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Abstract

In this note, we strengthen the inapproximation bound of O(logn) for the labeled
perfect matching problem established in J. Monnot, The Labeled perfect matching in
bipartite graphs, Information Processing Letters 96 (2005) 81-88, using a self improving
operation in some hard instances. It is interesting to note that this self improving
operation does not work for all instances. Moreover, based on this approach we deduce
that the problem does not admit constant approximation algorithms for connected
planar cubic bipartite graphs.

Keywords: labeled matching; bipartite graphs; Approximation and complexity; inap-
proximation bounds.

1 Introduction

A matching M on a graph G = (V, E) is a subset of edges that are pairwise non adjacent;
M is said perfect if it covers the vertex set V of G. In the labeled perfect matching problem
(LABELED Min PM in short), we are given a simple graph G = (V,E) on |[V| = 2n
vertices which contains a perfect matching together with a color (or label) function £ :
E — {co,...,cq} on the edge set of G. For i = 0,...,q, we denote by £; C E the set
of edges of color ¢;. The goal of LABELED Min PM is to find a perfect matching on
G that uses a minimum number of colors. Alternatively, if G[L£'] denotes the subgraph
induced by the edges of colors £ C {co,..., ¢4}, then LABELED Min PM aims at finding
a subset £’ of minimum size such that G[£'] contains a perfect matching. Very recently,
some approximation results are obtained for LABELED Min PM when the graphs are
bipartite 2-regular or complete bipartite K, ,, [6]. In particular, it is shown that the 2-
regular bipartite case is equivalent to the minimum satisfiability problem, and that a greedy
algorithm picking at each iteration a monocolored matching of maximum size provides a
#—approximation in complete bipartite graphs where r is the maximum of times that a
color appears in the graph and H, is the r-th harmonic number. Moreover, it is proved that
LABELED Min PM is not O(logn)-approximable in bipartite complete graphs. In [5], this
problem is motivated by some applications in timetable problems. Several related works
concerning some matching problems on colored graphs can be found in [2, 3, 4]
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In this note, we prove first that LABELED Min PM is not in APX whenever the
bipartite graphs have a maximum degree of 3. Hence, there is a gap of approximabil-
ity between graphs of maximum degree 2 and 3 since we can easily deduce from [6] that
LABELED Min PM is 2-approximable in bipartite graphs of maximum degree 2. Us-
ing a weaker complexity hypothesis, we can even obtain that LABELED Min PM is not
20(1"91_5”)—approximable in bipartite graphs of maximum degree 3 on n vertices, unless NP
C DTIME (20(5091/6”)) Dealing with the unbounded degree case, this yields to the fact
that LABELED Min PM is not in polyLog-APX, unless P = NP.

In the following, we denote by opt(I) and apx(I) the value of an optimal and an ap-
proximate solution, respectively for LABELED Min PM. We say that an algorithm A is a
p-approximation (with p > 1) if apz(I) < p x opt(I) for any instance I.

Finally, in order to simplify the proofs exposed in the rest of the paper, the results
concern a variation of LABELED Min PM, where the value of each perfect matching M
is given by wvaly (M) = val(M) — 1. This problem is denoted LABELED Min PM; and we
have for any instance I, apxi(I) = apx(I) — 1 and opti(I) = opt(I) — 1. It is important to
note that a p(n)-approximation of LABELED Min PM becomes a 2p(n)-approximation of
LABELED Min PMj, and conversely a p(n)-approximation of LABELED Min PM; remains
a p(n)-approximation of LABELED Min PM. Actually, since LABELED Min PM is simple,
[7] (i.e., the restriction to opt(I) < k is polynomial), we can see that LABELED Min PM and
LABELED Min PM; are asymptotically equivalent to approximate. Hence, the proposed
results for LABELED Min PM; also hold LABELED Min PM.

2 A self improving operation on some classes of graphs

We now propose a self improving operation for some classes of instances P described as
follows. I = (H,L) € Py where H = (V, E) if and only if the following properties are
satisfy:

(i) H is planar of maximum degree k and connected.

(#4) Ju,v € V such that [u,u;] and [v,v1] for some uy,v; € V are the only edges incident
to u and v. Moreover, these two edges have color co, i.e., L([u,u1]) = L([v,v1]) = co.

(747) H is bipartite and admits a perfect matching.

(1v) H[{co}], the subgraph induced by edges of color ¢y does not have any perfect matching
and the subgraph H[L(E)\{co}] induced by edges of colors different from ¢y is acyclic.

(v) it H = H \ {u,v} denotes the subgraph induced by V' \ {u,v}, then H'[{co}] has a
perfect matching denoted by M.

We have P; = () and P is the set of odd paths from u to v alternating matchings M
and M., where M., is only colored by color cy. Finally, we define the class P by P = Uy Pk.

Restricted label squaring operation. Given an instance I = (H, L) € Py of LABELED
Min PM, its label squaring instance is I? = (H?, £?) with H? = (V2, E?), where

1. The graph H? is created by removing each edge e = [z,y] of H with color different
from ¢y and placing instead of it a copy H (e) of H, such that x and y are now identified
with u and v of H, respectively.



2. For each copy H(e) of H and for an edge ¢’ in H(e) with color different from ¢y, the
new color of €’ is L2(e’) = (L(e), L(¢’)). The remaining edges of copy H (e) keep their
color ¢, that is if £(€/) = ¢g, then £2(e') = co.

Let us prove that classes Py are closed under restricted label squaring operation.

Lemma 2.1 If I € Py, then I? € Py.

Proof: Let I € Py. The proofs of (i) and (ii) are obvious.

For (iii), since H and H \ {u,v} admit a perfect matching, we deduce that v € L and
v € R where (L, R) is the bipartition of H. Thus, we can extend the bipartition to H? by
taking for each H(e) a copy of the bipartition. Finally, it is easy to verify that H? admits
a perfect matching if H does.

For (iv) assume the reverse, that is H?[{co}] admits a perfect matching M and H[{co}]
not. By hypothesis, in each copy H([z,y]), the vertices x and y are not saturated by M
and then the edges of M which do not traverse copies H(e) form a perfect matching of
H[{co}], contradiction. Moreover, using property (i), it is easy to verify that the subgraph
H2[L2(E?)\ {co}] is acyclic whenever H[L(E) \ {cop}] is acyclic.

For (v) let M., be a perfect matching of H' = H \ {u,v} only using color ¢;. We
complete M., by taking for each copy H(e) a copy of M,,. In this way, we obtain a perfect
matching of H? \ {u,v} that uses only color c.

n

We now propose an approximation preserving reduction using the label squaring oper-
ation on Py.

Theorem 2.2 Let I = (H,L) € Py. If there exists a (polynomial) p-approximation of
I? for LABELED Min PDM;, then there exists a V/p-approximation of I for LABELED
Min PM,.

Proof: Let M* be an optimal perfect matching of I € P, using opt(I) colors and let
e1, -+ ,ep be the edges of H using colors distinct of ¢g. For each copy H(e;) we take a
copy of M* using colors (L(e;), L(e;)) for j = 1,---,p and color ¢y. For the remaining
copies, we take a copy of M., (a perfect matching on H \ {u,v}[{co}]) and we complete this
matching into a perfect matching of H? using the remaining edges of M*. This matching
uses (opt(I) —1)? 4 1 colors and thus

opt1 (I%) < opti (1) (1)

Now, consider an approximate perfect matching M? of H? with value apz(I?) and
let H(e1), -, H(ep) be the copies of H such that the restriction of M? to H(e;) is a
perfect matching. Hence, we may always assume that M? \ (UY_  H(e;)) only uses color
co. Therefore, if we denote £/ = {L(e;) : i = 1,--- ,p}, then for any ¢; € L' there exists a
perfect matching M., C M? in copy H(eg) such that edge ej, has color ¢;j. Let M,; be a
matching of H minimizing |L(M,, )| for any ¢; € £L" and let My be a perfect matching of
H containing edges {ei,...,e,} and some other edges of color cy.

The approximate perfect matching M of I will be given by one of the matchings M.,
or My with value apz(I) = min{|L(Mo)|,|L(Mc;)| : ¢; € L'}. Thus, we deduce that
apr1(I) = apz(I) — 1 = min{|L(Mo)| — 1,[L(M,;)| — 1: ¢; € L} and hence:



apri(I) < (IC(Mo)| = 1) min{|L(Me;)| =1 :¢; € L} < Y (IL(Me,) = 1) < apaa(1?) (2)
c;eLl!

Applying inequality (2) with an optimal perfect matching M? of H?, we obtain opt?(I) <
opt1(I?). Using inequality (1), we deduce opt?(I) = opt1(I?) and the expected result follows.
U

3 Inapproximability results

In [6], an inapproximability bound of O(logn) is obtained for LABELED Min PM in com-
plete bipartite graphs via a reduction from Set Cover. A slight modification of this reduction
allow us to obtain the same result for instances in P.

Theorem 3.1 LABELED Min PM; is not clogn approximable for some constant ¢ > 0
for instances in P having 2n vertices, unless P=NP.

Proof: See Appendix. [

Starting from the APX-completeness result for the vertex cover problem in cubic
graphs, [1], we are able to obtain the following result.

Corollary 3.2 LABELED Min PM;j for instances in Ps is not in PTAS.

Proof: See Appendix. [

By applying the well known method of self improving, we obtain the two following
results:

Theorem 3.3 LABELED Min PM; for instances in Ps is not in APX, unless P = NP.

Proof: Assume the reverse and let A be a polynomial algorithm solving LABELED Min PM;
within a constant performance ratio p. Let ¢ > 0 (with e < p — 1) and choose the smallest
integer ¢ such that:

q > loglog p — loglog(1 + ¢) (3)

Consider now an instance I = (H, L) € Ps and use the restricted label squaring op-
eration on I. We produce the instance I? = (H?,£?) and by repeating ¢ times this op-
eration on I?, we obtain thanks to Lemma 2.1 the instance I* = (H?*',£?") € Ps, in
time P(|I|) for some polynomial P since on the one hand, I? is obtained from I in time
O(|I|?) (we have |V (H?)| = O(|V(H)|?) and |L*(E(H?))| = O(|L(E(H))|?)) and on the
other hand, we repeat this operation a constant number of times. Using Theorem 2.2, from
the p-approximation on I?* given by A , we obtain a p? “-approximation on I. Thanks to
inequality (3), we deduce p?> * < 1+e¢. Hence, we obtain a polynomial time approximation
scheme for instances in P3, contradiction with Corollary 3.2. n

Theorem 3.4 For any € > 0 LABELED Min PM; is not 20(109175”)—appr0ximable for
instances in Py on n vertices, unless NP C DTIME (20(1"91/5”)>.
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Proof: Let ¢ > 0 and I = (H, £) € P3 where H has n vertices. Choose the smallest integer
p such that n?” > glog!/*n Thus, 22" *logn > 9log'/*n anq then,

2P%€ > logl = n (4)

Using the restricted label squaring operation on I, we produce the instance I? =
(H?, £?). By repeating p times this operation on I2, we obtain the instance 1% = (Hzp , L’2p) €
Ps. Since, H has n vertices, we derive from property (iv) of Lemma 2.1 that the number
n' of vertices of H* and the number |£?" (E(H?"))| of colors of H?" satisfy:

n' <n® and [L7(B(H®))| < [L(E(H))” ()

Now, assume that we have a f(n/)-approximation on I where f(n/) < 20Xlog' =’

for some ¢ > 0. Using Theorem 2.2, we obtain a f(n’)? "-approximation on I. Using
inequalities (4) and (5), we deduce:

ap1(I) < f(n')* "opti (1)
logl—€ n/

< 2955 opty (I)

ogl=¢n

1
< 27557 opty (I)
< 2%pti(I)

Thus, using inequality (5), we obtain a constant approximation in time poly(n’) =
20(10g1/E n)

, and thus, a contradiction with Theorem 3.3. [
It is natural to ask the question whether the problem is easier in cubic bipartite graphs.
Here, we prove that the answer is negative.

Theorem 3.5 LABELED Min PM; is not in APX in connected planar cubic bipartite
graphs, unless P = NP.

Proof: The proof consists of two steps. First, using a quite similar reduction to the one
of Corollary 3.2, we prove that Theorem 3.4 also holds for the sub-family P5 of P3 where
each vertex has a degree 3, except u and v. Then, we transform any instance of P4 into a
connected planar cubic bipartite graph.

Let G = (V,E) with V = {v1,--- ,v,} and E = {e1,--- ,en} be an instance of vertex
cover. We transform any edge e; = [z,y] into gadget H(e;) described in Figure 1. All
edges of H(e;), except [vs j,1; ] and [vs3 j,1;,] have color ¢g. We have L([vs j,1;4]) = ¢, and
L([v3,j,1jy]) = ¢y Finally, H(e;) is linked to H(e;j11) using the graph depicted in Figure 2
where each edge is colored with cg.

Clearly, LABELED Min PM; is APX-hard in class P§. Since the restricted label squar-
ing operation also preserves the membership in P}, we deduce that LABELED Min PM; is
not in APX when the instances are restricted to Pj. Finally, given I € Pj with I = (G, £),
we consider the instance I’ where G is duplicated 3 times into G1, G, G3. If u;, v; denote
the extreme vertices of G;, we shrink vertices w1, us, u3 into u and vy, vo, vg into v. Clearly,
this new graph G’ is connected bipartite, planar and cubic. Finally, since we can restrict
ourselves to perfect matchings M’ of G’ that use only color ¢y for exactly two copies of G,
the result follows. L]



V1,5 V2,5

Figure 1: The gadget H(e;) for e; = [z, y].

v2,j V1,541

Figure 2: The gadget linking H(e;) to H(ej1).

Dealing with the unbounded degree case (that is instances of P), we can deduce the
following stronger result:

Theorem 3.6 LABELED Min PM; for instances in P is not in polyLog-APX , unless
P = NP.

Proof: Assume the reverse, that is LABELED Min PM is f(n)-approximable with f(n) <
clog n for some constants ¢ > 0 and k > 1. Let I = (H,L) € P where H has 2n vertices.
Let p = [logk] 4+ 1. Using as previously 2P times the restricted label squaring operation on
I, we produce in polynomial-time the instance I?" = (H?", £?") € P. The same arguments
as in Theorem 3.4 allow us to obtain a contradiction with Theorem 3.1. [
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Figure 3: The gadget H(z;).

Appendix

Proof of Theorem 3.1. Given a family S = {S1,...,S5,} of subsets of a ground set
X = {x1,...,2my} (we assume that U° S; = X), a set cover of X is a sub-family &’ =
{S¢ys > S¢p)} € S such that ulesf(i) = X; MINSC is the problem of determining a
minimum-size set cover §* = {Sy«(1),..., ()} of X. Given an instance Iy = (S, X) of
MINSC, its characteristic graph G, = (Lo, Ro; E1,) is a bipartite graph with a left set Ly =
{l1,...,ln,} that represents the members of the family S and a right set Ry = {r1,...,7m,}
that represents the elements of the ground set X; the edge-set Ej, of the characteristic
graph is defined by Ey, = {[l;,7;] : x; € S;}.

From Iy, we construct the instance I = (H, £) of LABELED Min PM; containing (ng+1)
colors {cp,c1, - ,Cn, }, described as follows:

e For each element x; € X, we build a gadget H(x;) that consists of a bipartite graph
of 2(dg,, (1) +3) vertices and 3dg, (r;) +4 edges, where dg, (r;) denotes the degree
of vertex r; € R in G',. The graph H(x;) is illustrated in Figure 3.

e Assume that vertices {ly(1),...,lf()} are the neighbors of 7; in Gy, then color H(z;)
as follows: for any k = 1,...,p, L(vsj,l; s)) = cpx) and the other edges receive
color cg.

e We complete H = Uy, ex H(x;) by adding edges [vaj,v141] with color cg for j =
1, ,mo— 1.

e Iinally, we set u = vy 1 and v = v j.
Clearly, I € P and has 2n = 2 erGR(dGlg(rj) +3) = 2|Ey,| + 6my vertices.

Let &* be an optimal set cover on Iy. From &*, we can easily construct a perfect
matching M* of I = (H, L) that uses exactly (|S*| + 1) colors. Conversely, let M be a



perfect matching on I; by construction, the subset 8" = {Sk : ¢x € L(M)} of S is a set
cover of X using (|L(M)| — 1) sets.

Now, it is well known that the set cover problem is NP-hard to approximate within
factor clogng for some constant ¢ > 0. This result also applies to instances (X,S) when
|X| and |S| are polynomially related (i.e., |[X|? < |S| < |X|P for some constants p, q).

Hence, given such an instance Iy = (X,S), from any algorithm A solving LABELED
Min PM; within a performance ratio pa(l) < qj%l x log(n) for a bipartite graph on 2n
vertices, we can deduce an algorithm for MINSC that guarantees the performance ratio

cq% log(n) < CqT11 log(nd*t") = clog(no), contradiction.

Proof of Corollary 3.2. Starting from the restriction of set cover where each element z;
is covered by exactly two sets (this case is usually called vertex cover), we apply the same
proof as in Theorem 3.1. The instance I becomes an element of Ps3, and using for instance
the hardness result of [1], the expected result follows.





