transformation in quantitative terms is exogenously imposed.

Other differences between AHP and GRIP are related to the following aspects.
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1) In GRIP the value functions ui(gi(x)) depend mainly on comprehensive preferences involving
jointly all the criteria, while this is not the case in AHP.

2) In AHP the weights wi of criteria gi are calculated on the basis of pairwise comparisons of
criteria with respect to their importance; in GRIP, this is not the case, because the value
functions ui(gi(x)), are expressed on the same scale and thus they can be summed up without
any further weighting.

3) In AHP all non-ordered pairs of actions must be compared from the viewpoint of the intensity
of preference with respect to each particular criterion. Therefore, if n is the number of actions,
and m the number of criteria, then the DM has to answer m× n×(n−1)

2
questions. Moreover, the

DM has to answer questions relative to m×(m−1)
2

pairwise comparisons of considered criteria with
respect to their importance. This is not the case in GRIP, which accepts partial information
about preferences in terms of pairwise comparison of some reference actions. Finally, in GRIP
there is no question about comparison of relative importance of criteria.

As far as point 2) is concerned, observe that the weights wi used in AHP represent tradeoffs
between evaluations on different criteria. For this reason it is doubtful if they could be inferred from
answers to questions concerning comparison of importance. Therefore, AHP has a problem with
meaningfulness of its output with respect to its input, and this is not the case of GRIP.

6.6 A theoretical comparison with MACBETH

MACBETH (Measuring Attractiveness by a Categorical Based Evaluation TecHnique) is a method
for multiple criteria decision analysis that appeared in the early nineties. This approach only requires
qualitative judgements from DMs about differences of value to quantify the relative attractiveness
of actions or criteria.

When using MACBETH, the DM is asked to provide preference information about two actions
of A at a time (see Bana e Costa and Vansnick 1994, and Bana e Costa et al. 2005),

• firstly, through an (ordinal) judgement on their relative attractiveness, and

• secondly, (if the two actions are not considered to be equally attractive), through a qualitative
judgement about the difference of attractiveness between the most attractive of the two actions
and a third one.

Seven semantic categories of difference of attractiveness are considered in MACBETH,

1) “null”,

2) “very weak”,

3) “weak”,

4) “moderate”,

5) “strong”,

6) “very strong”,

7) “extreme”.
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The main idea of MACBETH is to build an interval scale from the preference information provided
by the DM. It is, however, necessary that the above categories correspond to disjoint intervals
(represented in terms of the real numbers). The bounds for such intervals should not be arbitrarily
fixed a priori, they should be compatible simultaneously with the numerical values of all particular
actions from A, so as to ensure compatibility between these values (see Bana e Costa et al. 2005).
Linear programming models are used for these calculations. In case of inconsistent judgments,
MACBETH provides the DM with information in order to eliminate such inconsistency.

When comparing MACBETH with GRIP, the following aspects should be considered:

• both deal with qualitative judgements;

• both need a set of comparisons of actions or pairs of actions to work out a numerical repre-
sentation of preferences. However, MACBETH depends on the definition of two characteristic
levels on the original scale, “neutral” and “good”, to obtain the numerical representation of
preferences;

• GRIP adopts the disaggregation-aggregation approach and, therefore, it considers also compre-
hensive preferences relative to comparisons involving jointly all the criteria, which is not the
case of MACBETH;

• GRIP is, however, more general than MACBETH since it can take into account the same
kind of qualitative judgments as MACBETH (the difference of attractiveness between pairs of
actions) and the intensity of preferences of the type “x is preferred to y at least as much as z
is preferred to w”.

As for the last item, it should be noticed that the intensity of preference considered in MACBETH
and the intensity coming from comparisons of the type “x is preferred to y at least as strongly as w
is preferred to z” (i.e., the quaternary relation %∗) are substantially the same. In fact, the intensities
of preference are equivalence classes of the preorder generated by %∗. This means that all the pairs
(x, y) and (w, z), such that x is preferred to y with the same intensity as w is preferred to z, belong
to the same semantic category of difference of attractiveness considered in MACBETH. To be more
precise, the structure of intensity of preference considered in MACBETH is a particular case of the
structure of intensity of preference represented by %∗ in GRIP. Still more precisely, GRIP has the
same structure of intensity as MACBETH when %∗ is a complete preorder. When this does not
occur, MACBETH cannot be used while GRIP can naturally deal with this situation.

A detailed comparison of GRIP and MACBETH should take into account the following features,

1) Preference information:

(a) GRIP

i. Ordinal comprehensive preference information on pairwise comparison of some refer-
ence actions, x % y.

ii. Absolute qualitative judgements of intensity of preference for some pairs of reference
actions partial and/or comprehensive (e.g. very weak, weak, moderate,..., extreme
intensity of preferences for (x, y)).

or
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iii. Comparison of intensities of preference for some pairs of reference actions partial
and/or comprehensive, (x, y) %i (w, z) and/or (x, y) % (w, z).

(b) MACBETH

i. Ordinal preference information with respect to each criterion for all not equally at-
tractive pairs of actions: x ≻i y or y ≻i x.

ii. Absolute qualitative judgements of differences of attractiveness for all not equally at-
tractive pairs of actions with respect to each criterion, including “good” and “neutral”
reference points (e.g. very weak, weak, moderate,..., extreme intensity of preference).

iii. Ordinal preference information for all not equally attractive criteria: gi is more im-
portant than gj, or gj is more important than gi.

iv. Absolute qualitative judgements of differences of attractiveness for all not equally
attractive pairs of criteria (e.g. very weak, weak, moderate,..., extreme difference of
importance).

2) Preference model and final results:

(a) GRIP

i. Uses linear programming to identify a set of comprehensive additive value functions
with interval scales, compatible with preference information.

ii. Builds necessary and possible weak preference relations on set A,

• %N (partial preorder);

• %P (strongly complete and negatively transitive).

iii. Builds necessary and possible comprehensive intensity of preference relations on set
A × A,

• %∗N

(partial preorder);

• %∗P

(strongly complete and negatively transitive).

iv. Builds necessary and possible partial intensity of preference relations on set A × A,

• %∗N

i (partial preorder);

• %∗P

i (strongly complete and negatively transitive).

(b) MACBETH

i. Uses linear programming to build a single interval scale for each criterion, compatible
with preference information and computes a numerical marginal value for each action
on each criterion.

ii. Computes a weight for each criterion.

iii. Builds a weighted-sum model on marginal values which is additive piecewise linear or
discrete.

iv. Uses the model to set up a complete preorder on set A.

3) Summary of the crucial differences between the two methodologies:

(a) GRIP is using preference information relative to: 1) comprehensive preference on a subset
of reference actions with respect to all criteria, 2) partial intensity of preference on some
single criteria and 3) comprehensive intensity of preference with respect to all criteria,
while MACBETH requires preference information on all pairs of actions with respect to
each one of the considered criteria.
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(b) Information about partial intensity of preference is of the same nature in GRIP and
MACBETH (equivalence classes of relation %∗

i correspond to qualitative judgements of
MACBETH), but in GRIP it may not be complete.

(c) GRIP is a “disaggregation-aggregation” approach while MACBETH makes use of the
“aggregation” approach and, therefore, it needs weights to aggregate evaluations on the
criteria.

(d) GRIP works with all compatible value functions, while MACBETH builds a single interval
scale for each criterion, even if many such scales would be compatible with preference
information.

(e) Distinguishing necessary and possible consequences of using all value functions compatible
with preference information, GRIP includes a kind of robustness analysis instead of using
a single “best-fit” value function.

(f) The necessary and possible preference relations considered in GRIP have several properties
of general interest for MCDA.

6.7 Other characteristics of GRIP

It is interesting to note the following characteristics of GRIP:

1) In the absence of any pairwise comparison of reference actions, the preference relation %N boils
down to the weak dominance relation ∆ on A (x∆y iff xi ≥ yi, i ∈ I) (Greco et al. 2005).

2) Each pairwise comparison of the type x % y, x, y ∈ A, provided by the DM contributes to
enrich %N , i.e., if %N (x, y)+ and %N (x, y)− a re preference relations %N with and without
information x % y, respectively, we have that %N (x, y)+ ⊇ %N (x, y)− (Greco et al. 2005).

3) In the absence of any pairwise comparison of pairs of reference actions, the preference relation
%∗N

boils down to the weak dominance relation with respect to difference of preferences ∆∗ on
A ((x, y)∆∗(w, x) iff x≥wi and yi ≤ zi, i ∈ I).

4) Each pairwise comparison of the type (x, y) %∗ (w, z), x, y, w, z ∈ A, provided by the DM
contributes to enrich %∗N

, i.e., if %∗N

(x, y, w, z)+ and %∗N

(x, y, w, z)− are preference relations
%∗N

with and without information (x, y) %∗ (w, z), respectively, we have that

%∗N

(x, y, w, z)+ ⊇ %∗N

(x, y, w, z)−.

5) In the absence of any pairwise comparison of reference actions, the preference relation %P is a
complete relation such that for any pair x, y ∈ A,

(x %P y and y %P x) ⇔ {(not x∆y and not y∆x) or (x∆y and y∆x)},

(x %P y and not y %P x) ⇔ (x∆y and not y∆x)

(Greco et al. 2005).

6) Each pairwise comparison x % y, x, y ∈ A, provided by the DM contributes to impoverish %P ,
i.e., if %P (x, y)+ and %P (x, y)− are preference relations %P with and without information
x % y, respectively, w e have that %P (x, y)+ ⊆ %P (x, y)− (Greco et al. 2005).
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7) In the absence of any pairwise comparison of pairs of reference actions, the preference relation
%∗P

is a complete relation such that for any pair x, y, w, z ∈ A,

((x, y) %∗P

(w, z) and (w, z) %∗P

(x, y)) ⇔

{(not (x, y)∆∗(w, z) and not (w, z)∆∗(x, y)) or ((w, z)∆∗(w, z) and (w, z)∆∗(x, y))},

((x, y) %∗P

(c, d) and not (w, z) %∗P

(x, y)) ⇔ ((x, y)∆∗(w, z) and not (w, z)∆∗(x, y)).

8) Each pairwise comparison of the type (x, y) %∗ (w, z), x, y, w, z ∈ A, provided by the DM
contributes to impoverish %∗P

, i.e., if %∗P

(x, y, w, z)+ and %∗P

(x, y, w, z)− are preference
relations %∗P

with and without information (x, y) %∗ (w, z), respectively, we have that

%∗P

(x, y, w, z)+ ⊆ %∗P

(x, y, w, z)−.

7 Conclusion and directions for future research

In this paper, we proposed the GRIP methodology for building a set of additive value functions
compatible with the following preference information provided by the DM: a partial preorder in the
set of reference actions and/or partial and comprehensive comparisons of intensities of preference
between some pairs of reference actions. This preference information is used within a specially
designed ordinal regression approach.

Considering all the compatible value functions, GRIP permits to achieve the following results:

• a necessary weak preference relation %N on A, being a partial preorder,

• a possible weak preference relation %P on A, being a strongly complete and negatively transitive
relation,

• a comprehensive necessary intensity of preference relation %∗N

, being a partial preorder on
A × A,

• a comprehensive possible intensity of preference relation %∗P

, being a strongly complete and
negatively transitive relation on A × A,

• a partial necessary intensity of preference relation %∗N

i , being a partial preorder on A × A,

• a partial possible intensity of preference relation %∗P

i , being a strongly complete and negatively
transitive relation on A × A.

There are several topics which constitute interesting directions for future research, in particular,

1) Handling preference information with gradual credibility.

2) Building a decision support system based on the GRIP methodology.

3) Extending the method to group decision making situations.

4) Applying the method to real-world problems.
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Appendix

Proof of Theorem 5.1.

In what follows U represents the set of compatible value functions satisfying constraints from a) to
i).

1) For all x, y ∈ A,

x %N y ⇔ ∀ U ∈ U , U(x) ≥ U(y) ⇒ ∃U ∈ U such that U(x) ≥ U(y) ⇔ x %∗P

y.

2) For all x, y ∈ AR,
x % y ⇒ ∀ U ∈ U , U(x) ≥ U(y) ⇔ x %N y.

3) Let us recall that a partial preorder is a transitive and reflexive binary relation. Thus, in order
to show that %N is a partial preorder, we have to show that it is transitive and reflexive,

• %N is transitive: for all x, y, z ∈ A,

x %N y and y %N z ⇔ ∀ U ∈ U , U(x) ≥ U(y) and U(y) ≥ U(z) ⇔
⇔ ∀ U ∈ U , U(x) ≥ U(y) ≥ U(z) ⇒ ∀ U ∈ U , U(x) ≥ U(z) ⇒ x %N z.

• %N is reflexive: for all x ∈ A,

U(x) = U(x), ∀ U ∈ U ⇔ U(x) ≥ U(x), ∀ U ∈ U ⇔ x %N x.

Thus, we proved that %N is a partial preorder.

%P is strongly complete: for all x, y ∈ A,

U(x) ≥ U(y) or U(y) ≥ U(x), ∀ U ∈ U ⇔ x %P y or y %P x.

%P is negatively transitive: for all x, y, z ∈ A,

not x %P y and not y %P z ⇔
⇔ ∄ U ∈ U , such that U(x) ≥ U(y), and ∄ U ∈ U , such that U(y) ≥ U(z) ⇔
⇔ ∀ U ∈ U , U(x) < U(y) and U(y) < U(z) ⇒ ∀ U ∈ U , U(x) < U(z) ⇔
⇔ ∄ U ∈ U , such that U(x) ≥ U(z) ⇔ not x %P z.

4) For all x, y ∈ A,

U(x) ≥ U(y) ∀U ∈ U or ∃U ∈ U such that U(y) > U(x) ⇒ x %N y or y %P x.

5) For all x, y, z ∈ A,

x %N y and y %P z ⇔ U(x) ≥ U(y) ∀ U ∈ U and U(y) ≥ U(z) for at least one U ∈ U ⇒
⇒ U(x) ≥ U(z) for at least one U ∈ U ⇔ x %P z.

6) For all x, y, z ∈ A,

x %P y and y %N z ⇔ U(x) ≥ U(y) for at least one U ∈ U and U(y) ≥ U(z) ∀ U ∈ U ⇒
⇒ U(x) ≥ U(z) for at least one U ∈ U ⇔ x %P z.
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7) For all x, y, w, z ∈ A,

(x, y) %∗N

(w, z) ⇔ U(x) − U(y) ≥ U(w) − U(z) ∀ U ∈ U ⇒

⇒ U(x) − U(y) ≥ U(w) − U(z) for at least one U ∈ U ⇔ (x, y) %∗P

(w, z).

8) For all x, y, w, z ∈ AR

(x, y) %∗ (w, z) ⇒ U(x) − U(y) ≥ U(w) − U(z) ∀ U ∈ U ⇔ (x, y) %N (w, z).

9) To show that %∗N

is a partial preorder we have to show that it is transitive and reflexive,

• %∗N

is transitive: for all x, y, w, z, r, s ∈ A,

(x, y) %∗N

(w, z) and (w, z) %∗N

(r, s) ⇔
⇔ U(x) − U(y) ≥ U(w) − U(z) and
U(w) − U(z) ≥ U(r) − U(s) ∀ U ∈ U ⇒

⇒ U(x) − U(y) ≥ U(r) − U(s) ∀ U ∈ U ⇔ (x, y) %∗N

(r, s).

• %∗N

is reflexive: for all x, y ∈ A,

U(x) − U(y) = U(x) − U(y) ∀ U ∈ U ⇔

⇔ U(x) − U(y) ≥ U(x) − U(y) ∀ U ∈ U ⇔ (x, y) %∗N

(x, y).

Thus we proved that %∗N

is a partial preorder.

%∗P

is strongly complete: for all x, y, w, z ∈ A,

U(x) − U(y) ≥ U(w) − U(z) or U(w) − U(z) ≥ U(x) − U(y) ∀ U ∈ U ⇔

⇔ (x, y) %∗P

(w, z) or (w, z) %∗P

(x, y).

%∗P

is negatively transitive: for all x, y, w, z, r, s ∈ A,

not (x, y) %∗P

(w, z) and not (w, z) %∗P

(r, s) ⇔
⇔ ∄ U ∈ U such that [U(x) − U(y)] ≥ [U(w) − U(z)] and
∄ U ∈ U such that [U(w) − U(z)] ≥ [U(r) − U(s)] ⇔
⇔ ∀ U ∈ U , [U(x) − U(y)] < [U(w) − U(z)] and [U(w) − U(z)] < [U(r) − U(s)] ⇒
⇒ ∀ U ∈ U , [U(x) − U(y)] < [U(r) − U(s)] ⇔
⇔ ∄ U ∈ U such that [U(x) − U(y)] ≥ [U(r) − U(s)] ⇔

⇔ not (x, y) %∗P

(r, s).

10) For all x, y, w, z ∈ A,

U(x) − U(y) ≥ U(w) − U(z) ∀U ∈ U or ∃U ∈ U such that U(w) − U(z) > U(x) − U(y) ⇒

⇒ (x, y) %∗N

(w, z) or (w, z) %∗P

(x, y).

11) For all x, y, w, z, r, s ∈ A,

(x, y) %∗N

(w, z) and (w, z) %∗P

(r, s) ⇔
⇔ U(x) − U(y) ≥ U(w) − U(z) ∀U ∈ U and
U(w) − U(z) ≥ U(r) − U(s) for at least one U ∈ U ⇒
⇒ U(x) − U(y) ≥ U(r) − U(s) for at least one U ∈ U ⇔

⇔ (x, y) %∗P

(r, s).
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12) For all x, y, w, z, r, s ∈ A,

(x, y) %∗P

(w, z) and (w, z) %N (r, s) ⇔
⇔ U(x) − U(y) ≥ U(w) − U(z) for at least one U ∈ U and
U(w) − U(z) ≥ U(r) − U(s) ∀U ∈ U ⇒
⇒ U(x) − U(y) ≥ U(r) − U(s) for at least one U ∈ U ⇔

⇔ (x, y) %∗P

(r, s).

13) For all x, x′, y, w, z ∈ A,

x′ %N x and (x, y) %∗N

(w, z) ⇔
⇔ U(x′) ≥ U(x) and [U(x) − U(y)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇒
⇒ [U(x′) − U(y)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇔

⇔ (x′, y) %∗N

(w, z).

14) For all x, x′, y, w, z ∈ A,

x′ %N x and (x, y) %∗P

(w, z) ⇔
⇔ U(x′) ≥ U(x) ∀ U ∈ U and
[U(x) − U(y)] ≥ [U(w) − U(z)] for at least one U ∈ U ⇒
⇒ U(x′) ≥ U(x) and [U(x) − U(y)] ≥ [U(w) − U(z)]
for at least one U ∈ U ⇒
⇒ [U(x′) ≥ U(y)] ≥ [U(w) − U(z)] for at least one U ∈ U ⇔

⇔ (x′, y) %∗P

(w, z).

15) For all x, x′, y, w, z ∈ A,

x′ %P x and (x, y) %∗N

(w, z) ⇔
⇔ U(x′) ≥ U(x) for at least one U ∈ U and
[U(x) − U(y)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇒
⇒ [U(x′) − U(y)] ≥ [U(w) − U(z)] for at least one U ∈ U ⇔

⇔ (x′, y) %∗P

(w, z).

16) For all x, y, y′, w, z ∈ A,

y %N y′ and (x, y) %∗N

(w, z) ⇔
⇔ U(y) ≥ U(y′) and [U(x) − U(y)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇒
⇒ [U(x) − U(y′)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇔

⇔ (x, y′) %∗N

(w, z).

17) For all x, y, y′, w, z ∈ A,

y %N y′ and (x, y) %∗P

(w, z) ⇔
⇔ U(y) ≥ U(y′) ∀ U ∈ U and [U(x) − U(y)] ≥ [U(w) − U(z)]
for at least one U ∈ U ⇒
⇒ [U(x) − U(y′)] ≥ [U(w) − U(z)] for at least one U ∈ U ⇔

⇔ (x, y′) %∗P

(w, z).
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18) For all x, y, y′, w, z ∈ A,

y %P y′ and (x, y) %∗N

(w, z) ⇔
⇔ U(y) ≥ U(y′) for at least one U ∈ U and
[U(x) − U(y)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇒
⇒ [U(x) − U(y′)] ≥ [U(w) − U(z)] for at least one U ∈ U ⇔

⇔ (x, y′) %∗P

(w, z).

19) For all x, y, w, w′, z ∈ A,

w %N w′ and (x, y) %∗N

(w, z) ⇔
⇔ U(w) ≥ U(w′) and [U(x) − U(y)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇒
⇒ [U(x) − U(y)] ≥ [U(w′) − U(z)] ∀ U ∈ U ⇔

⇔ (x, y) %∗N

(w′, z).

20) For all x, y, w, w′, z ∈ A,

w %N w′ and (x, y) %∗P

(w, z) ⇔
⇔ U(w) ≥ U(w′)∀ U ∈ U and [U(x) − U(y)] ≥ [U(w) − U(z)]
for at least one U ∈ U ⇒
⇒ [U(x) − U(y)] ≥ [U(w′) − U(z)] for at least one U ∈ U ⇔

⇔ (x, y) %∗P

(w′, z).

21) For all x, y, w, w′, z ∈ A,

w %P w′ and (x, y) %∗N

(w, z) ⇔
⇔ U(w) ≥ U(w′) for at least one U ∈ U and
[U(x) − U(y)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇒
⇒ [U(x) − U(y)] ≥ [U(w′) − U(z)] for at least one U ∈ U ⇔

⇔ (x, y) %∗P

(w′, z).

22) For all x, y, w, z, z′ ∈ A,

z %N z′ and (x, y) %∗N

(w, z) ⇔
⇔ U(z) ≥ U(z′) and [U(x) − U(y)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇒
⇒ [U(x) − U(y)] ≥ [U(w) − U(z′)] ∀ U ∈ U ⇔

⇔ (x, y) %∗N

(w, z′).

23) For all x, y, w, z, z′ ∈ A,

z %N z′ and (x, y) %∗P

(w, z) ⇔
⇔ U(z) ≥ U(z′) ∀ U ∈ U and [U(x) − U(y)] ≥ [U(w) − U(z)]
for at least one U ∈ U ⇒
⇒ [U(x) − U(y)] ≥ [U(w) − U(z′)] for at least one U ∈ U ⇔

⇔ (x, y) %∗P

(w, z′).

24) For all x, y, w, z, z′ ∈ A,

z %P z′ and (x, y) %∗N

(w, z) ⇔
⇔ U(z) ≥ U(z′) for at least one U ∈ U and
[U(x) − U(y)] ≥ [U(w) − U(z)] ∀ U ∈ U ⇒
⇒ [U(x) − U(y)] ≥ [U(w) − U(z′)] for at least one U ∈ U ⇔

⇔ (x, y) %∗P

(w, z′).
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25) For all x, x′, y ∈ A,

(x′, y) %∗N

(x, y) ⇔
⇔ [U(x′) − U(y)] ≥ [U(x) − U(y)] ∀ U ∈ U ⇔
⇔ U(x′) ≥ U(x) ∀ U ∈ U ⇔
⇔ x′ %N x.

26) For all x, x′, y ∈ A,

(x′, y) %∗P

(x, y) ⇔
⇔ [U(x′) − U(y)] ≥ [U(x) − U(y)] for at least one U ∈ U ⇔
⇔ U(x′) ≥ U(x) for at least one U ∈ U ⇔
⇔ x′ %P x.

27) For all x, y, y′ ∈ A,

(x, y′) %∗N

(x, y) ⇔
⇔ [U(x) − U(y′)] ≥ [U(x) − U(y)] ∀ U ∈ U ⇔
⇔ U(y) ≥ U(y′) ∀ U ∈ U ⇔
⇔ y %N y′.

28) For all x, y, y′ ∈ A,

(x, y′) %∗P

(x, y) ⇔
⇔ [U(x) − U(y′)] ≥ [U(x) − U(y)] for at least one U ∈ U ⇔
⇔ U(y) ≥ U(y′) for at least one U ∈ U ⇔
⇔ y %P y′.

29) To show that %∗N

i , i ∈ I, is a partial preorder we have to show that it is transitive and reflexive,

• %∗N

i is transitive: for all x, y, w, z, r, s ∈ A,

(x, y) %∗N

i (w, z) and (w, z) %∗N

i (r, s) ⇔
⇔ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] and
[ui(gi(w)) − ui(gi(z))] ≥ [ui(gi(r)) − ui(gi(s))] ∀ U ∈ U ⇒
⇒ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(r)) − ui(gi(s))] ∀ U ∈ U ⇔

⇔ (x, y) %∗N

i (r, s).

• %∗N

i is reflexive: for all x, y ∈ A,

[ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(x)) − ui(gi(y))] ∀ U ∈ U ⇔

⇔ (x, y) %∗N

i (x, y).

Thus we proved that %∗N

i , i ∈ I is a partial preorder.

%∗P

i , i ∈ I, is strongly complete: for all x, y, w, z ∈ A,

[ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] or
[ui(gi(w)) − ui(gi(z))] ≥ [ui(gi(x)) − ui(gi(y))] ∀ U ∈ U ⇔

⇔ (x, y) %∗P

i (w, z) or (w, z) %∗P

i (x, y).
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%∗P

i , i ∈ I, is negatively transitive: for all x, y, w, z, r, s ∈ A,

not (x, y) %∗P

i (w, z) and not (w, z) %∗P

i (r, s) ⇔
⇔ ∄ U ∈ U such that [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] and
∄ U ∈ U such that [ui(gi(w)) − ui(gi(z))] ≥ [ui(gi(r)) − ui(gi(s))] ⇔
⇔ ∀ U ∈ U , [ui(gi(x)) − ui(gi(y))] < [ui(gi(w)) − ui(gi(z))] and
[ui(gi(w)) − ui(gi(z))] < [ui(gi(r)) − ui(gi(s))] ⇒
⇒ ∀ U ∈ U , [ui(gi(x)) − ui(gi(y))] < [ui(gi(r)) − ui(gi(s))] ⇔
⇔ ∄ U ∈ U such that [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(r)) − ui(gi(s))] ⇔

⇔ not (x, y) %∗P

i (r, s).

30) For all x, y, w, z ∈ A, i ∈ I,

ui(x) − ui(y) ≥ ui(w) − ui(z) ∀U ∈ U or ∃U ∈ U such that ui(w) − ui(z) > ui(x) − ui(y) ⇒

⇒ (x, y) %∗N

i (w, z) or (w, z) %∗P

i (x, y).

31) For all x, y, w, z, r, s ∈ A, i ∈ I,

(x, y) %∗N

i (w, z) and (w, z) %∗P

i (r, s)] ⇔
⇔ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] ∀ U ∈ U and
[ui(gi(w)) − ui(gi(z))] ≥ [ui(gi(r)) − ui(gi(s))] for at least one U ∈ U ⇒
⇒ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(r)) − ui(gi(s))] for at least one U ∈ U ⇔

⇔ (x, y) %∗P

i (r, s).

32) For all x, y, w, z, r, s ∈ A, i ∈ I

(x, y) %∗P

i (w, z) and (w, z) %∗N

i (r, s) ⇔
⇔ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] for at least one U ∈ U and
[ui(gi(w)) − ui(gi(z))] ≥ [ui(gi(r)) − ui(gi(s))] ∀ U ∈ U ⇒
⇒ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(r)) − ui(gi(s))] for at least one U ∈ U ⇔

⇔ (x, y) %∗P

i (r, s).

33) For all x, x′, y, w, z ∈ A, i ∈ I,

gi(x
′) ≥ gi(x) and (x, y) %∗N

i (w, z) ⇔
⇔ ui(gi(x

′)) ≥ ui(gi(x)) and [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] ∀ U ∈ U ⇒
⇒ [ui(gi(x

′)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] ∀ U ∈ U ⇔

⇔ (x′, y) %∗N

i (w, z).

34) For all x, x′, y, w, z ∈ A, i ∈ I,

gi(x
′) ≥ gi(x) and (x, y) %∗P

i (w, z) ⇔
⇔ ui(gi(x

′)) ≥ ui(gi(x)) and
[ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] for at least one U ∈ U ⇒
⇒ [ui(gi(x

′)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] for at least one U ∈ U ⇔

⇔ (x′, y) %∗P

i (w, z).
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35) For all x, y, y′, w, z ∈ A, i ∈ I,

gi(y) ≥ gi(y
′) and (x, y) %∗N

i (w, z) ⇔
⇔ ui(gi(y)) ≥ ui(gi(y

′)) and
[ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] ∀ U ∈ U ⇒
⇒ [ui(gi(x)) − ui(gi(y

′))] ≥ [ui(gi(w)) − ui(gi(z))] ∀ U ∈ U ⇔

⇔ (x, y′) %∗N

i (w, z).

36) For all x, y, y′, w, z ∈ A, i ∈ I,

gi(y) ≥ gi(y
′) and (x, y) %∗P

i (w, z) ⇔
⇔ ui(gi(y)) ≥ ui(gi(y

′)) and
[ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] for at least one U ∈ U ⇒
⇒ [ui(gi(x)) − ui(gi(y

′))] ≥ [ui(gi(w)) − ui(gi(z))] for at least one U ∈ U ⇔

⇔ (x, y′) %∗P

i (w, z).

37) For all x, y, w, w′, z ∈ A, i ∈ I,

gi(w) ≥ gi(w
′) and (x, y) %∗N

i (w, z) ⇔
⇔ ui(gi(w)) ≥ ui(gi(w

′)) and
[ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] ∀ U ∈ U ⇒
⇒ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w

′)) − ui(gi(z))] ∀ U ∈ U ⇔

⇔ (x, y′) %∗N

i (w′, z).

38) For all x, y, w, w′, z ∈ A, i ∈ I,

gi(w) ≥ gi(w
′) and (x, y) %∗P

i (w, z) ⇔
⇔ ui(gi(w)) ≥ ui(gi(w

′)) and
[ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] for at least one U ∈ U ⇒
⇒ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w

′)) − ui(gi(z))] for at least one U ∈ U ⇔

⇔ (x, y′) %∗P

i (w′, z).

39) For all x, y, w, z, z′ ∈ A, i ∈ I,

gi(z
′) ≥ gi(z) and (x, y) %∗N

i (w, z) ⇔
⇔ ui(gi(z

′)) ≥ ui(gi(z)) and
[ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] ∀ U ∈ U ⇒
⇒ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z

′))] ∀ U ∈ U ⇔

⇔ (x, y′) %∗N

i (w, z′).

40) For all x, y, w, z, z′ ∈ A, i ∈ I,

gi(z
′) ≥ gi(z) and (x, y) %∗P

i (w, z) ⇔
⇔ ui(gi(z

′)) ≥ ui(gi(z)) and
[ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z))] for at least one U ∈ U ⇒
⇒ [ui(gi(x)) − ui(gi(y))] ≥ [ui(gi(w)) − ui(gi(z

′))] for at least one U ∈ U ⇔

⇔ (x, y′) %∗P

i (w, z′).
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41) For all x, x′, y ∈ A, i ∈ I,

gi(x
′) ≥ gi(x) ⇒ ui(gi(x

′)) ≥ ui(gi(x)) ∀ U ∈ U ⇔
⇔ [ui(gi(x

′)) − ui(gi(y))] ≥ [ui(gi(x)) − ui(gi(y))] ∀ U ∈ U ⇔

⇔ (x′, y) %∗N

i (x, y).

42) For all x, x′, y ∈ A, i ∈ I,

(x′, y) ≻∗P

i (x, y) ⇔
⇔ [ui(gi(x

′)) − ui(gi(y))] > [ui(gi(x)) − ui(gi(y))] for at least one U ∈ U ⇔
⇔ ui(gi(x

′)) > ui(gi(x)) for at least one U ∈ U ⇒
⇒ gi(x

′) > gi(x).

43) For all x, y, y′ ∈ A, i ∈ I,

gi(y) ≥ gi(y
′) ⇒ ui(gi(y)) ≥ ui(gi(y

′)) ∀ U ∈ U ⇔
⇔ [ui(gi(x)) − ui(gi(y

′))] ≥ [ui(gi(x)) − ui(gi(y))] ∀ U ∈ U ⇔

⇔ (x, y′) %∗N

i (x, y).

44) For all x, x′, y ∈ A, i ∈ I,

(x, y) ≻∗P

i (x, y′) ⇔
⇔ [ui(gi(x)) − ui(gi(y

′))] > [ui(gi(x)) − ui(gi(y))] for at least one U ∈ U ⇔
⇔ ui(gi(y)) > ui(gi(y

′)) for at least one U ∈ U ⇒
⇒ gi(y) > gi(y

′).

�
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