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Abstract

In this note, we strengthen the inapproximation bound of O(log n) for the labeled
perfect matching problem established in J. Monnot, The Labeled perfect matching in
bipartite graphs, Information Processing Letters 96 (2005) 81-88, using a self improving
operation in some hard instances. It is interesting to note that this self improving
operation does not work for all instances. Moreover, based on this approach we deduce
that the problem does not admit constant approximation algorithms for connected
planar cubic bipartite graphs.

Keywords: labeled matching; bipartite graphs; Approximation and complexity; inap-
proximation bounds.

1 Introduction

A matching M on a graph G = (V, E) is a subset of edges that are pairwise non adjacent;
M is said perfect if it covers the vertex set V of G. In the labeled perfect matching problem
(Labeled Min PM in short), we are given a simple graph G = (V, E) on |V | = 2n

vertices which contains a perfect matching together with a color (or label) function L :
E → {c0, . . . , cq} on the edge set of G. For i = 0, . . . , q, we denote by Li ⊆ E the set
of edges of color ci. The goal of Labeled Min PM is to find a perfect matching on
G that uses a minimum number of colors. Alternatively, if G[L′] denotes the subgraph
induced by the edges of colors L′ ⊆ {c0, . . . , cq}, then Labeled Min PM aims at finding
a subset L′ of minimum size such that G[L′] contains a perfect matching. Very recently,
some approximation results are obtained for Labeled Min PM when the graphs are
bipartite 2-regular or complete bipartite Kn,n, [6]. In particular, it is shown that the 2-
regular bipartite case is equivalent to the minimum satisfiability problem, and that a greedy
algorithm picking at each iteration a monocolored matching of maximum size provides a
r+Hr

2 -approximation in complete bipartite graphs where r is the maximum of times that a
color appears in the graph and Hr is the r-th harmonic number. Moreover, it is proved that
Labeled Min PM is not O(log n)-approximable in bipartite complete graphs. In [5], this
problem is motivated by some applications in timetable problems. Several related works
concerning some matching problems on colored graphs can be found in [2, 3, 4]
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In this note, we prove first that Labeled Min PM is not in APX whenever the
bipartite graphs have a maximum degree of 3. Hence, there is a gap of approximabil-
ity between graphs of maximum degree 2 and 3 since we can easily deduce from [6] that
Labeled Min PM is 2-approximable in bipartite graphs of maximum degree 2. Us-
ing a weaker complexity hypothesis, we can even obtain that Labeled Min PM is not
2O(log1−εn)-approximable in bipartite graphs of maximum degree 3 on n vertices, unless NP

⊆ DTIME
(

2O(log1/εn)
)

. Dealing with the unbounded degree case, this yields to the fact

that Labeled Min PM is not in polyLog-APX, unless P = NP.

In the following, we denote by opt(I) and apx(I) the value of an optimal and an ap-
proximate solution, respectively for Labeled Min PM . We say that an algorithm A is a
ρ-approximation (with ρ ≥ 1) if apx(I) ≤ ρ × opt(I) for any instance I.

Finally, in order to simplify the proofs exposed in the rest of the paper, the results
concern a variation of Labeled Min PM , where the value of each perfect matching M

is given by val1(M) = val(M) − 1. This problem is denoted Labeled Min PM1 and we
have for any instance I, apx1(I) = apx(I) − 1 and opt1(I) = opt(I) − 1. It is important to
note that a ρ(n)-approximation of Labeled Min PM becomes a 2ρ(n)-approximation of
Labeled Min PM1, and conversely a ρ(n)-approximation of Labeled Min PM1 remains
a ρ(n)-approximation of Labeled Min PM . Actually, since Labeled Min PM is simple,
[7] (i.e., the restriction to opt(I) ≤ k is polynomial), we can see that Labeled Min PM and
Labeled Min PM1 are asymptotically equivalent to approximate. Hence, the proposed
results for Labeled Min PM1 also hold Labeled Min PM .

2 A self improving operation on some classes of graphs

We now propose a self improving operation for some classes of instances Pk described as
follows. I = (H,L) ∈ Pk where H = (V, E) if and only if the following properties are
satisfy:

(i) H is planar of maximum degree k and connected.

(ii) ∃u, v ∈ V such that [u, u1] and [v, v1] for some u1, v1 ∈ V are the only edges incident
to u and v. Moreover, these two edges have color c0, i.e., L([u, u1]) = L([v, v1]) = c0.

(iii) H is bipartite and admits a perfect matching.

(iv) H[{c0}], the subgraph induced by edges of color c0 does not have any perfect matching
and the subgraph H[L(E)\{c0}] induced by edges of colors different from c0 is acyclic.

(v) if H ′ = H \ {u, v} denotes the subgraph induced by V \ {u, v}, then H ′[{c0}] has a
perfect matching denoted by Mc0 .

We have P1 = ∅ and P2 is the set of odd paths from u to v alternating matchings M

and Mc0 where Mc0 is only colored by color c0. Finally, we define the class P by P = ∪kPk.

Restricted label squaring operation. Given an instance I = (H,L) ∈ Pk of Labeled

Min PM , its label squaring instance is I2 = (H2,L2) with H2 = (V 2, E2), where

1. The graph H2 is created by removing each edge e = [x, y] of H with color different
from c0 and placing instead of it a copy H(e) of H, such that x and y are now identified
with u and v of H, respectively.
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2. For each copy H(e) of H and for an edge e′ in H(e) with color different from c0, the
new color of e′ is L2(e′) = (L(e),L(e′)). The remaining edges of copy H(e) keep their
color c0, that is if L(e′) = c0, then L2(e′) = c0.

Let us prove that classes Pk are closed under restricted label squaring operation.

Lemma 2.1 If I ∈ Pk, then I2 ∈ Pk.

Proof: Let I ∈ Pk. The proofs of (i) and (ii) are obvious.

For (iii), since H and H \ {u, v} admit a perfect matching, we deduce that u ∈ L and
v ∈ R where (L, R) is the bipartition of H. Thus, we can extend the bipartition to H2 by
taking for each H(e) a copy of the bipartition. Finally, it is easy to verify that H2 admits
a perfect matching if H does.

For (iv) assume the reverse, that is H2[{c0}] admits a perfect matching M and H[{c0}]
not. By hypothesis, in each copy H([x, y]), the vertices x and y are not saturated by M

and then the edges of M which do not traverse copies H(e) form a perfect matching of
H[{c0}], contradiction. Moreover, using property (ii), it is easy to verify that the subgraph
H2[L2(E2) \ {c0}] is acyclic whenever H[L(E) \ {c0}] is acyclic.

For (v) let Mc0 be a perfect matching of H ′ = H \ {u, v} only using color c0. We
complete Mc0 by taking for each copy H(e) a copy of Mc0 . In this way, we obtain a perfect
matching of H2 \ {u, v} that uses only color c0.

We now propose an approximation preserving reduction using the label squaring oper-
ation on Pk.

Theorem 2.2 Let I = (H,L) ∈ Pk. If there exists a (polynomial) ρ-approximation of
I2 for Labeled Min PM1, then there exists a

√
ρ-approximation of I for Labeled

Min PM1.

Proof: Let M∗ be an optimal perfect matching of I ∈ Pk using opt(I) colors and let
e1, · · · , ep be the edges of H using colors distinct of c0. For each copy H(ei) we take a
copy of M∗ using colors (L(ei),L(ej)) for j = 1, · · · , p and color c0. For the remaining
copies, we take a copy of Mc0 (a perfect matching on H \{u, v}[{c0}]) and we complete this
matching into a perfect matching of H2 using the remaining edges of M∗. This matching
uses (opt(I) − 1)2 + 1 colors and thus

opt1(I
2) ≤ opt21(I) (1)

Now, consider an approximate perfect matching M2 of H2 with value apx(I2) and
let H(e1), · · · , H(ep) be the copies of H such that the restriction of M2 to H(ei) is a
perfect matching. Hence, we may always assume that M2 \ (∪p

i=1H(ei)) only uses color
c0. Therefore, if we denote L′ = {L(ei) : i = 1, · · · , p}, then for any cj ∈ L′ there exists a
perfect matching Mcj ,k ⊆ M2 in copy H(ek) such that edge ek has color cj . Let Mcj be a
matching of H minimizing |L(Mcj ,k)| for any cj ∈ L′ and let M0 be a perfect matching of
H containing edges {e1, . . . , ep} and some other edges of color c0.

The approximate perfect matching M of I will be given by one of the matchings Mcj

or M0 with value apx(I) = min{|L(M0)|, |L(Mcj )| : cj ∈ L′}. Thus, we deduce that
apx1(I) = apx(I) − 1 = min{|L(M0)| − 1, |L(Mcj )| − 1 : cj ∈ L′} and hence:
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apx2
1(I) ≤ (|L(M0)|−1)min{|L(Mcj )|−1 : cj ∈ L′} ≤

∑

cj∈L
′

(

|L(Mcj )| − 1
)

≤ apx1(I
2) (2)

Applying inequality (2) with an optimal perfect matching M2 of H2, we obtain opt21(I) ≤
opt1(I

2). Using inequality (1), we deduce opt21(I) = opt1(I
2) and the expected result follows.

3 Inapproximability results

In [6], an inapproximability bound of O(log n) is obtained for Labeled Min PM in com-
plete bipartite graphs via a reduction from Set Cover. A slight modification of this reduction
allow us to obtain the same result for instances in P.

Theorem 3.1 Labeled Min PM1 is not c log n approximable for some constant c > 0
for instances in P having 2n vertices, unless P=NP.

Proof: See Appendix.

Starting from the APX-completeness result for the vertex cover problem in cubic
graphs, [1], we are able to obtain the following result.

Corollary 3.2 Labeled Min PM1 for instances in P3 is not in PTAS.

Proof: See Appendix.

By applying the well known method of self improving, we obtain the two following
results:

Theorem 3.3 Labeled Min PM1 for instances in P3 is not in APX, unless P = NP.

Proof: Assume the reverse and let A be a polynomial algorithm solving Labeled Min PM1

within a constant performance ratio ρ. Let ε > 0 (with ε < ρ − 1) and choose the smallest
integer q such that:

q ≥ log log ρ − log log(1 + ε) (3)

Consider now an instance I = (H,L) ∈ P3 and use the restricted label squaring op-
eration on I. We produce the instance I2 = (H2,L2) and by repeating q times this op-
eration on I2, we obtain thanks to Lemma 2.1 the instance I2q

= (H2q
,L2q

) ∈ P3, in
time P (|I|) for some polynomial P since on the one hand, I2 is obtained from I in time
O(|I|2) (we have |V (H2)| = O(|V (H)|2) and |L2(E(H2))| = O(|L(E(H))|2)) and on the
other hand, we repeat this operation a constant number of times. Using Theorem 2.2, from
the ρ-approximation on I2q

given by A , we obtain a ρ2−q
-approximation on I. Thanks to

inequality (3), we deduce ρ2−q ≤ 1 + ε. Hence, we obtain a polynomial time approximation
scheme for instances in P3, contradiction with Corollary 3.2.

Theorem 3.4 For any ε > 0 Labeled Min PM1 is not 2O(log1−εn)-approximable for

instances in P3 on n vertices, unless NP ⊆ DTIME
(

2O(log1/εn)
)

.
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Proof: Let ε > 0 and I = (H,L) ∈ P3 where H has n vertices. Choose the smallest integer

p such that n2p ≥ 2log1/ε n. Thus, 22p×log n ≥ 2log1/ε n and then,

2p×ε ≥ log1−ε n (4)

Using the restricted label squaring operation on I, we produce the instance I2 =
(H2,L2). By repeating p times this operation on I2, we obtain the instance I2p

= (H2p
,L2p

) ∈
P3. Since, H has n vertices, we derive from property (iv) of Lemma 2.1 that the number
n′ of vertices of H2p

and the number |L2p
(E(H2p

))| of colors of H2p
satisfy:

n′ ≤ n2p
and |L2p

(E(H2p
))| ≤ |L(E(H))|2p

(5)

Now, assume that we have a f(n′)-approximation on I2p
where f(n′) ≤ 2c×log1−ε n′

for some c > 0. Using Theorem 2.2, we obtain a f(n′)2
−p

-approximation on I. Using
inequalities (4) and (5), we deduce:

apx1(I) ≤ f(n′)2
−p

opt1(I)

≤ 2c×
log1−ε n′

2p opt1(I)

≤ 2c×
log1−ε n

2ε×p opt1(I)

≤ 2copt1(I) ,

Thus, using inequality (5), we obtain a constant approximation in time poly(n′) =

2O(log1/ε n), and thus, a contradiction with Theorem 3.3.

It is natural to ask the question whether the problem is easier in cubic bipartite graphs.
Here, we prove that the answer is negative.

Theorem 3.5 Labeled Min PM1 is not in APX in connected planar cubic bipartite
graphs, unless P = NP.

Proof: The proof consists of two steps. First, using a quite similar reduction to the one
of Corollary 3.2, we prove that Theorem 3.4 also holds for the sub-family P ′

3 of P3 where
each vertex has a degree 3, except u and v. Then, we transform any instance of P ′

3 into a
connected planar cubic bipartite graph.

Let G = (V, E) with V = {v1, · · · , vn} and E = {e1, · · · , en} be an instance of vertex
cover. We transform any edge ej = [x, y] into gadget H(ej) described in Figure 1. All
edges of H(ej), except [v3,j , lj,x] and [v3,j , lj,y] have color c0. We have L([v3,j , lj,x]) = cx and
L([v3,j , lj,y]) = cy. Finally, H(ej) is linked to H(ej+1) using the graph depicted in Figure 2
where each edge is colored with c0.

Clearly, Labeled Min PM1 is APX-hard in class P ′
3. Since the restricted label squar-

ing operation also preserves the membership in P ′
3, we deduce that Labeled Min PM1 is

not in APX when the instances are restricted to P ′
3. Finally, given I ∈ P ′

3 with I = (G,L),
we consider the instance I ′ where G is duplicated 3 times into G1, G2, G3. If ui, vi denote
the extreme vertices of Gi, we shrink vertices u1, u2, u3 into u and v1, v2, v3 into v. Clearly,
this new graph G′ is connected bipartite, planar and cubic. Finally, since we can restrict
ourselves to perfect matchings M ′ of G′ that use only color c0 for exactly two copies of G,
the result follows.
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lj,y

v1,j v2,jv3,j

lj,x

cx

cy

Figure 1: The gadget H(ej) for ej = [x, y].

v1,j+1v2,j

Figure 2: The gadget linking H(ej) to H(ej+1).

Dealing with the unbounded degree case (that is instances of P), we can deduce the
following stronger result:

Theorem 3.6 Labeled Min PM1 for instances in P is not in polyLog-APX , unless
P = NP.

Proof: Assume the reverse, that is Labeled Min PM1 is f(n)-approximable with f(n) ≤
c logk n for some constants c > 0 and k ≥ 1. Let I = (H,L) ∈ P where H has 2n vertices.
Let p = ⌈logk⌉+ 1. Using as previously 2p times the restricted label squaring operation on
I, we produce in polynomial-time the instance I2p

= (H2p
,L2p

) ∈ P. The same arguments
as in Theorem 3.4 allow us to obtain a contradiction with Theorem 3.1.

Acknowledgments. I want to thank Bruno Escoffier and Laurent Gourvès for useful
comments on earlier versions.
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rj,f(2)lj,f(2)

lj,f(p)

v2,j

rj,f(p)

v3,j

v1,j

lj,f(1) rj,f(1)

Figure 3: The gadget H(xj).

Appendix

Proof of Theorem 3.1. Given a family S = {S1, . . . , Sn0
} of subsets of a ground set

X = {x1, . . . , xm0
} (we assume that ∪n0

i=1Si = X), a set cover of X is a sub-family S ′ =
{Sf(1), . . . , Sf(p)} ⊆ S such that ∪p

i=1Sf(i) = X; MinSC is the problem of determining a
minimum-size set cover S∗ = {Sf∗(1), . . . , Sf∗(q)} of X. Given an instance I0 = (S, X) of
MinSC, its characteristic graph GI0 = (L0, R0; EI0) is a bipartite graph with a left set L0 =
{l1, . . . , ln0

} that represents the members of the family S and a right set R0 = {r1, . . . , rm0
}

that represents the elements of the ground set X; the edge-set EI0 of the characteristic
graph is defined by EI0 = {[li, rj ] : xj ∈ Si}.

From I0, we construct the instance I = (H,L) of Labeled Min PM1 containing (n0+1)
colors {c0, c1, · · · , cn0

}, described as follows:

• For each element xj ∈ X0, we build a gadget H(xj) that consists of a bipartite graph
of 2(dGI0

(rj) + 3) vertices and 3dGI0
(rj) + 4 edges, where dGI0

(rj) denotes the degree
of vertex rj ∈ R in GI0 . The graph H(xj) is illustrated in Figure 3.

• Assume that vertices {lf(1), . . . , lf(p)} are the neighbors of rj in GI0 , then color H(xj)
as follows: for any k = 1, . . . , p, L(v3,j , lj,f(k)) = cf(k) and the other edges receive
color c0.

• We complete H = ∪xj∈XH(xj) by adding edges [v2,j , v1,j+1] with color c0 for j =
1, · · · , m0 − 1.

• Finally, we set u = v1,1 and v = v2,m0
.

Clearly, I ∈ P and has 2n = 2
∑

rj∈R(dGI0
(rj) + 3) = 2|EI0 | + 6m0 vertices.

Let S∗ be an optimal set cover on I0. From S∗, we can easily construct a perfect
matching M∗ of I = (H,L) that uses exactly (|S∗| + 1) colors. Conversely, let M be a
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perfect matching on I; by construction, the subset S ′ = {Sk : ck ∈ L(M)} of S is a set
cover of X using (|L(M)| − 1) sets.

Now, it is well known that the set cover problem is NP-hard to approximate within
factor c log n0 for some constant c > 0. This result also applies to instances (X,S) when
|X| and |S| are polynomially related (i.e., |X|q ≤ |S| ≤ |X|p for some constants p, q).

Hence, given such an instance I0 = (X,S), from any algorithm A solving Labeled

Min PM1 within a performance ratio ρA(I) ≤ c
q+1 × log(n) for a bipartite graph on 2n

vertices, we can deduce an algorithm for MinSC that guarantees the performance ratio
c 1

q+1 log(n) ≤ c 1
q+1 log(nq+1

0 ) = c log(n0), contradiction.

Proof of Corollary 3.2. Starting from the restriction of set cover where each element xi

is covered by exactly two sets (this case is usually called vertex cover), we apply the same
proof as in Theorem 3.1. The instance I becomes an element of P3, and using for instance
the hardness result of [1], the expected result follows.
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