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The Complexity of Bottleneck Labeled Graph Problems

Refael Hassin∗ Jérôme Monnot† Danny Segev∗

Abstract

In the present paper, we study bottleneck labeled optimization problems arising in
the context of graph theory. This long-established model partitions the set of edges into
classes, each of which is identified by a unique color. The generic objective is to construct
a subgraph of prescribed structure (such as that of being an s-t path, a spanning tree, or
a perfect matching) while trying to avoid over-picking or under-picking edges from any
given color.

Keywords: Bottleneck labeled problems, approximation algorithms, hardness of approximation, s-t

path, s-t cut, spanning tree, perfect matching.

1 Introduction

Let G = (V, E) be a directed or undirected graph, with a weight function w : E → R+ and a
labeling function L : E → {c1, . . . , cq}. We interchangeably refer to the elements of L(E) as
labels or colors. In addition, for E′ ⊆ E and 1 ≤ i ≤ q, we use Li(E

′) = {e ∈ E′ : L(e) = ci}
to denote the collection of ci-colored edges in E′. With this notation in mind, the ci-color

weight of an edge set E′ ⊆ E is defined as
∑

e∈Li(E′) w(e), i.e., the total weight of all ci-colored

edges in E′.
Now let P be a given graph property defined on subsets of E, such as that of inducing a

spanning tree, an s-t path, an s-t cut, or a perfect matching. The min-max weighted labeled

P problem (henceforth, WL-min-max P) asks to compute an edge set E′ ⊆ E satisfying P
that minimizes maxi

∑

e∈Li(E′) w(e), the maximum color weight of E′. Similarly, in max-min

weighted labeled P (WL-max-min P), the minimum color weight should be maximized. We
refer to both versions as weighted labeled bottleneck P problems. Furthermore, for ease of
presentation, we denote by UL-min-max P the unweighted special case of WL-min-max P,
that asks to minimize the maximum color frequency. Analogous notation will also be used
for the corresponding max-min variant.

The complexity of WL-min-max P has been investigated for several graph properties by
Richey and Punnen [28], Punnen [26, 27], and Averbakh and Berman [5], in the context
of “optimization problems under categorization”. As indicated in [28, 5], WL-min-max P
contains both min-max weighted P and min-sum weighted P as special cases. One simply
has to assign a distinct label to each edge in the former variant, and a single label for all edges
in the latter variant. Similar arguments lead to an analogous result, stating that max-sum
weighted P can be formulated in terms of WL-max-min P. Consequently, whenever min-sum
weighted (respectively, max-sum weighted) P is NP-hard, so is WL-min-max (respectively,
max-min) P.
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1.1 Our results

We now provide, for each problem considered in this paper, a brief description of our main
findings, accompanied by a concise summary of previous work.

Labeled bottleneck s-t path

Previous work:

1. Averbakh and Berman [5] showed that WL-min-max s-t path is weakly NP-hard, even
in bicolored graphs. Moreover, they proved that UL-min-max s-t path is NP-hard for
an arbitrary number of colors. These results apply to both directed and undirected
graphs.

2. In [15] (problem [GT54], p. 203), it was mentioned that the pair-choice vertex problem
is NP-hard. Here, we are given a directed graph G = (V, E), two specified nodes
{s, t} ⊆ V , and a collection of pairwise-disjoint pairs of arcs. The objective is to
determine whether there exists an s-t path traversing at most one arc from any given
pair. Since UL-min-max directed s-t path can be viewed as a special case of this
problem (pairs correspond to colors), the former cannot be approximated within a
factor of 2− ǫ for any fixed ǫ > 0, unless P=NP.

3. It is not difficult to verify that UL-max-min s-t path generalizes the longest path prob-
lem, even in monochromatic graphs. Therefore, the results of Karger, Motwani and
Ramkumar [19, Thm. 11] imply that UL-max-min s-t path cannot be approximated

within a factor of 2O(log1−ǫ n) for any fixed ǫ > 0, unless NP ⊆ DTIME(2O(log1/ǫ n)).

New results:

1. UL-max-min s-t path is not approximable at all, unless P=NP (Theorem 4.1).

2. For a fixed number of colors, there is a fully polynomial-time approximation scheme
for WL-min-max s-t path (Corollary 3.2).

3. For an arbitrary number of colors, there is a polynomial-time algorithm that constructs
a feasible solution to UL-min-max s-t path in undirected graphs using O(

√
nOPT)

edges from any given color. Here, n = |V | and OPT denotes the objective value of an
optimal solution (Subsection 4.2). For directed graphs, the path we construct traverses
O(
√

mOPT) edges from any color, where m = |E| (Subsection 4.3).

Labeled bottleneck spanning tree

Previous work: Richey and Punnen [28] showed that WL-min-max spanning tree is weakly
NP-hard, even in bicolored graphs. We are not aware of previous work regarding the max-min
version of this problem.

New results:

1. WL-min-max spanning tree is strongly NP-hard (Corollary 5.2); it can be approximated
within a factor of O(log n) (Subsection 5.3).

2. UL-min-max spanning tree can be solved in polynomial time (Theorem 5.4).

3. UL-max-min spanning tree can be solved in polynomial time (Theorem 5.3). WL-max-
min spanning tree is strongly NP-hard (Corollary 5.2), and it is also weakly NP-hard
in planar bicolored graphs (Theorem 2.1).
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4. For a fixed number of colors, there is a fully polynomial-time approximation scheme
for both versions of weighted labeled bottleneck spanning tree (Corollary 3.2).

Labeled bottleneck perfect matching

Previous work:

1. Richey and Punnen [28] showed that WL-min-max perfect matching is weakly NP-hard,
even in bicolored graphs. A stronger result has recently been obtained by Punnen [27],
who proved that even the simpler WL-min-max assignment problem is strongly NP-
hard.

2. Itai, Rodeh, and Tanimoto [18] proved that the following problem is NP-complete:
Given a bipartite graph and a collection of pairs of edges, decide whether there exists
a perfect matching that picks at most one edge from any given pair. This problem
remains NP-complete for a collection of disjoint pairs [15] (problem [GT59], p. 203).
Since UL-min-max perfect matching can be viewed as a special case of this problem,
the former cannot be approximated within a factor of 2− ǫ for any fixed ǫ > 0, unless
P=NP.

3. Karzanov [20], and Yi, Murty and Spera [31] proved that, given a complete bipartite
graph Kn,n with edges colored either red or blue, the problem of finding a perfect
matching consisting of exactly r red edges and n − r blue edges is polynomial-time
solvable1. Therefore, UL-min-max and UL-max-min perfect matching in complete
bipartite bicolored graphs can be solved to optimality in polynomial time.

4. To our knowledge, WL-max-min perfect matching has not been studied in the litera-
ture.

New results:

1. WL-max-min perfect matching is weakly NP-hard in bicolored planar graphs (Theorem
2.1). UL-max-min perfect matching is not approximable at all in general graphs, unless
P=NP (Theorem 6.1).

2. There is an approximation-preserving reduction from UL-min-max directed s-t path to
UL-min-max perfect matching (Theorem 6.2).

3. For a fixed number of colors, there is a fully polynomial-time approximation scheme
for both versions of weighted labeled bottleneck perfect matching (Corollary 3.2).

Labeled bottleneck s-t cut

Previous work: To our knowledge, both versions of this problem have not been studied yet.

New results:

1. UL-min-max s-t cut is NP-hard in bicolored graphs (Theorem 2.3). When the under-
lying graph is planar, UL-min-max s-t cut cannot be approximated within a factor of
2− ǫ for any fixed ǫ > 0, unless P=NP (Theorem 7.1), and the weighted version of this
problem is weakly NP-hard when the graph is bicolored as well (Theorem 2.1).

2. WL-max-min s-t cut is weakly NP-hard in planar bicolored graphs (Theorem 2.1).
For an arbitrary number of colors, this problem is not approximable at all in planar
multigraphs, unless P=NP (Theorem 7.2).

1On the other hand, the complexity of this problem in general bipartite graphs is still open.
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1.2 Related work

In this section, we provide a brief survey of several frameworks to which our contributions
are related. Since some of the settings under consideration have received a great deal of
attention in recent years, it is beyond the scope of this writing to present an exhaustive
overview. We refer the reader to the undermentioned papers and to the references therein
for a more comprehensive review of the literature.

Multiobjective combinatorial optimization [13, 14, 29, 30]. The basic ingredients of
a multiobjective optimization problem are typically: A set of instances I; a set of feasible
solutions F(x) associated with every instance x ∈ I; and a collection of cost functions
w1(x, y), . . . , wk(x, y) associated with every instance x ∈ I and feasible solution y ∈ F(x).
Given an instance x ∈ I, the goal is to solve miny∈F(x){w1(x, y), . . . , wk(x, y)}, where the
exact meaning of “min” depends on the particular setting in question. For example, it may
stand for Pareto optimality (see Section 3), for aiming to minimize the worst cost function,
or for lexicographically minimizing the vector of cost functions. It is not difficult to verify
that WL-min-max P is actually a multiobjective optimization problem in disguise: The
set of feasible solutions consists of all edge sets that satisfy P; for every color ci there is
a corresponding cost function wi which is exactly the ci-color weight; and the goal is to
minimize the maximum cost function. Minor adjustments allow us to treat WL-max-min P
in a similar way.

Robust discrete optimization [21, 7, 12]. Very informally, robust optimization deals
with decision making in environments of considerable data uncertainty, trying to come up
with solutions that hedge against the worst contingency that may arise. Several alternative
approaches for coping with uncertainty have been explored and exploited; however, the
scenario-based framework of Kouvelis and Yu [21] seems most relevant to our paper. In this
context, future developments are described by a finite number of scenarios, each of which
corresponds to a possible realization of the unknown model parameters. The objective is
to optimize against the worst possible scenario by using a min-max objective. Once again,
we note that WL-min-max P can be easily cast as a scenario-based robust optimization
problem: For every color ci there is an analogous scenario si, in which the weight wsi(e) of
an edge e ∈ E is set to w(e) if its color is ci, and to 0 otherwise. In addition, the cost of an
edge set E′ ⊆ E in scenario si is given by

∑

e∈E′ wsi(e), which is exactly the ci-color weight
of this set.

The min-sum-max setting. A complementary line of work [28, 5, 27] on edge-colored
graphs attempts to minimize the sum of the maximal edge weight picked from every given
color. In particular, when all edges are associated with unit weights, a problem of this nature
reduces to that of constructing subgraphs satisfying a required property while minimizing
the number of colors used. Some properties that have recently been studied in this context
include spanning trees [11, 8, 10, 17], s-t paths [9, 17], and perfect matchings [23].

2 Fixed Number of Colors: Hardness Results

2.1 Weak NP-hardness in bicolored graphs

In what follows, we prove that several weighted labeled bottleneck problems are NP-hard,
even in planar bicolored graphs. As indicated in Subsection 1.1, WL-min-max P is known to
be NP-hard in bicolored graphs [28, 5] for P ∈ {spanning tree, s-t path, perfect matching}.

4



Theorem 2.1. WL-min-max P and WL-max-min P are NP-hard, even in planar bicolored

graphs, for P ∈ {s-t path, s-t cut, perfect matching, spanning tree}.

Proof. We propose a reduction from the partition problem, whose instances consist of a
collection of integers {a1, . . . , an}, and the goal is to decide whether or not there exists a
subset J ⊆ {1, . . . , n} such that

∑

j∈J aj =
∑

j /∈J aj . To this end, for every 1 ≤ i ≤ n

consider a 4-edge cycle on the set of vertices {xi, li, yi, ri}, listed clockwise, with edge colors
L(xi, li) = L(yi, ri) = c1, L(xi, ri) = L(yi, li) = c2, and weights w(xi, li) = w(xi, ri) = ai,
w(yi, li) = w(yi, ri) = 0. These n cycles describe a graph H ′. For the perfect matching case,
we define H = H ′. For the s-t path and spanning tree cases, we construct H from H ′ by
identifying yi and xi+1 to a single vertex (for every 1 ≤ i ≤ n − 1), and setting s = x1,
t = yn. Finally, for the s-t cut case, we construct H from H ′ by deleting the vertex yi along
with the edges (yi, ri) and (yi, li) in each 4-cycle, and identifying r1, . . . , rn to a vertex s, and
l1, . . . , ln to t.

In each of these cases, it is easy to verify that the resulting WL-min-max P instance
has an objective value of at most 1

2

∑n
j=1 aj if and only if there exists J ⊆ {1, . . . , n} with

∑

j∈J aj =
∑

j /∈J aj . Similarly, WL-max-min P has an objective value of at least 1
2

∑n
j=1 aj ,

for P ∈ {s-t path, s-t cut, perfect matching}. Regarding WL-max-min spanning tree, some
edge weights need to be changed: We set w(yi, li) = w(yi, ri) =

∑n
j=1 aj , for every 1 ≤ i ≤ n.

Consequently, the latter problem has an objective value of at least (n + 1
2)

∑n
j=1 aj if and

only if there exists J ⊆ {1, . . . , n} with
∑

j∈J aj =
∑

j /∈J aj .

2.2 Strong NP-hardness for s-t cuts

Aissi, Bazgan and Vanderpooten [4] proved that min-max robust P with a fixed number of
scenarios admits pseudo-polynomial algorithms for s-t paths and spanning trees in general
graphs and for perfect matchings in planar graphs. Since WL-min-max P can be viewed as a
special case of these settings (see Subsection 1.2), it follows that the corresponding min-max
labeled problems have pseudo-polynomial algorithms for a fixed number of colors.

In contrast, we proceed by proving that WL-min-max s-t cut is strongly NP-hard in
bicolored graphs. A similar result was established for bi-criteria s-t cut [25, Thm. 6], and
more recently for min-max robust s-t cut with two scenarios [3, Cor. 1]. Unfortunately, in
their reductions the resulting instances do not correspond to WL-min-max s-t cut instances,
and it appears as if we cannot conclude the result for WL-min-max s-t cut in an obvious
way. However, we can slightly modify the construction of Papadimitriou and Yannakakis
[25].

Theorem 2.2. WL-min-max s-t cut is strongly NP-hard in bicolored graphs.

Proof. We propose a reduction from the bisection width problem. Given a connected graph
G = (V, E) on 2n vertices, a bisection is a cut (V1, V2) of G with |V1| = |V2| = n. The decision
version of bisection width asks to determine, for a given integer k, whether there exists a
bisection with at most k edges. This problem is known to be NP-complete [15] (problem
[ND17], p. 210).

Given an instance of bisection width, as described above, we construct an instance I =
(G′, w,L) of WL-min-max s-t cut, with G′ = (V ′, E′) and L(E′) = {c1, c2}, as follows:

• G′ has two additional vertices, s and t, each of which is connected to every vertex of
G.

• L(s, v) = c1 for every v ∈ V ; all other edges have color c2.
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• w(s, v) = k(n + 1) and w(t, v) = kn for every v ∈ V ; w(e) = n for every original edge
e ∈ E.

We now argue that G has a bisection of size at most k if and only if I has an s-t
cut whose min-max value is at most kn(n + 1). If (V1, V2) is a bisection with at most
k edges, then ({s} ∪ V1, {t} ∪ V2) is an s-t cut in G′ that picks c1-colored edges of total
weight

∑

e∈({s},V2) w(e) = kn(n + 1) and c2-colored edges of total weight
∑

e∈({t},V1) w(e) +
∑

e∈(V1,V2) w(e) = kn2 + kn = kn(n + 1). Conversely, let ({s} ∪ V1, {t} ∪ V2) be an s-t cut

in G′ with min-max value of at most kn(n + 1). Since each c1-colored edge of this cut has a
weight of k(n + 1), it follows that |V2| ≤ n. In addition, the c2-colored edges of this cut have
a total weight of n|E′′| + kn|V1|, where E′′ = (V1, V2), and we conclude that |V1| ≤ n + 1.
Now, if |V1| = n+1 the inequality n|E′′|+kn|V1| ≤ kn(n+1) implies E′′ = ∅, so G is clearly
disconnected (contradicting our initial assumption); thus |V1| ≤ n. Finally, since |V1| ≤ n

and |V2| ≤ n, we have |V1| = |V2| = n, and therefore (V1, V2) is a bisection with at most k

edges.

Theorem 2.3. UL-min-max s-t cut is NP-hard in bicolored graphs.

Proof. To prove the theorem, we show that a ρ-approximation for UL-min-max s-t cut can
be converted in polynomial time into a ρ-approximation for WL-min-max s-t cut when the
edge weights are integers upper bounded by a polynomial in n. The theorem follows from
the combination of this result and Theorem 2.2.

Let I = (G, w,L) be an instance of WL-min-max s-t cut, where G = (V, E) has n vertices
and maxe∈E w(e) = O(nO(1)). We replace each edge e = (u, v) ∈ E by a collection H(e) of
w(e) edge-disjoint paths of length two (connecting u and v), each edge of which is colored
by L(e). The vertices u and v will be called extreme vertices of H(e), whereas other vertices
of H(e) will be called inner vertices. We refer to the resulting UL-min-max s-t cut instance
as I ′ = (G′,L′).

Consider an s-t cut (S′, T ′) in G′, with s ∈ S′ and t ∈ T ′. We iteratively apply the
following procedure for each original edge e ∈ E: If the extreme vertices of H(e) appear in
the same set of the partition, assign all inner vertices of H(e) to that set. These changes
can only decrease the total weight of L(e)-colored edges in the current s-t cut, and therefore
also its min-max value. From the resulting s-t cut (S′, T ′), we can find an s-t cut in G of
identical min-max value by considering (S′ ∩ V, T ′ ∩ V ), the restriction of this cut to G.

3 Fixed Number of Colors: An FPTAS

In what follows, we present a fully polynomial-time approximation scheme for weighted
labeled bottleneck s-t path, spanning tree, and perfect matching, for a fixed number of
colors.

3.1 Approximate Pareto curves

Let P be a property described in Section 1, and consider the multiobjective version of P
(henceforth, MultikP). An instance I of this problem consists of a graph G = (V, E), and
a weight vector w(e) = (w1(e), . . . , wk(e)) for each edge e ∈ E. An edge set E′ ⊆ E forms
a feasible solution to MultikP if it satisfies P, and the objective value of E′ is given by the
vector (

∑

e∈E′ w1(e), . . . ,
∑

e∈E′ wk(e)). In a minimization problem, we say that a solution
E′ is dominated by E′′ if

∑

e∈E′′ wi(e) ≤
∑

e∈E′ wi(e) for every 1 ≤ i ≤ k, and the inequality
is strict for at least one index; the inequalities are reversed for a maximization problem. The
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goal is to compute the Pareto curve C(I), which is the set of all undominated solutions to
I. Finally, an ǫ-approximate Pareto curve for the minimization (respectively, maximization)
version of MultikP is a set Cǫ(I) of solutions such that

1. |Cǫ(I)| is polynomially bounded in terms of the input size and 1
ǫ .

2. For every E∗ ∈ C(I), there exists E′ ∈ Cǫ(I) with
∑

e∈E′ wi(e) ≤ (1 + ǫ)
∑

e∈E∗ wi(e)
for every 1 ≤ i ≤ k (respectively,

∑

e∈E′ wi(e) ≥ (1− ǫ)
∑

e∈E∗ wi(e)).

When k is fixed, Papadimitriou and Yannakakis [25, Cor. 5] proposed an FPTAS for con-
structing ǫ-approximate Pareto curves of multiobjective s-t walk, spanning tree, and perfect
matching.

3.2 The approximation scheme

We now relate the approximability of several weighted labeled bottleneck problems to that of
their multiobjective counterparts. This approach has already been suggested in the context
of robust optimization [21, 2], implying that results similar to those described in the next
theorem can be immediately derived for the min-max variants.

Theorem 3.1. For a fixed number of colors, the efficient construction of an ǫ-approximate

Pareto curve for the maximization version of MultikP implies a (1−ǫ)-approximation to WL-

max-min P. A similar result for the minimization version leads to a (1 + ǫ)-approximation

to WL-min-max P.

Proof. For purposes of brevity, we deal with the maximization setting, noting that the
arguments below can be easily adapted to the corresponding minimization problem. Let
I = (G,L, w) be an instance of WL-max-min P such that L(E) = {c1, . . . , ck}. We construct
an instance I ′ = (G, w′) of MultikP, where the weight vector w′(e) = (w′

1(e), . . . , w
′
k(e))

associated with each edge e ∈ E is defined by setting w′
i(e) = w(e) if L(e) = ci, and

w′
i(e) = 0 otherwise. As a result, the objective vector of a feasible solution E′ to I ′ is given

by (
∑

e∈L1(E′) w(e), . . . ,
∑

e∈Lk(E′) w(e)).
Now let E∗ be an optimal solution to the instance I of WL-max-min P, with an ob-

jective value of OPT(I); if this instance does not have a unique optimal solution, E∗ is
picked so that

∑k
i=1

∑

e∈Li(E∗) w(e) is maximized. Clearly, the Pareto curve C(I ′) contains

E∗. Now, consider an ǫ-approximate Pareto curve Cǫ(I ′) for the maximization version of
MultikP. We pick a solution E′ ∈ Cǫ(I ′) maximizing mini

∑

e∈E′ wi(e) as a solution for
WL-max-min P; since Cǫ(I ′) can be constructed and enumerated in polynomial time, so is
our algorithm. Moreover, by definition of Cǫ(I ′), since E∗ ∈ C(I ′) there exists E′′ ∈ Cǫ(I ′)
satisfying

∑

e∈E′′ wi(e) ≥ (1− ǫ)
∑

e∈E∗ wi(e) for every 1 ≤ i ≤ k. Hence, we conclude that
E′ constitutes a (1− ǫ)-approximation to I, since

min
1≤i≤k

∑

e∈Li(E′)

w(e) ≥ min
1≤i≤k

∑

e∈Li(E′′)

w(e) ≥ (1− ǫ)
∑

e∈Li(E∗)

w(e) = (1− ǫ)OPT(I) .

By combining Theorem 3.1 and the results of Papadimitriou and Yannakakis [25] men-
tioned earlier, Corollary 3.2 follows. However, an important remark is in place. Even though
the algorithm in [25] constructs an ǫ-approximate Pareto curve of multiobjective s-t walk,
note that any such walk can be converted (by eliminating cycles) to an s-t path of no greater
min-max objective value. An analogous claim regarding the max-min version is incorrect.
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Corollary 3.2. For a fixed number of colors, weighted labeled bottleneck spanning tree and

perfect matching admit a fully polynomial-time approximation scheme. A similar result also

holds for WL-min-max s-t path.

4 Arbitrary Number of Colors: Labeled Bottleneck s-t Paths

For a fixed number of colors, UL-min-max s-t path is polynomial time solvable. This claim
follows from the observation that we can decide whether there exists a walk connecting s

and t whose objective value is exactly p ∈ {1, . . . , n−1} by means of dynamic programming.
In contrast, we proceed by showing that both versions of the problem under consideration
become NP-hard for an arbitrary number of colors. We complement these results by devising
efficient approximation algorithms.

4.1 Hardness results

We now derive new inapproximability bounds for both versions of labeled bottleneck s-t
path, in undirected as well as directed graphs. To our knowledge, these results do not follow
from existing work.

Theorem 4.1. UL-min-max s-t path is not (2−ǫ)-approximable for any fixed ǫ > 0, and UL-

max-min s-t path is not approximable at all, unless P=NP. Similar results hold for directed

graphs.

Proof. The oncoming reductions will be based on the set packing and set covering problems.
Given a family of sets S = {S1, . . . , Sm} over a ground set X = {x1, . . . , xn} and an integer k,
the objective of the set packing problem is to decide whether S contains at least k pairwise-
disjoint sets. The set covering problem asks whether X can be covered by at most k sets
in S. Both set packing and set covering are known to be NP-complete [15] (problems [SP3]
and [SP5], p. 221–222).

Given (S, X), we create an instance I = (G,L) of unweighted labeled bottleneck s-t path,
where L has n colors {c1, . . . , cn}. For each set Si = {xi1 , . . . , xip} we define a distinct path
H(Si) consisting of p edges, each given a unique color from {ci1 , . . . , cip}. Now, the graph
G = (V, E) is constructed in the following way:

• Create a path of length k on the vertices v1, . . . , vk+1, in left-to-right order.

• Replace each edge (vj , vj+1) by m paths connecting vj and vj+1; for every 1 ≤ i ≤ m,
the i-th path is a copy of H(Si).

• Finally, set s = v1 and t = vk+1.

It is not difficult to verify that the objective value of the UL-min-max s-t path instance I

is at most 1 if and only if there exists a set packing of size at least k. In addition, the objective
value of the UL-max-min s-t path instance I is at least 1 if and only if there exists a set
covering of size at most k. Thus, we conclude that it is NP-complete to distinguish between
OPT(I) = 1 and OPT(I) ≥ 2 for UL-min-max s-t path, and also between OPT(I) = 0 and
OPT(I) ≥ 1 for UL-max-min s-t path.
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4.2 UL-min-max s-t path: Approximating the undirected case

In what follows, we show how to efficiently construct an undirected s-t path using O(
√

nOPT)
edges from any given color, where n = |V | and OPT denotes the cost of an optimal solution.
An essential building block of our algorithm is a constant-factor approximation for multi-

budget maximum coverage. An instance of this problem consists of a ground set U and a
collection of subsets S ⊆ 2U , which is partitioned into {S1, . . . ,Sr}. Given an integral budget
bt for each part St, the objective is to find a subcollection S ′ ⊆ S such that S ′ picks at most
bt sets from each St and such that the number of elements covered by S ′ is maximized. For
these particular settings, a performance guarantee of 1− 1

e can be achieved by adopting the
maximum coverage heuristic of Ageev and Sviridenko [1, Rem. 2].

The algorithm. For simplicity of presentation, it would be convenient to assume that OPT
is known in advance. Clearly, this assumption can be enforced by testing 1, . . . , n − 1 as
candidate values, and returning the best solution found. We also make use of ∆ = ∆(n, OPT)
as a parameter whose value will be determined later.

1. F ← ∅, H ← G.

2. While distH(s, t) > ∆

(a) Create a multi-budget maximum coverage instance by: The ground set is V (H);
for each edge e ∈ E(H) there is a corresponding subset Ve, consisting of the
endpoints of e; these subsets are partitioned into {S1, . . . ,Sq}, where Si = {Ve :
L(e) = ci}; each Si has a budget of OPT.

(b) Approximate the instance defined above, and let F+ be the collection of edges
e ∈ E(H) for which Ve is picked by the resulting solution.

(c) F ← F ∪ F+, H ← the contraction of F+ in H.

3. Let P be a shortest s-t path in H. Return F ∪ P .

Theorem 4.2. By setting ∆ =
√

nOPT, the subgraph induced by F ∪ P picks at most

5
√

nOPT edges from any given color.

Proof. We begin by showing that, for any value of ∆, step 2 terminates within no more
than 4n

∆ iterations. For this purpose, it is sufficient to prove that the number of vertices
in H decreases by at least ∆

4 whenever an edge set is contracted. Let E∗ ⊆ E be an
optimal solution, with maxi |Li(E

∗)| = OPT, and consider a single iteration. Since the edges
E∗∩E(H) form a subgraph of H containing an s-t path, it follows that {Ve : e ∈ E∗∩E(H)}
is a feasible solution to the multi-budget maximum coverage instance defined in step 2a.
Moreover, as the s-t distance in H is at least ∆, the latter solution satisfies |⋃e∈E∗∩E(H) Ve| ≥
∆. Consequently, for the current F+ we must have |⋃e∈F+ Ve| ≥ (1 − 1

e )∆, implying that
the contraction of F+ decreases the number of vertices by at least 1

2(1− 1
e )∆ > ∆

4 .
Now, starting with an empty set of edges, in each iteration of step 2 we augment F with

an edge set F+ that contains at most OPT edges from each color. Therefore, by setting
∆ =

√
nOPT, the maximum number of edges we pick from any given color is at most

4n

∆
OPT + |P | ≤ 4n

∆
OPT + ∆ = 5

√
nOPT .
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4.3 UL-min-max s-t path: Approximating the directed case

In the following, we demonstrate that ideas similar to those presented in Subsection 4.2 can
be employed to construct a directed s-t path using O(

√
mOPT) arcs from any given color.

Here, m = |E| and OPT denotes the cost of an optimal solution.

The algorithm. Once again, we assume that OPT is known in advance, and let ∆ =
∆(m, OPT) be a parameter whose value will be determined later.

1. F ← ∅, χE\F ← characteristic function of E \ F .

2. While distχE\F
(s, t) > ∆

(a) Create a multi-budget maximum coverage instance by: The ground set is V ; for
each arc e = (u, v) ∈ E \ F there is a corresponding singleton Ve = {v}; these
subsets are partitioned into {S1, . . . ,Sq}, where Si = {Ve : L(e) = ci}; each Si has
a budget of OPT.

(b) Approximate the instance defined above, and let F+ be the collection of arcs
e ∈ E \ F for which Ve is picked by the resulting solution.

(c) F ← F ∪ F+.

3. Let P be a shortest s-t path (with respect to χE\F ). Return P .

Theorem 4.3. By setting ∆ =
√

mOPT, the directed path P traverses at most 3
√

mOPT
arcs from any given color.

Proof. We first demonstrate that step 2 consists of at most 2m
∆ iterations, by showing that

we always have |F+| ≥ ∆
2 . Let P ∗ be an optimal solution, with maxi |Li(P

∗)| = OPT. In
each iteration, {Ve : e ∈ P ∗ \F} is a feasible solution to the multi-budget maximum coverage
instance defined in step 2a. Moreover, as distχE\F

(s, t) > ∆, the latter solution satisfies

|⋃e∈P ∗\F Ve| ≥ ∆. Consequently, we must have |F+| ≥ |⋃e∈F+ Ve| ≥ (1− 1
e )∆ > ∆

2 .
Now, starting with an empty set of arcs, in each iteration of step 2 we augment F

with an arc set F+ that contains at most OPT arcs from each color. Therefore, by setting
∆ =

√
mOPT, the maximum number of edges P traverses from any given color is at most

|F |+ ∆ ≤ 2m

∆
OPT + ∆ ≤ 3

√
mOPT .

5 Arbitrary Number of Colors: Labeled Bottleneck Spanning Trees

In Corollary 3.2 we have shown that, for a fixed number of colors, both versions of weighted
labeled spanning tree admit an FPTAS. In this section, we provide hardness results, exact
algorithms, and approximation algorithms for the general case of an arbitrary number of
colors.

5.1 Hardness results

As indicated in Subsection 1.1, WL-min-max spanning tree is known to be weakly NP-hard
[28]. Here, we show that both weighted labeled bottleneck spanning tree problems are in
fact strongly NP-hard.
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Theorem 5.1. Both weighted labeled bottleneck spanning tree problems are strongly NP-hard

in multigraphs.

Proof. We propose a reduction from 3-partition. The input to this problem consists of
a collection of integers {a1, . . . , a3m}, satisfying σ

4 < ai < σ
2 , where σ = 1

m

∑3m
i=1 ai. The

objective is to decide whether there is a partition of {1, . . . , 3m} into sets S1, . . . , Sm with
∑

i∈Sj
ai = σ for every 1 ≤ j ≤ m. The 3-partition problem is known to be strongly

NP-complete [15] (problem [SP15], p. 224).
Let {a1, . . . , a3m} be an instance of 3-partition. We construct an instance I = (G, w,L)

for both weighted labeled bottleneck spanning tree versions, where L(E) = {c1, . . . , cm} and
G is a graph on the set of vertices u, v1, . . . , v3m. For every 1 ≤ i ≤ 3m, there are m parallel
edges connecting u to vi; each of these edges is given a distinct color in {c1, . . . , cm} and its
weight is set to ai.

The claim follows from the observation that there is a 3-partition of {a1, . . . , a3m} if and
only if the optimal value of the WL-min-max (respectively, max-min) spanning tree instance
is at most σ (respectively, at least σ).

Corollary 5.2. Both weighted labeled bottleneck spanning tree problems are strongly NP-hard

in simple graphs.

Proof. We show how to transform the multigraph defined in the proof of Theorem 5.1 into a
simple graph. For this purpose, for every 1 ≤ i ≤ 3m we split the vertex vi into vi,1, . . . , vi,m

(thereby creating a unique copy for each parallel edge connecting u to vi), add a new vertex
vi,m+1, and add the edges (vi,1, vi,2), . . . , (vi,m, vi,m+1). For every 1 ≤ j ≤ m, the color of
(vi,j , vi,j+1) is set to cj , but its weight depends on the problem in question. For WL-min-max
spanning tree, w(vi,j , vi,j+1) = 0, whereas for the max-min version w(vi,j , vi,j+1) = mσ. In
the former case, the conclusion is identical to that of the original proof. In the latter case,
there is a 3-partition of {a1, . . . , a3m} if and only if the optimal value of the WL-max-min
spanning tree instance is at least (3m2 + 1)σ.

5.2 Exact algorithms

Broersma and Li [8] devised a polynomial-time algorithm based on matroid intersection for
computing a spanning tree using a maximum number of colors. Here, we prove that both
unweighted labeled bottleneck spanning tree problems can also be solved in polynomial time
by utilizing matroid intersection. It is interesting to observe that this result is in contrast to
the weighted case, which was shown to be strongly NP-hard in Corollary 5.2.

Theorem 5.3. UL-max-min spanning tree can be solved to optimality in polynomial time.

Proof. Given an instance (G,L) of UL-max-min spanning tree, with G = (V, E), we may
assume without loss of generality that OPT is known in advance, since we can test 0, . . . , n−1
as candidate values for this parameter, and return the best solution found. Now, since the
optimal tree picks at least OPT edges from every color in L(E) = {c1, . . . , cq}, it follows
that there exists a forest picking exactly OPT edges from any given color. Moreover, such
a forest can be efficiently constructed by computing a maximum cardinality intersection2 of
the matroids M1 and M2, where

• M1 = (E, I1) is the graphic matroid, that is, I1 = {F ⊆ E : F is a forest}.
2See, for example, [22, Chap. 8].
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• M2 = (E, I2) is a partition matroid, with I2 = {F ⊆ E : |Li(F )| ≤ OPT for every 1 ≤
i ≤ q}.

We complete the resulting forest into a spanning tree in an arbitrary way, noting that this
augmentation leaves the objective value unchanged.

Theorem 5.4. UL-min-max spanning tree can be solved to optimality in polynomial time.

Proof. The algorithm for this version is nearly identical to the one given for UL-max-
min spanning tree; however, an important remark is in place. After we “guess” OPT and
compute a maximum cardinality intersection F ⊆ E of M1 and M2, there is no need to
complete the subgraph induced by F into a spanning tree, implying that its objective value
remains unchanged. This claim follows from observing that |F | = |V | − 1, since the edge set
of the optimal spanning tree forms a feasible solution to the matroid intersection problem
we solve.

5.3 WL-min-max spanning tree: A logarithmic approximation

In what follows, we show that a matroid intersection algorithm is not only a useful tool for
solving the unweighted version to optimality; rather, it can also be applied to approximate
the weighted min-max version.

The algorithm. For ease of exposition, we assume without loss of generality that an
estimator of the optimum W ∈ [OPT, 2 · OPT] is known in advance. Otherwise, for every
0 ≤ k ≤ ⌈log nwmax

wmin
⌉, we can test 2kwmin as a candidate value and return the best solution

found, where wmin and wmax denote the minimum and maximum non-zero edge weights,
respectively.

1. Delete all edges of weight greater than W , and define a partition of the undeleted edges
as follows:

(a) For every 1 ≤ i ≤ q and 0 ≤ k ≤ ⌊log n⌋, let Ei,k be the set of edges e with
L(e) = ci and w(e) ∈ ( W

2k+1 , W
2k ].

(b) In addition, let Efree be the set of remaining edges (of weight at most W
n ).

2. By applying a matroid intersection algorithm, find a spanning tree T that picks at
most 2k+1 edges from each Ei,k and any number of edges from Efree. Return T .

Note that the suggested algorithm is well-defined. To establish this claim, it is sufficient
to show that a spanning tree satisfying the constraints of step 2 indeed exists. It is easy to
verify that all edges of the optimal tree T ∗ survive step 1 and that |T ∗ ∩ Ei,k| ≤ 2k+1, or
otherwise there is a color ci from which T ∗ picks edges of total weight strictly greater than
W ≥ OPT.

Theorem 5.5. The edges picked by T from any given color have an overall weight of at most

(4⌊log n⌋+ 6)OPT.
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Proof. Consider some color ci. Then,

∑

e∈Li(T )

w(e) =

⌊log n⌋
∑

k=0

∑

e∈T∩Ei,k

w(e) +
∑

e∈Li(T∩Efree)

w(e)

≤
⌊log n⌋
∑

k=0

(

|T ∩ Ei,k| · max
e∈T∩Ei,k

w(e)

)

+ |T ∩ Efree| · max
e∈T∩Efree

w(e)

≤
⌊log n⌋
∑

k=0

2k+1 W

2k
+ (n− 1)

W

n

≤ (2⌊log n⌋+ 3)W

≤ (4⌊log n⌋+ 6)OPT .

The second inequality holds since |T ∩ Ei,k| ≤ 2k+1 for every 0 ≤ k ≤ ⌊log n⌋, and since
|T ∩ Efree| ≤ n− 1. The last inequality follows from the assumption W ≤ 2 ·OPT.

6 Arbitrary Number of Colors: Labeled Bottleneck Perfect Matchings

In Theorem 2.1 we proved that both versions of weighted labeled bottleneck perfect matching
are NP-hard in bicolored graphs. In this section, we provide hardness of approximation
results.

Theorem 6.1. UL-max-min perfect matching is not approximable at all, unless P=NP, even

in planar bipartite graphs.

Proof. We describe a reduction from (3, B2)-SAT. An instance (C, X) of this problem con-
sists of a collection C = (C1, . . . , Cm) of m clauses of size exactly 3 over the set X =
{x1, . . . , xn} of boolean variables, such that every variable occurs exactly twice positively
and twice negatively. The objective is to decide whether there exists a truth assignment that
satisfies all clauses. This problem was shown to be NP-complete by Berman, Karpinski and
Scott [6, Thm. 1].

Given an instance I = (C, X) of (3, B2)-SAT, as described above, we construct an instance
I ′ = (G,L) of UL-max-min perfect matching, where G = (V, E) is a collection of n vertex-
disjoint cycles of length 4 and L(E) = {c1, . . . , cm}:

1. Each variable xi has its own cycle of length 4, to which we refer as H(xi).

2. Now let {Cj1 , Cj2} ⊆ C be the clauses in which xi appears in positive form, and
{Cj3 , Cj4} ⊆ C be those in which it appears in negative form. Then, the edges of H(xi)
are colored by cj1 , cj3 , cj2 , cj4 (clockwise).

This construction guarantees that the edges with colors corresponding to clauses con-
taining the literal xi form a matching in H(xi), and so do the edges corresponding to clauses
containing x̄i. Consequently, the original instance I is satisfiable if and only if there exists a
perfect matching M in G using each color at least once. We conclude that it is NP-hard to
distinguish between UL-max-min perfect matching instances of objective values 0 and 1.

We now present an approximation-preserving reduction from UL-min-max directed s-t
path to UL-min-max perfect matching. By combining this result with Theorem 4.1, we
derive new inapproximability results for the latter problem.
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Theorem 6.2. UL-min-max perfect matching is not (2−ǫ)-approximable for any fixed ǫ > 0,
unless P=NP, even in bipartite graphs.

Proof. Since Theorem 4.1 establishes, for any fixed ǫ > 0, a lower bound of 2 − ǫ on
the approximability of UL-min-max directed s-t path, it is sufficient to show that a ρ-
approximation for this problem will be implied by the existence of a ρ-approximation for
UL-min-max perfect matching in bipartite graphs.

Given an instance I = (G, s, t,L) of UL-min-max directed s-t path, we transform it
into an instance I ′ = (G′,L′) of UL-min-max perfect matching, where G′ is an undirected
bipartite graph. The latter is created by splitting each vertex v ∈ V \ {s, t} to vin and vout,
followed by adding the edge (vin, vout). We also cancel the orientation, and replace each arc
by a corresponding edge of identical color. Finally, each new edge of the form (vin, vout) is
given a unique color, c′v.

We first claim that OPT(I ′) ≤ OPT(I). To this end, consider a directed path 〈s =
v1, v2, . . . , vk = t〉 that constitutes an optimal solution to I. Then, by picking the union
of {(vi

out, v
i+1
in ) : 1 ≤ i ≤ k − 1} and {(vin, vout) : v ∈ V \ {v1, . . . vk}} we obtain a perfect

matching in G′ whose objective value is exactly OPT(I). Consequently, it remains to show
that, given a perfect matching M in G′, we can efficiently find a directed s-t path in G

whose objective value does not exceed that of M . The reduction described above guarantees
that there exists a collection of vertices VM ⊆ V such that M consists of an edge set
{(vin, vout) : v ∈ VM} and an edge set {(uout, vin) : u, v ∈ V \VM}. It is not difficult to verify
that the latter set induces a directed s-t path in G (and quite possibly one or more directed
cycles). The objective value of this path is upper bounded by that of M .

7 Arbitrary Number of Colors: Labeled Bottleneck s-t Cuts

In Theorem 2.2, we proved that WL-min-max s-t cut is strongly NP-hard. However, careful
examination reveals that the instances resulting from our reduction are not necessarily planar.
Since the maximum s-t cut problem is polynomially solvable in planar graphs [24, 16], it is
of interest to show that the former problem remains computationally intractable in such
graphs. We also provide new inapproximability results for UL-max-min s-t cut.

Theorem 7.1. UL-min-max s-t cut is not (2 − ǫ)-approximable in planar graphs for any

fixed ǫ > 0, unless P=NP.

Proof. We propose a reduction from the set packing problem, whose definition is given in
Theorem 4.1. Let I = (S, X, k) be a set packing instance, where S = {S1, . . . , Sm} is a
family of sets over a ground set X = {x1, . . . , xn}. We define an instance of UL-min-max
s-t cut, consisting of a planar graph G = (V, E) whose edges are given colors from the set
{c0, c1, . . . , cn}. The graph G is initially a collection of k interior-disjoint paths P1, . . . , Pk

connecting s to t, each of length m. Then, for each path Pi, we perform the following
modification: For every 1 ≤ j ≤ m, the j-th edge ej = (x, y) of Pi is replaced by a collection
of |Sj | interior-disjoint paths of length 2 connecting x to y; letting Sj = {xj1 , . . . , xjp}, we
spread the colors {cj1 , . . . , cjp} on the first edges of these |Sj | paths, and set the color of
their second edges to c0. The theorem follows from the observation that I has a set packing
of size at least k if and only if the objective value of the newly defined UL-min-max s-t cut
instance is at most 1.

Theorem 7.2. UL-max-min s-t cut is not approximable at all in planar multigraphs, unless

P=NP.
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Proof. We describe a reduction from the satisfiability problem, whose instances consist of a
collection C = (C1, . . . , Cm) of clauses over a set X = {x1, . . . , xn} of boolean variables. The
goal is to decide whether there is a truth assignment that satisfies all clauses. This problem
is known to be NP-complete [15] (problem [LO1], p. 259).

We construct an instance of UL-max-min s-t cut, where G = (V, E) and L(E) =
{c1, . . . , cm}. The set of vertices is V = {s, t, v1, . . . , vn}, and there are ni (respectively,
n̄i) parallel edges joining s (respectively, t) and vi, where ni (respectively, n̄i) is the number
of xi (respectively, x̄i) occurrences. Finally, the colors of these edges are given by the clauses
containing xi (respectively, x̄i). It is not difficult to verify that I is satisfiable if and only if
there exists an s-t cut in G whose objective value is at least 1.

Acknowledgments. We thank Shlomi Rubinstein for suggesting the reduction in Theorem
4.1, which simplified our original proof.
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