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Abstract

In this paper, we study general linear programs in which right
handsides are interval numbers. This model is relevant when uncer-
tain and inaccurate factors make difficult the assignment of a single
value to each right handside. When objective function coefficients are
interval numbers in a linear program, it is used to determine optimal
solutions according to classical criteria coming from decision theory
(like the worst case criterion). When the feasible solutions set is uncer-
tain, another approach consists in determining the worst and best op-
timum solutions. We study the complexity of these two optimization
problems when each right handside is an interval number. Moreover,
we analysis the relationship between these two problems and the clas-
sical approach coming from decision theory. We exhibit some duality
relation between the worst optimum solution problem and the best
optimum solution problem in the dual. This study highlights some
duality property in robustness analysis.

Keywords: linear programming, interval right handside, robustness analy-
sis, worst case criteria, maximum regret criteria, complexity theory.
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1 Problem statement

In optimization, it is used to deal with uncertain and inaccurate factors which
make difficult the assignment of a single plausible value to each model pa-
rameters. Two approaches are possible: in the first one, a single nominal
value is assigned to each parameter, the corresponding optimal solution is
computed, then the interval in which each parameter can vary in order to
preserve optimality solution is determined; the second approach consists in
taking into account in the model to optimize, the possible variations of each
parameter. In mathematical programming, the first approach is known as
sensibility analysis (see e.g. [7]). For the second approach, stochastic opti-
mization may be applied for some problems in which parameters value can
be described by probability laws (see for example [5]). When it is not pos-
sible nor relevant to associate probability laws to parameters, another way
amounts to assign a set of possible values to each parameter. Two models
may be considered: in the first one, a finite set of values is assigned to each
uncertain model coefficient; in the second one, each uncertain model coeffi-
cient is associated with an interval number. In this paper, we only consider
this second model called interval linear programming.

The choice of one value in each interval corresponds to a scenario. The
induced robust optimization problem is to determine a single solution which
is optimal for all scenarios. In general, such a solution does not exist and
the problem is to determine a ”relatively good” solution for all scenarios
(see for example [2, 13, 15]). In this context, classical criteria coming from
decision theory may be used. In linear programming, when objective function
coefficients are interval numbers, the worst case and the maximum regret
criteria have been extensively studied ([1, 8, 9, 10, 11]). When uncertainty
concerns feasible solution set, robustness problems have been less studied
(see for example [14, 12]). Nevertheless, a lot of real optimization problems
includes uncertainty and inaccuracy factors on feasible solutions set. For
example, when a linear program represents a production problem in which
right handsides equal to some forecast demands on several periods, it may be
much more relevant to replace each right handside coefficient by a suitable
interval number.

In this paper, we consider general linear program in which each right
handside bi is an interval number [bi, bi]. It is assumed that each bi can take
on any value from the corresponding interval regardless of the values taken
by other coefficients.
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In the first part, we present some classical decision problems dealing with
uncertainty on objective function coefficients. We introduce three criteria
classically considered: the worst case criterion, the best case criterion and
the maximum regret criterion. Then, we recall few results obtained in case
of uncertainty on right handsides. We define the best and worst optimum
problems (firstly introduced by Chinneck and Ramadan in [6]). In the second
part, we extensively study the theoretical complexity of the best and worst
optimum problems when each right handside is an interval number. We con-
sider separately linear programs with inequality constraints and those with
equality constraints. In each case, we analysis the relationship between best
(worst) optimum and optimal solutions according to the best (worst respec-
tively) case criterion. In case of linear programs with equality constraints,
we propose a model, called the penalty model, which allows to apply the
classical worst case criterion. We show that this model is tractable in poly-
nomial time. Finally, in the last part of the paper, we highlight the duality
relation between these problems and we discuss about another approach of
robustness suggested by Bertsimas and Sim in [4].

2 Decision problems dealing with uncer-

tainty

2.1 Uncertainty on objective function coefficients:
main results

Linear programs with interval coefficients in the objective function have been
the subject of numerous studies. Some of them deal with the following prob-
lem

(P c)

{
min cx
s.t x ∈ X

with c ∈ [c, c] and X being a nonempty bounded polyhedron. As usual, we
denote in this paper v(P ) the optimal solution value of the optimization
problem P .

Three criteria, coming from decision theory, are classically considered:
the worst case criterion, the best case criterion and the maximum regret
criterion.

3



2.1.1 The worst case criterion

Given a solution x ∈ X, the scenario to be considered is the one that gives the
worst value for this solution. In this context, the value of x, noted fwor(x),
is defined by:

fwor(x) = max
c≤c≤c

cx

The problem is to determine the solution xwor ∈ X which minimizes fwor

as follows:
fwor(xwor) = min

x∈X
fwor(x)

Under any scenario c, xwor has a value lower or equal to fwor(xwor). Thus,
fwor(xwor) can be considered as an upper bound which offers an absolute
guarantee. That is why in the work of Kouvelis and Yu [9], solutions which
optimize this criterion are called absolute robust solutions.

In [1], Averbakh and Lebedev observe that the problem of finding xwor

is polynomial. Indeed, by strong duality theorem, we have

fwor(x) = min{cu− cl : u− l = x, u ≥ 0, l ≥ 0}

with u being the dual variables associated with constraints c ≤ c and l being
the dual variables associated with c ≥ c. Thus, the problem of finding xwor

can be written as the following linear program:





min cu− cl
s.t u− l = x

x ∈ X
u ≥ 0, l ≥ 0

Let us remark that, when all x variables are subject to positivity con-
straint, the problem of finding xwor is obviously polynomial since, for all x,
fwor(x) = cx. Thus, one have to solve:





min cx
s.t x ∈ X

x ≥ 0
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2.1.2 The best case criterion

Given a solution x ∈ X, the scenario to be considered is the one that gives
the best value for this solution. In this context, the value of x, noted fbes(x),
is defined by:

fbes(x) = min
c≤c≤c

cx

The problem is to determine the solution xbes ∈ X which minimizes fbes

as follows:
fbes(xbes) = min

x∈X
fbes(x)

This problem has received much less attention. Indeed, the best case
criterion is not relevant to guarantee some kind of robustness as the worst
case criterion do.

When all x variables are subject to positivity constraints, the problem of
determining xbes is obviously polynomial. Indeed, the problem is equivalent
to: 




min cx
s.t x ∈ X

x ≥ 0

In general case, when some variables are not restricted in sign, the com-
plexity of this problem has not been studied. In this paper, we prove that
this problem is NP-hard and we establish its equivalence with some linear
programs with interval right handsides.

2.1.3 The maximum regret criterion

Given a vector c, the choice of a solution x which is not necessarily an optimal
solution for P c, generates a regret denoted r(x, c) = cx− v(P c). A solution
x is then evaluated by freg(x) on the basis of the maximum regret value:

freg(x) = max
c≤c≤c

r(x, c)

The optimal solution according to the maximum regret criterion will be
denoted xreg and checks:

freg(xreg ) = min
x∈X

freg(x)
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This criterion has received much more attention than the two previous
ones. In the work of Kouvelis and Yu [9], a solution which optimizes the
maximum regret criterion is called a robust deviation solution.

In [1], Averbakh and Lebedev recently prove that the problem of
determining xreg is strongly NP-hard and, moreover, that the problem
of computing freg(x) for a specific x is also strongly NP-hard. Several
formulations and algorithms have been proposed to solve approximately this
problem (see e.g. [8, 10, 11]).

2.2 Uncertainty on right handsides: main results

When uncertainty (representing by interval numbers) concerns right handside
constraints, only few results have already been obtained. The difficulty comes
from the fact that the set of feasible solutions is not exactly known. Thus,
any solution may not be feasible for all interval right handside. Consequently,
classical criteria cannot be directly applied as we illustrate in the following
example.

Let us consider the linear program





min x1 + 2x2

s.t x1 + x2 = b1 ∈ [4, 6]
x1 − x2 = b2 ∈ [0, 4]
x1, x2 ≥ 0
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For a given x ∈ X, it always exists a scenario (b1, b2) for which x is not
feasible. Thus, any solution x is not feasible in the worst case and the worst
case criterion is no more relevant.

Another approach is suggested by Chinneck and Ramadan in [6]. In this
paper, general linear programs with interval coefficients (simultaneously in
objective function, matrix constraints and right handsides) are considered.
The goal is to compute the best possible optimum and the worst one over all
possible scenarios in order to provide a kind of robustness information: ”The
range of the objective function between the best and the worst optimum
values gives a sense of the risk involved... For example, the specific values
of the uncertain coefficients can be chosen to reflect a conservative or a risk-
taking strategy.”

Remark 1 When only objective function coefficients are defined by intervals,
the worst optimal solution is equal to the solution which minimizes the worst
case criterion. Indeed

fwor(xwor) = min
x∈X

max
c≤c≤c

cx

is equal to
max
c≤c≤c

min
x∈X

cx

when we inverse the min and max operators. And, this optimization problem
is exactly the problem of determining the worst optimum. Equivalently, the
determination of the best optimum and the optimization of the best case crite-
rion are exactly the same optimization problems when each objective function
coefficient are interval numbers.

In [6], algorithms are proposed to determine best and worst optimum but
none complexity result is given. They consider separately linear problems
with variables restricted in sign and equality or inequality constraints. They
propose polynomial time algorithms for determining the best optimum of
linear program with variables restricted in sign, and the worst optimum
of linear program with inequality constraints and variables restricted in
sign. They define an exponential time algorithm for computing the worst
optimum of linear program with equality constraints and variables restricted
in sign. Moreover, the authors remark that algorithms complexity grows

7



when variables are not restricted in sign.

When only right handsides are interval numbers in a linear program, we
show in this paper that only two cases have to be distinguished for complexity
analysis. Firstly, we consider the easier case of linear programs with general
inequality constraints (whatever the sign of each variable is), and secondly,
we study the much more difficult case of linear programs with equality con-
straints. In each case, we exhibit the relationship between the best (worst)
optimum and the optimal solution of the best (worst) case criterion.

3 Linear programs with interval right hand-

sides: the case of inequality constraints

We consider the following linear program with n variables and m constraints

(P b
≥)

{
min cx
s.t Ax ≥ b

We suppose that each bi varies in the interval [bi, bi]. For all b ∈ [b, b], we
denote Xb

≥ the polyhedron defined by {x ∈ Rn : Ax ≥ b} and we suppose
that Xb

≥ is a nonempty bounded polyhedron.

3.1 Best optimal solution

Our objective is to determine the minimum value of the optimal solution of
(P b

≥) when b varies in the interval [b, b]. The best optimal solution problem
can be written as follows

(B≥)

{
min v(P b

≥)

s.t b ≤ b ≤ b

Theorem 1 (B≥) can be solved in polynomial time.

Proof 1 It is sufficient to remark that (B≥) is equivalent to the following
linear program 




min cx
s.t Ax ≥ b

b ≤ b ≤ b
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Moreover, it is possible to characterize the scenario which gives the best
optimal solution. Since Xb

≥ ⊆ Xb
≥ for all b in [b, b], we have v(P b

≥) ≥ v(P b
≥)

and consequently v(B≥) = v(P b
≥).

3.2 Worst optimal solution

Our objective is to determine the maximum value of the optimal solution of
(P b

≥) when b varies in the interval [b, b]. The worst optimal solution problem
can be written as follows

(W≥)

{
max v(P b

≥)

s.t b ≤ b ≤ b

As seen in the previous section, Xb
≥ ⊆ Xb

≥ for all b in [b, b]. Thus we have

v(P b
≥) ≤ v(P b

≥) and the theorem 2 follows.

Theorem 2 (W≥) can be solved in polynomial time since v(W≥) = v(P b
≥).

3.3 Best case and worst case criteria

The largest (respectively smallest) feasible solution set of P b
≥ is obtained when

b = b (respectively b = b). For a given b, the value of any solution x ∈ Xb
≥,

denoted f b(x), is cx when x ∈ Xb
≥ and, by convention, +∞ otherwise. Thus,

fbes(x) = min
b≤b≤b

f b(x) = min{cx, +∞} = cx

Consequently, for any solution x ∈ Xb
≥, the best case value is always cx.

Thus, the optimal solution according to the best case criterion is obtained
by solving (P b

≥). As seen in section 3.1, P b
≥ is also the problem to solve for

determining the best optimal solution.

Moreover, for any solution x ∈ Xb
≥, the worst value is equal to cx because

x ∈ Xb
≥ for all b. Otherwise, any solution x which does not belong to Xb

≥
has, by convention, a worst value equals to +∞. Consequently, the optimal
solution according to the worst case criterion necessarily belongs to Xb

≥ and

one have to solve P b
≥. It is then equivalent to the worst optimal solution

problem as shown in section 3.2
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Consequently, if Xb
≥ 6= ∅ for all b ∈ [b, b], the best and worst optimum

problem are equivalent to the problem of determining the optimal solution
according to the best and worst case criteria respectively.

In conclusion, the problem of determining an optimal solution of a linear
program, with general inequality constraints, according to the worst case
criterion (or the best case criterion) can be solved in polynomial time even
if variables are not restricted in sign.

4 Linear programs with interval right hand-

sides: the case of equality constraints

In this section, we consider the following linear program with n variables and
m equality constraints

(P b
=)

{
min cx
s.t Ax = b

We suppose that each bi varies in the interval [bi, bi]. For all b ∈ [b, b], we
denote Xb

= the polyhedron defined by {x ∈ Rn : Ax = b} and we suppose
that Xb

= is a nonempty bounded polyhedron. We introduce two sets X =⋃
b∈[b,b] X

b
= and X =

⋂
b∈[b,b] X

b
=. Given a solution x ∈ X and a scenario b,

two cases have to be considered:

• x belongs to Xb
= and its value is equal to cx,

• x does not belong to Xb
= and, by convention, we set its value to +∞.

4.1 Best optimal solution

In this case, the best optimal solution problem is

(B=)

{
min v(P b

=)

s.t b ≤ b ≤ b

Theorem 3 (B=) can be solved in polynomial time.

The proof is equivalent to the proof 1 given in case of linear program
with inequality constraints.
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Another formulation of (B=) can be obtained by introducing additional
variables denoted by z ∈ Rm. For i = 1, . . . ,m, each zi variable, defined in
[0, 1], represents the deviation from the lower bound bi in the interval [bi, bi]
and we have

∀bi ∈ [bi, bi], bi = bi + zi(bi − bi) with zi ∈ [0, 1]

So, (B=) can be written




min cx

s.t Ax = b + z(b− b)
0 ≤ z ≤ 1

Let us remark that this reformulation, with zi variables, is inspired by
the robustness approach proposed by Bertsimas and Sim in [4] presented in
section 5.

With this formulation, one may characterize the scenario which leads to
the best optimal solution.

Theorem 4 The best optimal solution can be obtained with an extreme sce-
nario, that is to say, ∀i = 1, . . . , m, zi equals to 1 or 0.

Proof 2 Let us consider the formulation of (B=) with zi variable:

(B=)





min
n∑

j=1

cjxj

s.t

n∑
j=1

aijxj − zi(bi − bi) = bi i = 1, . . . , m

−zi ≥ −1 i = 1, . . . , m
zi ≥ 0 i = 1, . . . , m

The dual program of (B=) denoted (D=) is:

(D=)





max
m∑

i=1

biλi −
m∑

i=1

µi

s.t

m∑
i=1

aijλi = cj j = 1, . . . , n

−(bi − bi)λi − µi ≤ 0 i = 1, . . . , m
µi ≥ 0 i = 1, . . . , m
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Let us remark that each µi value must be separately minimized and conse-
quently

µ∗i = max{0;−(bi − bi)λ
∗
i } (1)

By strong duality, a feasible solution (x, z) of (B=) and a feasible solution
(λ, µ) of (D=) are optimal if and only if the following exclusion relations are
satisfied:

µi(−zi + 1) = 0 ∀i = 1, . . . , m (2)

zi(−(bi − bi)λi − µi) = 0 ∀i = 1, . . . , m (3)

Considering a dual optimal solution (λ∗, µ∗), three cases must be consid-
ered:

• If λ∗i < 0, from equation 1, we have: µ∗i = −(bi− bi)λ
∗
i which is strictly

greater than 0. So, the relation 2 implies z∗i = 1.

• If λ∗i > 0, from equation 1, we have: µ∗i = 0. So, the relation 3 implies
z∗i = 0.

• If λ∗i = 0, from equation 1, we have: µ∗i = 0. The relation 2 and 3 are
verified for all zi belonging to [0, 1]. It always exists a feasible primal
solution (x, z) since, by hypothesis, Xb

= 6= ∅ for all b or equivalently
for all zi ∈ [0, 1]. In particular, one can consider the optimal solution
induced by an extreme scenario with z∗i equals 1 or 0.

4.2 Worst optimal solution

The problem of determining the worst optimal solution can be formulated as
follows

(W=)

{
max v(P b

=)

s.t b ≤ b ≤ b

Theorem 5 (W=) is NP-hard even if any x variable is restricted in sign.

Proof 3 For a given b, the dual program of (P b
=), with additional positivity

constraints on x variables, is

(Db
=)

{
max btλ

s.t Atλ ≤ ct
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where λ = (λi)i=1,...,m and λi is the dual variable of the ith constraint
n∑

j=1

aijxj = bi.

According to the strong duality theorem, one can replace v(P b
=) by v(Db

=)
in (W=) as follows

v(W=) = max
b≤b≤b

max
Atλ≤ct

btλ

which is equivalent to the following quadratic linear program

(Q)





max btλ
s.t Atλ ≤ ct

b ≤ b ≤ b

To prove the NP-completness, we establish a reduction from the problem
of computing the maximum regret value of a given u ∈ Xβ

≤ for the following
problem {

max γu
s.t ∆u ≤ β

with γ ∈ [γ, γ], u, γ ∈ Rm, β ∈ Rn and ∆ ∈ Rn×m. Averbakh and Lebedev
prove in [1] that the problem of computing the maximum regret value of a
given u is NP-hard. This problem can be written as follows

freg(u) = max
γ ≤ γ ≤ γ
∆v ≤ β

{γ(v − u)}

By setting λ = v − u, we obtain

freg(u) =





max γλ
s.t ∆λ ≤ β −∆u

γ ≤ γ ≤ γ

For a given u, β′ = β −∆u is fixed and we have v(Q) = freg(u) with γ = bt,
β′ = ct and ∆ = At. So, if (W=) can be solved in polynomial time, we
can also compute freg(u) in polynomial time which contradicts the Averbakh
result.

In conclusion, the worst optimum problem is NP-hard for linear program
including equality constraints with right handside coefficients equal to inter-
val numbers.
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Moreover, the scenario which leads to a worst optimal solution
is an extreme scenario. Considering Q, one can remark that for a
given feasible λ, the bi variables can be separately optimized since
maxb≤b≤b

∑m
i=1 biλi =

∑m
i=1 maxbi≤bi≤bi

biλi. Thus, for all i = 1, . . . , m, if

λi ≥ 0 then b∗i = bi otherwise, if λi < 0 then b∗i = bi. Chinneck and Ramadan
in [6] observe also that extreme scenarios are those of interest to determine
a worst optimum and they give an exact algorithm which enumerates the
2m extreme scenarios.

4.3 Best case criterion

As equivalently mentioned in the section 3.3, the best case value of any
solution x ∈ X is cx. Thus, the optimal solution according to the best case
criterion is obtained by solving





min cx
s.t Ax = b

b ≤ b ≤ b

which is exactly (B=).
In conclusion, the best optimal solution is also the optimal solution

according to the best case criterion that can be obtained in polynomial time.

4.4 Worst case criterion: the penalty model

Due to infeasibility, the worst case value of any solution x ∈ X is +∞ and
the worst case criterion is no more equivalent to the worst optimal solution
problem.

However, the problem of determining a solution for which infeasibility is
limited, may be of interest for some decision problem. This way has been
extensively explored in stochastic programming in the framework of recourse
models ([5]).

We suggest to measure infeasibility on each constraint i with an additional
variable, denoted ei, for i = 1, . . . , m. And we set:

ei = |bi −
n∑

j=1

aijxj|

14



To evaluate any solution x ∈ X on any scenario b, we introduce ei variables
with a high penalty coefficient, denoted p, as follows:

fb(x) =
n∑

j=1

cjxj + p

m∑
i=1

ei

And we have:

fwor(x) = cx + p max
b≤b≤b

{
m∑

i=1

ei}

= cx + p

m∑
i=1

max
bi≤bi≤bi

{ei}

Let us now remark that for a given constraint i:

max
bi≤bi≤bi

{|bi −
n∑

j=1

aijxj|} = max{|bi −
n∑

j=1

aijxj|; |bi −
n∑

j=1

aijxj|}

= max{bi −
n∑

j=1

aijxj;
n∑

j=1

aijxj − bi; bi −
n∑

j=1

aijxj;
n∑

j=1

aijxj − bi}

= max{bi −
n∑

j=1

aijxj;
n∑

j=1

aijxj − bi}.

So,

fwor(x) =





min cx + p
∑m

i=1 zi

s.t zi ≥ bi −
∑n

j=1 aijxj ∀i = 1, . . . , m

zi ≥
∑n

j=1 aijxj − bi ∀i = 1, . . . , m

zi ≥ 0 ∀i = 1, . . . , m

which can be computed in polynomial time.
If we want to determine the solution which minimizes the worst case

criterion, we have to solve:





min fwor(x)
s.t Ax = b

b ≤ b ≤ b
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⇔




min cx + p
∑m

i=1(max{bi −
∑n

j=1 aijxj;
∑n

j=1 aijxj − bi})
s.t Ax = b

b ≤ b ≤ b

⇔





min cx +
∑m

i=1 pzi

s.t Ax ≤ b
Ax ≥ b

zi ≥ bi −
∑n

j=1 aijxj ∀i = 1, . . . , m

zi ≥
∑n

j=1 aijxj − bi ∀i = 1, . . . , m

zi ≥ 0 ∀i = 1, . . . , m

It is a linear program and, consequently, the optimal solution according the
worst case criterion for the penalty model can be computed in polynomial
time.

5 Duality and robustness

As proved in section 4.2, the problem (W=) of determining the worst optimum
is equivalent to the quadratic linear program (Q). This quadratic linear
program can be seen as the problem of determining λbes which optimizes
the best case criterion when b varying between b and b in (Db

=). Indeed,
fbes(λ) = max

b≤b≤b
btλ and

fbes(λbes) = max
Atλ≤ct

max
b≤b≤b

btλ = max
Atλ ≤ ct

b ≤ b ≤ b

btλ = v(Q)

Thus, (W=) is equivalent to the problem of determining the optimal solution
according to the best case criterion applied to a maximization linear program,
with inequality constraints and variables unrestricted in sign, where each
objective function coefficient is an interval number. So, the theorem follows:

Theorem 6 Considering the following linear program

(P c
≤)

{
max cx

s.t Ax ≤ b

with c varying between c and c, the problem of determining the solution which
optimizes the best case criterion is NP-hard.
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Moreover as shown in section 4.3, λbes is also an optimal solution of
(B=) and a kind of duality relationship exists between (W=) and (B=).
In other words, the worst optimum problem for a minimization linear
program (P ) with interval right handsides is equivalent to the best optimum
problem for the dual linear program (D) with interval objective function
coefficients. On one hand, when constraints in (P ) are inequalities, variables
in (D) are restricted in sign and worst optimum problem of (P ) and best
optimum problem of (D) are both polynomial. On the other hand, when
constraints in (P ) are equalities, variables in (D) are unrestricted in sign
and worst optimum problem of (P ) and best optimum problem of (D)
become NP-hard. Furthermore, if a particular robust criterion is applied on
a problem P , the ”dual” criterion must be applied to the dual problem D
in order to obtain the same optimal value.

More recently, Bertsimas and Sim in [4] suggest another polynomial ap-
proach of robustness in linear programming. Their approach includes the
case under consideration in this paper of interval right handside. For each
constraint i, they consider the following interval model for any coefficient:
δ ∈ [δ̃ − δ̂, δ̃ + δ̂] where δ̃ is the nominal value and δ̂ ≥ 0 represents the

deviation from the nominal value δ̃. They suppose the quite natural idea
that the worst case will not simultaneously happen for all coefficients in a
same constraints. In [3], authors ”stipulate that nature will be restricted in
its behavior, in that only a subset of coefficients will change in order to ad-
versely affect the solution”. They introduce a parameter Γi which represents
the maximum number of coefficients that can deviate from their nominal
value in the constraint i: Γi = 0 means that none coefficient will vary, while
Γi = n+1 means that all coefficients will vary in the worst case sense. So, Γi

is interpreted as a level of robustness. When uncertainty concerns only right
handsides, 0 ≤ Γi ≤ 1 and we have to consider separately linear programs
with inequality constraints and those with equality constraints. In the first
case, the worst case sense is identified and fixing Γi remains to choose a par-
ticular value for the constraint i right handside: for a ≥ constraint, the value
is b̃i + Γib̂i, otherwise for a ≤ constraint, the value is b̃i − Γib̂i. In particular
Γi = 1 for all i = 1, . . . , m corresponds to the worst case criterion. In the
second case, the worst case sense cannot be identified. Thus, each equality
constraint i is replaced by two opposite inequalities and, fixing Γi remains to
choose two differents values for bi: b̃i +Γib̂i for one constraint and b̃i−Γib̂i for
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the other one. It does not correspond to any scenario for the initial equality
constraint. Thus, Bertsimas and Sim approach is not very suitable when the
uncertainty only concerns right handsides.

6 Conclusion

In this article, we study theoretical complexity of the best (worst) optimum
problem for linear program with interval right handsides and we highlight
the relationship with the best (worst) case criterion. In the following array,
the main results are summarized:

best opt and best
case criterion

worst opt worst case crite-
rion{

min cx
s.t Ax ≥ b

with b ≤ b ≤ b

polynomial polynomial Equivalent
to the worst
optimum{

min cx
s.t Ax = b

with b ≤ b ≤ b

polynomial NP-hard Non relevant

In case of linear program with equality constraints, we propose a penalty
model useful to apply the worst case criterion and tractable in polynomial
time.

Even if the best (worst) optimum and the best (worst) case criterion often
lead to the same solutions, they correspond to different decision context. For
the best (worst) optimum, the underlying decision context is the following:
in a first step, a scenario is given and, in a second step, one choose the
best solution under this scenario. So, in the real decision step, they is no
more uncertainty and the computation of the best and the worst optimum
gets ahead of the decision step to provide additional information. For the
best (worst) case criterion, the underlying decision context is different: in
a first step, one choose a solution, and in a second step, one record the
scenario carried out. Consequently, one can choose an infeasible solution for
the scenario carried out which, in some decision context, leads to pay some
penalties. In this decision context, the worst case criterion may be efficiently
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compared with other criteria (like the maximum regret criterion), this will
be the subject of future research.
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