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Abstract

In this paper, we introduce the exact weighted independent set problem (EWIS), the
problem of determining whether a given weighted graph contains an independent set of
a given weight. Our motivation comes from the related exact perfect matching problem,
whose computational complexity is still unknown. We determine the complexities of the
EWIS problem and its restricted version EWISα (where the independent set is required to
be of maximum size) for several graph classes. These problems are strongly NP-complete
for cubic bipartite graphs; we also extend this result to a more general setting. On the
positive side, we show that EWIS and EWISα can be solved in pseudo-polynomial time
for chordal graphs, AT-free graphs, distance-hereditary graphs, circle graphs, graphs of
bounded clique-width, and several subclasses of P5-free and fork-free graphs. In particu-
lar, we show how modular decomposition can be applied to the exact weighted independent
set problem.

Keywords: exact weighted independent set, NP-complete, pseudo-polynomial algo-
rithm, modular decomposition.

1 Introduction

Suppose we have a well-solved optimization problem, such as minimum spanning tree, maxi-
mum cut in planar graphs, minimum weight perfect matching, or maximum weight independent
set in a bipartite graph. How hard is it to determine whether there exists a solution with a
given weight? Papadimitriou and Yannakakis showed in [42] that these so-called exact ver-
sions of the above optimization problems are NP-complete when the weights are encoded in
binary. The question is then, what happens if the weights are “small,” i.e., encoded in unary?
Contrary to the binary case, the answer to this question depends on the problem.

• The exact spanning tree problem, and more generally, the exact arborescence problem
are solvable in pseudo-polynomial time [5].

• The exact cut problem is solvable in pseudo-polynomial time for planar and toroidal
graphs [5].

• The exact perfect matching problem is solvable in pseudo-polynomial time for planar
graphs [5], and more generally, for graphs that have a Pfaffian orientation (provided
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one is given).1 Karzanov [30] gives a polynomial-time algorithm for the special case
of the exact perfect matching problem, when the graph is either complete or complete
bipartite, and the weights are restricted to 0 and 1. Papadimitriou and Yannakakis show
in [42] that the problem for general (or bipartite) graphs with weights encoded in unary is
polynomially reducible to the one with 0-1 weights. Mulmuley, Vazirani and Vazirani [38]
show that the exact perfect matching problem has a randomized pseudo-polynomial-time
algorithm. However, the deterministic complexity of this problem remains unsettled,
even for bipartite graphs. (Papadimitriou and Yannakakis conjectured that it is NP-
complete [42].)

The exact perfect matching problem is of great practical importance. It has applications
in such diverse areas as bus-driver scheduling, statistical mechanics (see [31]), DNA sequenc-
ing [7], and robust assignment problems [21]. The problem consists of determining whether
a given edge weighted graph contains a perfect matching of a given weight. The fact that
its complexity is still unknown motivates us to introduce and study the exact weighted inde-
pendent set problem and a restricted version of it, both closely related to the exact perfect
matching problem.

An independent set (sometimes called stable set) in a graph is a set of pairwise non-adjacent
vertices. The weighted independent set problem (WIS) asks for an independent set of maxi-
mum weight in a given weighted graph (G, w). If all weights are the same, we speak about the
independent set problem (IS), which consists in finding an independent set of maximum car-
dinality. The optimal values of these problems are denoted by αw(G) and α(G), respectively.

The exact weighted independent set problem (EWIS) consists of determining whether a
given weighted graph (G, w) with G = (V, E) and w : V → Z contains an independent set
whose total weight (i.e., the sum of the weights of its members) equals a given integer M . The
exact weighted maximum independent set problem (EWISα) is the restriction of EWIS where
we require the independent set to be a maximum independent set of the graph. Thus, given a
weighted graph (G, w) and an integer M , EWISα asks about the existence of an independent
set I of G with |I| = α(G) and w(I) = M .

The connection between the exact perfect matching problem and the exact weighted inde-
pendent set problem is best understood through line graphs. The line graph L(G) of a graph
G = (V, E) is the graph whose vertex set is E, and whose two vertices are adjacent if and
only if they share a common vertex as edges of G. Clearly, there is a one-to-one correspon-
dence between the matchings of a graph and the independent sets of its line graph. Thus, the
exact matching problem is precisely the exact weighted independent set problem, restricted
to the class of line graphs. Similarly, under the (polynomially verifiable) assumption that
the input graph has a perfect matching, the exact perfect matching problem is precisely the
exact weighted maximum independent set problem, restricted to the class of the line graphs
of graphs with a perfect matching.

Our contributions. We focus on the problem of determining the complexities of EWIS

and EWISα for particular graph classes. On one hand, we present the first nontrivial strong
NP-completeness result for these problems. On the other hand, we distinguish several classes
of graphs they can be solved in pseudo-polynomial time.

The main results of this paper can be summarized in the spirit of the above list of com-
plexity results on exact problems:

• The exact weighted independent set and the exact weighted maximum independent set

1Bipartite graphs with a Pfaffian orientation have been characterized in [49], where a polynomial-time
recognition algorithm is also presented.
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problems are strongly NP-complete for cubic bipartite graphs.2

• The exact weighted independent set and the exact weighted maximum independent set
problems are solvable in pseudo-polynomial time for any of the following graph classes:

– mK2-free graphs,

– interval graphs and their generalizations k-thin graphs,

– chordal graphs,

– AT-free graphs, and

– (claw ,net)-free graphs,

– distance-hereditary graphs,

– circle graphs,

– graphs of bounded treewidth,

– graphs of bounded clique-width,

– certain subclasses of P5-free and fork-free graphs.

Of independent interest, we show how modular decomposition can be applied to the exact
weighted independent set problem.

Note that in view of the relation between the exact perfect matching problem and the
exact weighted maximum independent set problem, each of the above polynomial results
also gives a polynomial result for the exact perfect matching problem. Whenever EWISα

is (pseudo-)polynomially solvable for a class of graphs G, the exact perfect matching problem
is (pseudo-)polynomially solvable for graphs in the set {G : L(G) ∈ G}. For example,

• The exact perfect matching problem is solvable in pseudo-polynomial time for graphs of
bounded treewidth.

Notation and organization. All graphs considered are finite, simple and undirected. Unless
otherwise stated, n and m will denote the number of vertices and edges, respectively, of the
graph considered. As usual, Pn and Cn denote the chordless path and the chordless cycle on
n vertices. For a graph G, we will denote by V (G) and E(G) the vertex-set and the edge-
set of G, respectively. Individual edges will be denoted by square brackets: an edge with
endpoints u and v will be denoted by [u, v]. For a vertex x in a graph G, we denote by
NG(x) the neighborhood of x in G, i.e., the set of vertices adjacent to x, and by NG[x] the
closed neighborhood of x, i.e., the set NG(x) ∪ {x}. We will write N(x) and N [x] instead of
NG(x) and NG[x] if no confusion can arise. For a graph G, we denote by co-G (also G) the
edge-complement of G. By Kn we denote the complete graph on n vertices, and by Ks,t the
complete bipartite graph with parts of size s and t. By component we will always mean a
connected component. For graph-theoretical terms not defined here, the reader is referred to
Berge’s book [6].

The triple (G, w, M) will always represent an instance of EWIS (or EWISα), i.e., G =
(V, E) is a graph, w : V → Z are vertex weights, and M ∈ Z is the target weight. If H is
an induced subgraph of G, we will also consider triples of the form (H, w, M) as instances
of EWIS, with the weights w representing the restriction of w to V (H). We will denote by
EWIS(G, w, M) the solution to the instance (G, w, M) of EWIS, that is, EWIS(G, w, M)
is yes if there is an independent set I in G with w(I) = M , and no otherwise. Similarly,
EWISα(G, w, M) is yes if there is a maximum independent set I in G with w(I) = M , and no

2We also strengthen this result considerably, however we postpone the detailed formulation until Section 3.2.
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otherwise. Finally, for a subset of vertices V ′ ⊆ V , we let w(V ′) =
∑

v∈V ′ w(v). For a positive
integer k, we write [k] for the set {1, . . . , k}.

The remainder of the paper is organized as follows. In Section 2, we continue the intro-
ductory discussion and present some polynomial preprocessing steps that simplify the input
and which we will later on assume performed. We also discuss some relations between the
complexities of the problems WIS, EWIS and EWISα. Section 3 is devoted to the strong
NP-completeness results. In Section 4, pseudo-polynomial time solutions to the exact weighted
independent set problem are presented. We conclude the paper with a short discussion in Sec-
tion 5 that places the class of line graphs of bipartite graphs between two graph classes with
known complexities of the EWISα problem.

2 Preliminary observations

The exact weighted independent set problem is (weakly) NP-complete for any class of graphs
containing {Kn : n ≥ 0}. There is a direct equivalence between the exact weighted independent
set problem on {Kn : n ≥ 0} and the subset sum problem, which is known to be NP-complete
(see [25]). The subset sum problem is the following: given n integers a1, . . . , an and a bound
B, determine whether there is a subset J ⊆ [n] such that

∑

j∈J aj = B.

Hence, we will assume from now on that the weights are encoded in unary. Moreover,
if (G, w, M) is an instance of EWIS, we can further assume that 1 ≤ w(v) ≤ M , for all
v ∈ V = V (G), as well as M ≤ w(V ). To see this, we first show that the general case
polynomially reduces to solving the problem on n instances with positive weights.

Solving the EWIS problem for any particular instance reduces to solving n problems
EWISk, in which the independent sets are restricted to be of size k, for all k ∈ [n] (unless
M = 0, in which case the solution is trivial). The weights in EWISk can be assumed to be
positive: otherwise, we can add a suitably large constant N to each vertex weight and replace
M by M + kN to get an equivalent EWISk problem with positive weights only. Finally,
applying the same transformation again with N = w(V )+ 1 reduces the problem EWISk to a
single EWIS problem with positive weights. Repeating this for all values of k ∈ [n], the result
follows.

Finally, if all vertex weights are positive, we can delete from the graph all vertices whose
weight exceeds M , as they will never appear in a solution. Similarly, if M > w(V ), then the
problem clearly has a negative answer.

The same assumption on vertex weights as for EWIS can also be made for the instances
(G, w, M) of its restricted counterpart EWISα. Again, if some of the weights are negative, we
can modify the weights and the target value as we did above for EWISk. Now we only do it
for k = α(G). Note that we can compute α(G) as that only p ∈ [n] such that the solution to
EWISα(G,1, p) is yes, where 1 denotes the unit vertex weights.

We now discuss some relations between the complexities of the problems WIS, EWIS and
EWISα, when restricted to particular graph classes.

Lemma 2.1. Let G be a class of graphs. The following statements are true.
(i) If EWISα is solvable in pseudo-polynomial time for graphs in G, then WIS is solvable in
pseudo-polynomial time for graphs in G.
(ii) If EWIS is solvable in pseudo-polynomial time for graphs in G, then EWISα is solvable
in pseudo-polynomial time for graphs in G.
(iii) Let G′ = {G′ : G ∈ G} where G′ = (V ′, E′) is the graph, obtained from a graph
G = (V, E) ∈ G, by adding pendant vertices, as follows: V ′ = V ∪ {v′ : v ∈ V }, E′ =
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E ∪ {[v, v′] : v ∈ V }. If EWISα is solvable in pseudo-polynomial time for graphs in G′, then
EWIS is solvable in pseudo-polynomial time for graphs in G.

Proof. (i) Let (G, w, k) be an instance of the decision version of the weighted independent set
problem. As we can assume positive weights, G contains an independent set of total weight
at least k if and only if G contains a maximum independent set of total weight at least k. By
testing values for M from w(V ) down to k and using an algorithm for EWISα on the instance
(G, w, M), we can decide whether G contains a maximum independent set of total weight at
least k.

(ii) Let (G, w, M) be an instance of the EWISα problem. It is easy to see that the following
algorithm solves EWISα.
Step 1. Compute α(G), which is equal to the maximum k ∈ [n] such that the solution to
EWIS(G,1, k) is yes, where 1 denotes the unit vertex weights.
Step 2. Let N = w(V ) + 1. For every vertex v ∈ V (G), let w′(v) = w(v) + N . Let M ′ =
M + α(G)N . Then it is easy to verify that EWISα(G, w, M) = EWIS(G, w′, M ′).

(iii) Let (G, w, M) with G = (V, E) ∈ G be an instance of EWIS. Let G′ be the graph, defined
as in the lemma. Let n = |V | and let w′(v) = (n+1)w(v) for all v ∈ V and w′(v) = 1 for v ∈ V ′.
Then, it is easy to verify that the solution to EWIS(G, w, M) is yes if and only if the solution
to EWISα(G′, w′, M ′) is yes for some value M ′ in the set {(n+1)M, . . . , (n+1)M +n−1}.

The problem EWIS is clearly in NP, and so is EWISα for any class of graphs G where IS

is polynomially solvable. Therefore, Lemma 2.1 implies the following result.

Corollary 2.2. Let G be a class of graphs. The following statements are true.
(i) If WIS is strongly NP-complete for graphs in G, then EWISα is strongly NP-hard for
graphs in G. If, in addition, IS is polynomial for graphs in G, then EWISα is strongly NP-
complete for graphs in G.
(ii) If EWISα is strongly NP-hard for graphs in G, then EWIS is strongly NP-complete for
graphs in G.
(iii) Let G′ be as in Lemma 2.1. If EWIS is strongly NP-complete for graphs in G, then
EWISα is strongly NP-hard for graphs in G′. If, in addition, IS is polynomial for graphs in
G′, then EWISα is strongly NP-complete for graphs in G′.

Thus, we are mainly interested in determining the complexity (strong NP-complete or
pseudo-polynomial results) of the exact weighted independent set problem in those classes of
graphs where the weighted independent set problem is solvable in pseudo-polynomial time.
Moreover, combining parts (ii) and (iii) of the lemma shows that when G ∈ {forests, bipartite
graphs, chordal graphs}, the problems EWIS and EWISα are equivalent (in the sense that,
when restricted to the graphs in G, they are either both solvable in pseudo-polynomial time,
or they are both strongly NP-complete). Recall that a graph G is a forest if it is acyclic,
bipartite if any cycle of G has even length, and chordal if any cycle of G with size at least 4
has a chord (i.e., an edge connecting two nonconsecutive vertices of the cycle).

We conclude this subsection by showing that this equivalence remains valid for the class
of line graphs. More precisely, if L, L(Bip), L(K2n) and L(Kn,n) denote the classes of line
graphs, line graphs of bipartite graphs, line graphs of complete graphs with an even number
of vertices, and line graphs of complete balanced bipartite graphs, respectively, we have the
following result.

Lemma 2.3. EWIS is strongly NP-complete for graphs in L (resp., L(Bip)) if and only if
EWISα is strongly NP-complete for graphs in L(K2n) (resp., L(Kn,n)).
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Proof. The backward implication is given by part (ii) of Lemma 2.1. The forward implication
follows from a reduction of the exact matching problem to the exact perfect matching problem
which we show now. Given an instance G = (V, E) with edge weights w and a target M for the
exact matching problem, construct an instance (Kn′ , w′, M ′) for the exact perfect matching
problem as follows. If n = |V | is odd, we add a new vertex and we complete the graph G. For
an edge e of G, let w′(e) = Nw(e) where N = w(E) + 1, for an edge e /∈ E let w′(e) = 1. The
transformation is clearly polynomial, and G has a matching of weight M if and only if Kn′

has a perfect matching of weight NM + k for some value of k ∈ {0, . . . , n− 1}. Also, it is easy
to see that in the case of bipartite graphs G = (L, R; E) with |L| ≤ |R|, we can add |R \ L|
vertices to L to balance the bipartition.

3 Hardness results

The weighted independent set problem is solvable in polynomial time for bipartite graphs by
network flow techniques. However, as we show in this section, the exact version of the problem
is strongly NP-complete even for cubic bipartite graphs.

3.1 Bipartite graphs

A bipartite graph is a graph G = (V, E) whose vertex set admits a partition V = L ∪ R into
the left set L and the right set R such that any edge of G links a vertex of L to a vertex of
R. In general, a bipartite graph may admit several such partitions. Since we only consider
connected bipartite graphs (which have a unique such partition, up to switching the parts),
we will also write G = (L, R; E).

The strong NP-completeness of EWIS in bipartite graphs is straightforward since the
balanced biclique problem (also called balanced complete bipartite subgraph) is NP-complete
[25, 20]. This problem consists in deciding, given a bipartite graph G = (L, R; E) and an
integer k, if there exist L′ ⊆ L and R′ ⊆ R with |L′| = |R′| = k such that the subgraph
induced by L′ ∪ R′ is a complete bipartite subgraph (also called biclique of size k). In [20],
a variation of this latter problem is introduced where we must have |L′| = a and |R′| = b
(called the biclique problem). From an instance G and k of balanced biclique, we introduce
weight 1 on each vertex of L, weight B = max{|L|, |R|} + 1 on each vertex of R, and we set
M = k + Bk. It is clear that there exist an independent set in (L, R; (L×R) \E) with weight
M if and only if there exists a balanced biclique in (L, R; E) of size k.

We now strengthen this result by proving that EWISα is strongly NP-complete even for
cubic bipartite graphs. By contrast, it is easy to see that for graphs of maximum degree 2,
EWIS and EWISα are pseudo-polynomially solvable problems.3

Theorem 3.1. EWISα is strongly NP-complete in cubic bipartite graphs.

Proof. The problem is clearly in NP, as the IS problem is solvable in polynomial time for
bipartite graphs. The hardness reduction is made from the decision version of the clique
problem in regular graphs which is known to be NP-complete, see [25]. A clique V ∗ is a
subset of vertices of G such that the subgraph induced by V ∗ is complete. Let G = (V, E) be a
∆-regular graph of n vertices and let k be an integer. Without loss of generality, assume that
0 < k < ∆ < n − 1, since otherwise the problem is easy. We build the instance I = (G′, w) of
EWISα where G′ = (L, R; E′) is a bipartite graph as follows:

3Every connected graph in this class is either a cycle or a path, and the treewidth of such graphs is at most 2.
By Corollary 4.2 and Theorem 4.18 from Section 4, the problem is solvable in pseudo-polynomial time in this
class.
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Figure 1: The gadget H(v).

l2,e
e

l1,e

r1,e

r2,e

Figure 2: The gadget H(e).

• For each vertex v ∈ V , we construct a gadget H(v) which is a cycle of length 2∆. Thus,
it is a bipartite graph where the left set is Lv = {l1,v, . . . , l∆,v} and the right set is
Rv = {r1,v, . . . , r∆,v}. The weights are w(li,v) = 1 and w(ri,v) = n∆(2+n∆

2 ) for i ∈ [∆].
The gadget H(v) is illustrated with Figure 1.

• For each edge e ∈ E, we construct a gadget H(e) which is also a cycle of length 4.
Thus, it is a bipartite graph where the left set is Le = {l1,e, l2,e} and the right set is

Re = {r1,e, r2,e}. The weights are w(li,e) = (n∆)
2 and w(ri,e) = (n∆)2

2 (2+n∆
2 ) for i = 1, 2.

The gadget H(e) is illustrated with Figure 2.

• We interconnect these gadgets by iteratively applying the following procedure. For each
edge e = [u, v] ∈ E, we add two edges [ri,u, l1,e] and [li,u, r1,e] where li,u is a neighbor of
ri,u in H(u) between gadgets H(u), H(e) and two edges [rj,v, l2,e] and [lj,v, r2,e] where
lj,v is a neighbor of rj,v in H(v) between gadgets H(v), H(e) such that the vertices ri,u,
li,u, rj,v and lj,v have degree 3.

It is clear that G′ is bipartite and the weights are polynomially bounded. Moreover, since
G is a ∆-regular graph, we conclude that G′ is 3-regular.

We claim that there exist a clique V ∗ of G with size at least k if and only if EWISα(G′, w, M)
is yes with

M = k∆ + n∆
k(k − 1)

2
+ n∆(

2 + n∆

2
)

(

(n − k)∆ + (
n∆

2
−

k(k − 1)

2
)n∆

)

.

Let I be a maximum independent set of G′ with w(I) = M . Since G′ is cubic and bipartite,
G′ has a perfect matching (for instance, take a perfect matching in each gadget H(v) and H(e)),
and we conclude that α(G) = |I| = |R| = |L|. This implies in particular that for any vertex
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v ∈ V , either Lv or Rv is a subset of I. Moreover, the same property holds for any e ∈ E (i.e.,
either Le or Re is a subset of I). Moreover, by construction of the weights, the quantity k∆
of M must come from vertices li,v, ri,v or li,e. Since k < n, this quantity cannot come from
ri,v. Moreover, since li,e ∈ I if and only if Le ⊆ I, the contribution of Le in I is n∆. In this
case, the contribution of k∆ must come from li,v. Thus, we obtain:

|I ∩ LV | = k∆ , |I ∩ RV | = (n − k)∆. (1)

where LV = ∪v∈V Lv and RV = ∪v∈V Rv. Thus, using (1) we must obtain:

w (I ∩ (LE ∪ RE)) = n∆
k(k − 1)

2
+ n∆(

2 + n∆

2
)(

n∆

2
−

k(k − 1)

2
)n∆. (2)

where LE = ∪e∈ELe and RE = ∪e∈ERe. Now, we prove that there are exactly k(k−1
2 )

gadgets H(e) with Le ⊆ I. Assume the reverse; then, |I ∩LE | = k(k − 1)− 2p and |I ∩RE | =
n∆ − k(k − 1) + 2p for some p 6= 0 (p can be negative). Combining these equalities with
equality (2), we deduce that p = 0, contradiction.

Thus, if we set V ∗ = {v ∈ V : Lv ⊆ I}, we deduce from previously |V ∗| = k and we will
have necessarily that V ∗ is a clique of G.

Conversely, let V ′ be a clique of G with |V ′| ≥ k and consider a subclique V ∗ ⊆ V ′ of size
exactly k. We set S = SL∪SR with SL = ∪v∈V ∗Lv∪e∈E(V ∗)Le and SR = ∪v∈V \V ∗Rv∪e∈E\E(V ∗)

Re. One can easily verify that w(I) = M and that I is a maximum independent set of G′.
Indeed, let us assume the converse; thus, there exist ri,v ∈ I (and thus Rv ⊆ I), lj,e ∈ I (with
j = 1, 2) and [ri,v, lj,e] ∈ E′. By construction of I, we deduce that e = [u, v] ∈ E(V ∗) and then
Lv ⊆ I, contradiction. The proof is complete.

As corollary of Theorem 3.1, we can derive that the biclique problem remains NP-complete
when the minimum degree of G = (L, R; E) is n − 3 where |L| = |R| = n. In this case, we
replace any gadget H(e) of Theorem 3.1 by a cycle of length 2n∆ and we delete edges [li,u, r1,e]
and [lj,v, r2,e].

We also remark that Theorem 3.1 implies the strong NP-completeness of EWISα for
perfect graphs, one of the well-known classes where WIS is solvable in polynomial time.

3.2 A more general hardness result

In this section, we are going to strengthen the result of Theorem 3.1 to a more general setting:
for hereditary subclasses of bipartite graphs in which no vertex degree exceeds 3.4 To this
end, we first introduce some notations. We will denote the class of graphs containing no
induced subgraphs from a set F by Free(F). Any graph in Free(F) will be called F-free.
Our hardness results will be expressed in terms of a parameter related to the set of forbidden
induced subgraphs F .

For i ≥ 1, let Hi denote the graph depicted on Figure 3 and for i ≥ 3, let Ci denote the
chordless cycle of length i. We associate to every graph G a parameter κ(G). If G has a vertex
of degree 4 or more, we define κ(G) to be 0. Otherwise, let κ(G) denote the minimum value
of k ≥ 3 such that G contains an induced copy of either Ck or Hk (or ∞ if no such k exists,
and with the obvious convention that no graph contains an induced C1 or C2). Also, for a
(possibly infinite) set of graphs F , we define κ(F) = sup{κ(G) : G ∈ F}.

With these definitions in mind, we can use the strong NP-hardness of EWISα for bipartite
graphs of degree at most 3, and the reduction typically used for the independent set problem
(see e.g. [39, 43]), to derive the following hardness result.

4A class of graphs is hereditary if it is closed under vertex deletion.
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Figure 3: The graph Hi

Theorem 3.2. Let G be the class of F-free bipartite graphs of maximum degree at most 3. If
κ(F) < ∞, then EWISα is strongly NP-complete in the class G.

Proof. The problem is clearly in NP. We show completeness in two steps. First, for k ≥ 3, let
Sk be the class of all bipartite (C3, . . . , Ck, H1, . . . , Hk)-free graphs of vertex degree at most 3,
and let us show that for any fixed k, the problem is strongly NP-complete for graphs in Sk.
Let (G, w, M) be an instance of EWISα where G is a bipartite graph of maximum degree at
most 3.

We can transform the graph G in polynomial time to a weighted graph G′, as follows. Let
k′ = ⌈k

2⌉. We replace each edge e of G by a path P (e) on 2k′ + 2 vertices. Let N = w(V ) + 1.
We set the weights w′ of the endpoints of P (e) equal to the weights of the corresponding
endpoints of e, while each internal vertex of P (e) gets weight N . It is easy to verify that G′

belongs to Sk.

We claim that the answer to EWISα(G, w, M) is yes if and only if the answer to EWISα(G′, w′, M+
mk′N) is yes, where m = |E(G)|.

One direction is immediate, as each maximum independent set of G can be extended to
a maximum independent set of G′, by simply adding k′ internal vertices of each newly added
path. Doing so, the weight increases by mk′N .

Suppose now that the answer to EWISα(G′, w′, M + mk′N) is yes. Let I ′ be a maximum
independent set of G′ of weight M + mk′N . Since I ′ is independent, it can contain at most
k′ internal vertices of each newly added path. Therefore, for each e ∈ E(G), the set I ′

must contain exactly k′ internal vertices of P (e) – otherwise its weight would be at most
W + (mk′ − 1)N , contradicting our choice of N .

Let I denote the set, obtained from I ′ by deleting the internal vertices of newly added
paths. Then, I is an independent set of G. Indeed, if e = [u, v] ∈ E(G) for some u, v ∈ I, then
I ′ can contain at most k′ − 1 internal vertices of P (e), contradicting the above observation.
Also, it is easy to see that I is a maximum independent set of G. Finally, as the weight of I
is exactly M , we conclude that the answer to EWISα(G, w, M) is yes.

This shows that EWISα is strongly NP-complete in the class Sk. To prove strong NP-
completeness of the problem in the class G, we now show that the class G contains all graphs
in Sk, for k := max{3, κ(F)}. Let G be a graph from Sk. Assume that G does not belong
to G. Then G contains a graph A ∈ F as an induced subgraph. From the choice of G we know
that A belongs to Sk, but then k < κ(A) ≤ κ(F) ≤ k, a contradiction. Therefore, G ∈ G and
the theorem is proved.
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4 Polynomial results

In this section, we present pseudo-polynomial solutions to the exact weighted independent set
problem, when the input graphs are restricted to particular classes.5 Our algorithms mostly
resemble those for the WIS problem in respective graph classes, and are based either on a
dynamic programming approach (Section 4.1), or on modular decomposition (Section 4.2).
Often, the solutions will be described using the following pseudo-polynomially equivalent ver-
sion of EWIS: given a weighted graph and a target M , compute all M instances of EWIS

with varying target. That is, the output is given by the vector (EWIS(G, w, k) : k ∈ [M ]) in
{yes, no}[M ].

First, we show that without loss of generality, we may restrict our attention to connected
graphs. To do so, we recall the subset sum problem, a typical example of an NP-complete
problem that can be solved in pseudo-polynomial time by dynamic programming.

SUBSET SUM
INSTANCE: Positive integers a1, . . . , an, b.
QUESTION: Is there a subset S of [n] such that

∑

i∈S ai = b?

We consider the following generalization of the subset sum problem.

GENERALIZED SUBSET SUM (GSS)
INSTANCE: Nonempty sets of positive integers A1, . . . , An and a positive integer b.
QUESTION: Is there a nonempty subset S of [n] and a mapping a : S → ∪i∈SAi such that
a(i) ∈ Ai for all i ∈ S, and

∑

i∈S a(i) = b?

It is straightforward to extend the dynamic programming solution for subset sum to one
for generalized subset sum.

Lemma 4.1. Generalized subset sum can be solved in time O(nb2) by dynamic programming.

Proof. We are going to show a stronger statement: in the stated time, not only we can verify
if there is an S and an a such that

∑

i∈S a(i) = b for the given b, but we will generate the set
B of all values b′ ∈ [b] with such property.

The proof is by induction on n. The statement clearly holds for n = 1, as in this case we
have B = {b′ ∈ A1 : b′ ≤ b}.

Suppose now that n > 1. Let I = (A1, . . . , An; b) be an instance of the GSS problem. Let
B′ be the inductively constructed set of all possible values of b′ ∈ [b] such that the solution
to the GSS problem on the instance (A1, . . . , An−1; b

′) is yes. By induction, the set B′ was
constructed in time O((n − 1)b2).

Let β ∈ [b]. Then, β will belong to B, i.e., the solution to the GSS, given (A1, . . . , An; β),
will be yes, if and only if either β ∈ B′, or we can write β as β = b′ + an for some b′ ∈ B′

and an ∈ An. In other words, B = B′ ∪ B′′, where B′′ denotes the set of all such sums:
B′′ = {b′ + an : b′ ∈ B′, an ∈ An, b′ + an ≤ b}.

The set B′′ can be constructed in time O(b2). Adding this time complexity to the time
O((n − 1)b2) needed to construct B′ proves the lemma.

It now follows immediately that in order to solve EWIS, it suffices to solve the problem
for connected graphs.

5For a comprehensive survey on graph classes, see [13].
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Corollary 4.2. Let (G, w, M) be an instance of EWIS, and let C1, . . . , Cr be the connected
components of G. Suppose that for each i ∈ [r], the set of solutions (EWIS(Ci, w, k) : k ∈ [M ])
for Ci is given. Then, we can compute the set of solutions (EWIS(G, w, k) : k ∈ [M ]) for G
in time O(rM2).

Proof. It suffices to observe that for every k ∈ [M ], the solution to EWIS(G, w, k) is yes if
and only if the solution to the GSS problem on the instance (A1, . . . , Ar; k) is yes, where Ai

denotes the set of all values k′ ∈ [M ] such that the solution to EWIS(Ci, w, k′) is yes.

4.1 Dynamic programming solutions

We can summarize the results of this subsection in the following theorem.

Theorem 4.3. The problems EWIS and EWISα admit pseudo-polynomial-time solutions
in each of the following graph classes: mK2-free graphs, interval graphs and their generaliza-
tions k-thin graphs, chordal graphs, AT-free graphs, (claw ,net)-free graphs, distance-hereditary
graphs, circle graphs, graphs of treewidth at most k, and graphs of clique-width at most k.

The rest of this subsection is devoted to proving this result. By part (ii) of Lemma 2.1,
it suffices to develop pseudo-polynomial solutions for EWIS. All graph classes mentioned in
the theorem are defined in the sequel. Most of the algorithms resemble those for the WIS
problem and exploit the special structure of graphs in the classes. Thus, we do not present all
of the algorithms and their analyses in full detail; for more details, we refer the reader to the
technical report [35].

4.1.1 mK2-free graphs

Our first example deals with graphs with no large induced matchings. Recall that K2 denotes
the graph consisting of two adjacent vertices. The disjoint union of m copies of K2 is denoted
by mK2. Thus, graphs whose largest induced matching consists of less than m edges are
precisely the mK2-free graphs.

Theorem 4.4. For every positive integer m, EWIS admits a pseudo-polynomial algorithm
for mK2-free graphs.

Proof. All maximal independent sets I1, . . . , IN in an mK2-free graph can be found in poly-
nomial time [1, 3, 44, 50]. Since every independent set is contained in a maximal one,
EWIS(G, w, k) will take the value yes if and only if there is an i ∈ [N ] such that EWIS(G[Ii], w, k)
is yes. Thus, the EWIS problem in mK2-free graphs reduces to solving polynomially many
instances of the subset sum problem.

4.1.2 Interval graphs

Interval graphs are one of the most natural and well-understood classes of intersection graphs.
They are intersection graphs of intervals on the real line, and many optimization problems can
be solved by dynamic programming on these graphs.

Formally, given a collection I = ([ai, bi] : i ∈ I) of intervals on the real line, its intersection
graph G(I) is defined by V (G(I)) = I, and there is an edge connecting [ai, bi] and [aj , bj ] if
and only if [ai, bi] ∩ [aj , bj ] 6= ∅. The collection I is said to be an interval model of G(I). A
graph G is said to be an interval graph if it admits an interval model, i.e., if there is a collection
I of intervals on the real line such that G = G(I).
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A representation of interval graphs that is particularly suitable for the EWIS problem
is the following. It has been shown by Ramalingam and Pandu Rangan [45] that a graph
G = (V, E) is interval if and only if it admits a vertex ordering (v1, . . . , vn) such that for all
triples (r, s, t) with 1 ≤ r < s < t ≤ n, the following implication is true:

if [vr, vt] ∈ E then [vs, vt] ∈ E .

Moreover, such an ordering of an interval graph can be found in time O(n + m). Based on
this ordering, we can prove the following statement.

Theorem 4.5. EWIS admits an O(Mn + m) algorithm for interval graphs.

Proof. Let (v1, . . . , vn) be a vertex ordering such that [vs, vt] ∈ E, whenever [vr, vt] ∈ E, for
all triples (r, s, t) with 1 ≤ r < s < t ≤ n.

For every i ∈ [n], let Gi denote the subgraph of G induced by {v1, . . . , vi} (also, let G0

be the empty graph). Then, for every i ∈ [n], either there is a j = j(i) such that NGi
(vi) =

{j, j + 1, . . . , i − 1}, or NGi
(vi) = ∅ (in which case let us define j(i) = i). Now, if I is an

independent set of Gi, then either vi ∈ I (in which case I\{vi} is an independent set of
Gj(i)−1), or vi /∈ I (in which case I is an independent set of Gi−1). This observation is the key
to the following simple O(Mn + m) dynamic programming solution to the EWIS problem on
interval graphs.

Step 1. Find a vertex ordering (v1, . . . , vn) as above.
Step 2. Set EWIS(G0, w, k) to no for all k ∈ [M ].
Step 3. For i = 1, . . . , n, do the following:

3.1. Find j ∈ [i] such that NGi
(vi) = {j, j + 1, . . . , i − 1}.

3.2. For k ∈ [M ], do the following:
If k = w(vi), set EWIS(Gi, w, k) to yes.
If k < w(vi), set EWIS(Gi, w, k) to EWIS(Gi−1, w, k).
If k > w(vi), set EWIS(Gi, w, k) to yes if at least one of the solutions to
EWIS(Gj(i)−1, w, k − w(vi)) and EWIS(Gi−1, w, k) is yes, and to no otherwise.

Step 4. Output the solution to EWIS(Gn, w, M).

4.1.3 k-thin graphs

The property used in the above characterization of interval graphs has been generalized by
Mannino et al. in [33], where they define the class of k-thin graphs. A graph G = (V, E) is
said to be k-thin if there exist an ordering (v1, . . . , vn) of V and a partition of V into k classes
such that, for each triple (r, s, t) with 1 ≤ r < s < t ≤ n, if vr, vs belong to the same class and
[vr, vt] ∈ E, then [vs, vt] ∈ E.

Let us mention at this point that finding a feasible frequency assignment of a given cost
can be modeled as the EWIS problem on a k-thin graph, where the parameter k depends on
the input to the frequency assignment problem. For further details, we refer the reader to the
paper [33].

Based on the same idea as for interval graphs, a dynamic programming solution for k-thin
graphs can be obtained, provided we are given an ordering and a partition of the vertex set.

Theorem 4.6. Suppose that for a k-thin graph G = (V, E), k ≥ 2, an ordering (v1, . . . , vn)
of V and a partition of V into k classes are given such that, for each triple (r, s, t) with
1 ≤ r < s < t ≤ n, if vr, vs belong to the same class and [vr, vt] ∈ E, then [vs, vt] ∈ E. Then,
EWIS admits an O(Mnk) algorithm for G.
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Proof. The proof is a straightforward extension of the proof of Theorem 4.5. Let V1, . . . , Vk

be the classes of the partition. Instead of the graphs Gi, induced by the first i vertices, we now
consider all graphs G(i1, . . . , ik), induced by the “first” ir vertices of each class (according to
the ordering on V restricted to the class), for all r ∈ {1, . . . , k}, and for all O(nk) choices of
such k-tuples (i1, . . . , ik) ∈ {1, . . . , |V1|} × . . . × {1, . . . , |Vk|}.

4.1.4 Chordal graphs

Chordal (or triangulated) graphs are graphs in which every cycle of length at least four has
a chord. They strictly generalize interval graphs and provide another class where the WIS
problem is polynomially solvable. Unfortunately for our purpose, the usual approaches for
the WIS problem in chordal graphs ([23, 48]) heavily rely on the maximization nature of the
problem, and generally do not preserve the overall structure of independent sets. As such,
they do not seem to be directly extendable to the exact version of the problem. Instead, we
develop a pseudo-polynomial time solution to the EWIS problem in chordal graphs by using
one of the many different characterizations of chordal graphs: their clique tree representation.

Theorem 4.7. EWIS admits an O(M2n(n + m)) algorithm for chordal graphs.

Proof. Given a chordal graph G, we first compute a clique tree of G. This can be done in time
O(n + m) [29]. A clique tree of a chordal graph G is a tree T whose nodes are the maximal
cliques of G, such that for every vertex v of G, the subgraph Tv of T induced by the maximal
cliques containing v is a tree. Furthermore, we fix an arbitrary node Kr in the clique tree in
order to obtain a rooted clique tree. For a maximal clique K, we denote by G(K) the subgraph
of G induced by the vertices of K and all vertices contained in some descendant of K in T .

The algorithm is based on a set of identities developed by Okamoto, Uno and Uehara
in [40], where a clique tree representation was used to develop linear-time algorithms to count
independent sets in a chordal graph. Let IS(G) be the family of independent sets in G. For a
vertex v, let IS(G, v) be the family of independent sets in G that contain v. For a vertex set
U , let IS(G, U) be the family of independent sets in G that contain no vertex of U . Consider
a maximal clique K of G, and let K1, . . . , Kl be the children of K in T . (If K is a leaf of
the clique tree, we set l = 0.) Then, as shown in [40], for every distinct i, j ∈ [l], the sets
V (G(Ki))\K and V (G(Kj))\K are disjoint. Moreover, if ⊔ denotes the disjoint union, the
following relations hold:

IS(G(K)) = IS(G(K), K) ⊔
⊔

v∈K IS(G(K), v) ;

IS(G(K), v) =

{

I ∪ {v}
∣

∣

∣
I =

⋃l
i=1 Ii, Ii ∈

{

IS(G(Ki), v), if v ∈ Ki;

IS(G(Ki), K ∩ Ki), otherwise.

}

;

IS(G(K), K) =
{

I
∣

∣

∣
I =

⊔l
i=1 Ii, Ii ∈ IS(G(Ki), K ∩ Ki)

}

;

IS(G(Ki), K ∩ Ki) = IS(G(Ki), Ki)) ⊔
⊔

u∈Ki\K
IS(G(Ki), u) for each i ∈ [l] .

We extend our usual Boolean predicate EWIS(H, w, k) to the following two: for a vertex v of
a weighted graph (H, w) and in integer k, let EWIS(H, w, k, v) denote the Boolean predicate
that is yes if and only if in H there is an independent set I of total weight k that contains v.
Also, for a set of vertices U let EWIS(H, w, k, U) take the value yes if and only if in H there
is an independent set of total weight k that contains no vertex from U . Based on the above
equations, we can develop the following recursive relations for EWIS:
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EWIS(G(K), w, k) = EWIS(G(K), w, k, K) ∨
∨

v∈K:w(v)≤k

EWIS(G(K), w, k, v) (3)

where ∨ denotes the usual Boolean OR function (with the obvious identification yes ↔ 1,
no ↔ 0). That is, its value is yes if at least one of its arguments is yes, and no otherwise.

EWIS(G(K), w, k, v) = GSS(A1, . . . , Al, k − w(v)) (4)

where GSS(A1, . . . , Al, k) denotes the solution to the generalized subset sum problem with
the input (A1, . . . , Al, k), and the sets Ai for i ∈ [l] are given by

Ai =

{

{k′ − w(v) : w(v) ≤ k′ ≤ k, EWIS(G(Ki), w, k′, v) = yes}, if v ∈ Ki;

{k′ : 1 ≤ k′ ≤ k, EWIS(G(Ki), w, k′, K ∩ Ki) = yes}, otherwise.

Note that if Ii ∈ IS(G(Ki), v) and Ij ∈ IS(G(Kj), v) for some distinct indices i, j ∈ [l], then
we have Ii ∩ Ij = {v}. Moreover, since this is the only possible nonempty intersection of

two independent sets from
⋃l

i=1 Ii in the equation for IS(G(K), v), it follows that the sum

of the weights of the sets Ii\{v} (over all i ∈ [l]) equals to the weight of
(

⋃l
i=1 Ii

)

\{v}, thus

justifying Equation (4).

Similarly, we have

EWIS(G(K), w, k, K) = GSS(A1, . . . , Al, k) (5)

where, for each i ∈ [l], the set Ai is given by

Ai = {k′ : 1 ≤ k′ ≤ k, EWIS(G(Ki), w, k′, K ∩ Ki) = yes} ,

and, finally, for each i ∈ [l], we have:

EWIS(G(Ki), w, k, K ∩ Ki) = EWIS(G(Ki, w, k, Ki)) ∨
∨

u∈Ki\K

EWIS(G(Ki), w, k, u) . (6)

Given the above equations, it is now easy to develop a pseudo-polynomial dynamic pro-
gramming algorithm. Having constructed a rooted tree T of G, we traverse it in a bottom-up
manner. For a leaf K, we have

EWIS(G(K), w, k, K) =

{

yes, if k = 0;
no, otherwise.

and

EWIS(G(K), w, k, v) =

{

yes, if w(v) = k;
no, otherwise.

.

For every other node K, we compute the values of EWIS(G(K), w, k, K) and EWIS(G(K), w, k, v)
by referring to the recursive relations (6), (5) and (4) in this order. Finally, the value of
EWIS(G, w, k) is given by EWIS(G(Kr), w, k), which can be computed using Equation (3).

The correctness of the procedure follows immediately from the above discussion. To justify
the time complexity, observe that in a node K of the tree with children K1, . . . , Kl, the number
of operations performed is O(

∑l
i=1 |Ki| + lM2 + |K|lM2). Summing up over all the nodes of

the clique tree, and using the fact that a chordal graph has at most n maximal cliques, which
satisfy

∑

K∈V (T ) |K| = O(n + m), the claimed complexity bound follows.
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4.1.5 AT-free graphs

The class of AT-free graphs is another class that contains the interval graphs. Moreover,
AT-free graphs contain other well-known subclasses of perfect graphs, for instance permutation
graphs and their superclass, the class of co-comparability graphs.

A triple {x, y, z} of pairwise non-adjacent vertices in a graph G is an asteroidal triple if for
every two of these vertices there is a path between them avoiding the closed neighborhood of
the third. Formally, x and y are in the same component of G−N [z], x and z are in the same
component of G − N [y], and y and z are in the same component of G − N [y].6 A graph is
called AT-free if it has no asteroidal triples.

Our dynamic programming algorithm that solves EWIS for AT-free graphs is based on
the dynamic programming approach to the WIS problem in AT-free graphs, developed by
Broersma, Kloks, Kratsch and Müller in [16]. Let us start with a definition.

Definition 1. Let x and y be two distinct nonadjacent vertices of an AT-free graph G. The
interval I(x, y) is the set of all vertices z of V (G)\{x, y} such that x and z are in one component
of G − N [y], and z and y are in one component of G − N [x].

Now, we recall some structural results from [16].

Theorem 4.8 ([16]). Let I = I(x, y) be a nonempty interval of an AT-free graph G, and let
s ∈ I. Then there exist components Cs

1 , . . . , C
s
t of G−N [s] such that the components of I\N [s]

are precisely I(x, s), I(s, y), and Cs
1 , . . . , C

s
t .

Theorem 4.9 ([16]). Let G be an AT-free graph, let C be a component of G−N [x], let y ∈ C,
and let D be a component of the graph C − N [y]. Then N [D] ∩ (N [x]\N [y]) = ∅ if and only
if D is a component of G − N [y].

Theorem 4.10 ([16]). Let G be an AT-free graph, let C be a component of G − N [x], let
y ∈ C, and let C ′ be the component of G − N [y] that contains x. Let B1, . . . , Bl denote the
components of the graph C − N [y] that are contained in C ′. Then I(x, y) = ∪l

i=1Bi.

We will also need the following general statement.

Observation 4.11. Let (G, w) be a weighted graph. Then, the solution to EWIS(G, w, k) is
yes if and only if there is a vertex x ∈ V (G) such that the solution to EWIS(G − N(x), w, k)
is yes.

Combining this observation with Theorems 4.9 and 4.10, we obtain the following lemma.

Lemma 4.12. Let (G, w) be a weighted AT-free graph, G = (V, E). Let x ∈ V and let C be
a component of G − N [x]. For a vertex y of C, let Cy denote the subgraph of G induced by
C − N(y). Then, the solution to EWIS(C, w, k) is yes if and only if there is a vertex y ∈ C
such that the solution to EWIS(Cy, w, k) is yes. Moreover, the connected components of such
a Cy are precisely {y}, I(x, y), and the components of G − N [y] contained in C.

Similarly, using Theorem 4.8 we obtain the following conclusion.

Lemma 4.13. Let (G, w) be a weighted AT-free graph, G = (V, E). Let I = I(x, y) be an
interval of G. If I = ∅, then the solution to EWIS(G[I], w, k) is yes if and only if k = 0.
Otherwise, let us denote by Is the subgraph of G induced by I −N(s), for all s ∈ I. Then, the
solution to EWIS(I, w, k) is yes if and only if there is a vertex s ∈ I such that the solution to
EWIS(Is, w, k) is yes. Moreover, the connected components of such an Is are precisely {s},
I(x, s), I(s, y), and the components of G − N [s] contained in I.

6Recall that the closed neighborhood of x is defined as N [x] = N(x) ∪ {x}.
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Theorem 4.14. EWIS admits a pseudo-polynomial algorithm for AT -free graphs.

Proof. It follows from the above discussion that the following pseudo-polynomial algorithm
correctly solves the problem.

Step 1. For every x ∈ V compute all components of G − N [x].
Step 2. For every pair of nonadjacent vertices x, y ∈ V (G) compute the interval I(x, y).
Step 3. Sort all the components and intervals according to nonincreasing number of vertices.
Step 4. In the order of Step 3, compute the solutions to EWIS(C, w, k), for each component
C (for all k ∈ {0, 1, . . . , w(C)}) and the solutions to EWIS(I, w, k) for each interval I (for all
k ∈ {0, 1, . . . , w(I)}). To compute the solutions to EWIS(C, w, k) for a component C, first
compute the solutions to EWIS(C − N(y), w, k), for all y ∈ C, by applying Lemma 4.12 and
Corollary 4.2. Similarly, to compute the solutions to EWIS(I, w, k) for an interval I, first
compute the solutions to EWIS(I − N(s), w, k), for all s ∈ I, by applying Lemma 4.13 and
Corollary 4.2.
Step 5. Compute the solution to EWIS(G, w, k) using Observation 4.11 and Corollary 4.2.

A claw is the graph K1,3. A net is the graph obtained from a triangle by attaching one
pendant edge to each vertex. In [10], it is shown that for every vertex v of a (claw ,net)-free
graph G, the non-neighborhood of v in G is AT-free. Thus, Theorem 4.14 immediately implies
the following result.

Corollary 4.15. EWIS admits a pseudo-polynomial algorithm for (claw ,net)-free graphs.

4.1.6 Distance hereditary graphs

A graph is distance-hereditary if the distance between any two connected vertices (that is,
vertices in the same connected component) is the same in every induced subgraph in which they
remain connected.7 Bandelt and Mulder provided in [4] a pruning sequence characterization
of distance-hereditary graphs: whenever a graph contains a vertex of degree one, or a vertex
with a twin (another vertex sharing the same neighbors), remove such a vertex. A graph
is distance-hereditary if and only if it the application of such vertex removals results in a
single-vertex graph.

A pruning sequence of a distance-hereditary graph can be computed in linear time [19] and
can be useful for algorithmic developments on distance-hereditary graphs. A solution to the
WIS problem in distance-hereditary graphs based on the pruning sequence characterization
has been developed by Cogis and Thierry in [17]. It turns out that their approach can be
generalized in order to solve the exact version of the problem (a detailed description can be
found in [35]).

Theorem 4.16. EWIS admits an O(M2n + m) algorithm for distance-hereditary graphs.

4.1.7 Circle graphs

Besides intervals on the real line, chords on a circle provide another popular intersection model.
The intersection graphs of chords on a circle are called circle graphs. In this subsection, we
present a O(M2n2) dynamic-programming algorithm for the EWIS problem in circle graphs.
Our algorithm for EWIS on circle graphs is based on the dynamic programming solution for
the IS problem, developed by Supowit in [47].

7The distance between two vertices u and v in a connected graph G is the length (i.e., the number of edges)
of a shortest path connecting them.
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Theorem 4.17. EWIS admits an O(M2n2) algorithm for circle graphs.

Proof. Consider a finite set of N chords on a circle. We may assume without loss of generality
that no two chords share an endpoint. Number the endpoints of the chords from 1 to 2N in
the order as they appear as we move clockwise around the circle (from an arbitrary but fixed
starting point).

The idea is simple. For 1 ≤ i < j ≤ 2N , let G(i, j) denote the subgraph of G induced by
chords whose both endpoints belong to the set {i, i + 1, . . . , j}. Obviously G = G(1, 2N).

Let 1 ≤ i < j ≤ 2N . If j = i + 1 then the solution to EWIS(G(i, j), w, k) is yes if and only
if either k = 0, or (i, i + 1) is a chord and k = w((i, i + 1)).

Otherwise, let r be the other endpoint of the chord whose one endpoint is j. If r < i or
r > j, then no independent set of the graph G(i, j) contains the chord (r, j), so the solution to
EWIS(G(i, j), w, k) is yes if and only if the solution to EWIS(G(i, j−1), w, k) is yes. Suppose
now that i ≤ r ≤ j − 1 and let I be an independent set of G(i, j). The set I may or may
not contain the chord (r, j). If I does not contain (r, j), then I is an independent set of of
G(i, j − 1) as well. If I contains (r, j), then no other chord in I can intersect the chord (r, j).
In particular, this implies that I is of the form I = {(r, j)}∪I1∪I2 where I1 is an independent
set of G(i, r − 1) and I2 is an independent set of G(r + 1, j − 1).

Therefore, the solution to EWIS(G(i, j), w, k) is yes if and only if either the solution to
EWIS(G(i, j − 1), w, k) is yes, or the solution to EWIS(G′, w, k) is yes, where G′ is the graph
whose connected components are G[{(r, j)}], G(i, r − 1) and G(r + 1, j − 1). Assuming that
the solutions for G(i, r− 1) and G(r + 1, j − 1) have already been obtained recursively, we can
apply Corollary 4.2 in this case.

The above discussion implies an obvious O(M2n2) algorithm that correctly solves the
problem.

4.1.8 Graphs of treewidth at most k

Graphs of treewidth at most k, also known as partial k-trees, are very important from an
algorithmic viewpoint: many graph problems that are NP-hard for general graphs are solvable
in linear time when restricted to graphs of treewidth at most k [2].8 A standard dynamic
programming approach shows that this is also the case for EWIS.

Theorem 4.18. For every fixed k, EWIS admits an O(M2n) algorithm for graphs of treewidth
at most k.

A detailed description of the algorithm and its analysis can be found in [35].

4.1.9 Graphs of clique-width at most k

The clique-width of a graph G is defined as the minimum number of labels needed to construct
G, using the following four graph operations:

(i) Create a new vertex v with label i (denoted by i(v)).

(ii) Take the disjoint union of two labeled graphs G and H (denoted by G ⊕ H).

(iii) Join by an edge each vertex with label i to each vertex with label j (i 6= j, denoted by
ηi,j).

(iv) Rename label i to j (denoted by ρi→j).

8For a definition of treewidth, see e.g. [13].
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An expression built from the above four operations is called a clique-width expression. A
clique-width expression using k labels is called a k-expression. Each k-expression t uniquely
defines a labeled graph lab(t), where the labels are integers {1, . . . , k} associated with the
vertices and each vertex has exactly one label. We say that a k-expression t defines a graph
G if G is equal to the graph obtained from the labeled graph lab(t) after removing its labels.
The clique-width of a graph G is equal to the minimum k such that there exists a k-expression
defining G.

The clique-width of a graph of treewidth k is bounded above by 3 · 2k−1. This implies
that a class of graphs with uniformly bounded treewidth is also of bounded clique-width. The
complete graphs show that converse is generally not true. In this sense, showing that a problem
can be efficiently solved for graphs of bounded clique-width is more general than showing the
same statement for graphs of bounded treewidth.

Many graph problems that are NP-hard for general graphs are solvable in linear time when
restricted to graphs of clique-width at most k, if a k-expression is given as part of the input.9

EWIS is no exception.

Theorem 4.19. For every fixed k, EWIS admits an O(M2l) algorithm for graphs of clique-
width at most k, where l is the number of operations in a given k-expression for G.

Proof. Suppose that the labels are integers {1, . . . , k} = [k]. For every subset of labels S ⊆ [k],
let EWIS(G, w, S, m) denote the answer to the following question: “Is there an independent
set of G with total weight m that contains exactly the labels from S?”

Given a k-expression t defining the input graph G, we can solve EWIS(G, w, M) by first
computing all the values for EWIS(G, w, S, m), for every subset of labels S ⊆ [k], and every
m ∈ [M ]. It is easy to see that this can be performed in time O(M2l) by the following dynamic
programming algorithm.

If |V | = 1 then let v ∈ V . For all S ⊆ [k], and for all m ∈ [M ], let

EWIS(G, w, S, m) =

{

yes, if S = {label(v)} and m = w(v);
no, otherwise.

If G = G1 ⊕ G2 then let for all S ⊆ [k], and for all m ∈ [M ]:

EWIS(G, w, S, m) =























yes, if EWIS(G1, w, S, m) =yes;
yes, if EWIS(G2, w, S, m) =yes;
yes, if there is an m′ ∈ [m − 1] such that

EWIS(G1, w, S, m′) =EWIS(G2, w, S, m − m′) =yes;
no, otherwise.

This can be computed in time O(M2), similarly as in Corollary 4.2.
If G = ηi,j(G1) then let for all S ⊆ [k], and for all m ∈ [M ]:

EWIS(G, w, S, m) =

{

EWIS(G1, w, S, m), if {i, j} * S;
no, otherwise.

If G = ρi→j(G1) then let for all S ⊆ [k], and for all m ∈ [M ]:

EWIS(G, w, S, m) =







EWIS(G1, w, S, m), if S ∩ {i, j} = ∅;
EWIS(G1, w, S ∪ {i}, m), if S ∩ {i, j} = {j};
no, otherwise.

9If only a graph G of clique-width at most k is given, then an O(26k)-expression defining G can be computed
in O(n3) time, as shown by Oum in [41].
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Having computed all the values EWIS(G, w, S, m), the solution to EWIS(G, w, M) is
clearly given by

EWIS(G, w, M) =

{

yes, if there is an S ⊆ [k] such that EWIS(G, w, S, M) =yes;
no, otherwise.

Note that the same algorithm runs in pseudo-polynomial time whenever the clique-width
of the input graph is of the order O(log n).

Due to the unknown complexity of the exact perfect matching problem, the problem of
determining the complexity of EWIS is of particular interest for line graphs of bipartite graphs,
and their subclasses and superclasses. Line graphs of bipartite graphs form a hereditary class
of graphs. Their characterization in terms of forbidden induced subgraphs has been obtained
in [46], as follows. A graph G is the line graph of a bipartite graph if and only G is F-free,
where F = {claw , diamond , C5, C7, . . .}, where a diamond is the graph obtained by deleting a
single edge from a complete graph on 4 vertices.

Keeping in mind this characterization of line graphs of bipartite graphs, it is interesting to
consider the following immediate consequence of Theorem 4.19.

Corollary 4.20. EWIS admits a pseudo-polynomial solution in each of the following graph
classes:

• (claw , co-claw)-free graphs,

• (gem, fork , co-P)-free graphs (see Figure 4) and their subclass (claw , diamond , co-P)-free
graphs,

• (P5, diamond)-free graphs.

Proof. Each of the above subclasses is of bounded clique-width (see [15, 14, 9]).

Also, we can derive from Theorem 4.19 a particular complexity result for the exact perfect
matching problem.

Corollary 4.21. For every fixed k, the exact perfect matching problem admits a pseudo-
polynomial algorithm for graphs of treewidth at most k.

Proof. As shown by Gurski and Wanke [26], a set G of graphs has bounded treewidth if and
only if L(G) has bounded clique-width. Since the exact perfect matching problem in G is
polynomially equivalent to the problem EWISα in the set L(G), the statement follows from
Theorem 4.19 and part (ii) of Lemma 2.1.

4.2 Modular decomposition

The idea of modular decomposition has been first described in the 1960s by Gallai [24], and also
appeared in the literature under various other names such as prime tree decomposition [22], X-
join decomposition [27], or substitution decomposition [36]. This technique allows one to reduce
many graph problems from arbitrary graphs to so-called prime graphs. In this subsection, we
show how to apply modular decomposition to the EWIS problem.
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Let G = (V, E) be a graph, U a subset of V and x a vertex of G outside U . We say that x
distinguishes U if x has both a neighbor and a non-neighbor in U . A subset U ⊂ V (G) is called
a module in G if it is indistinguishable for the vertices outside U . A module U is nontrivial if
1 < |U | < |V |, otherwise it is trivial. A graph whose every module is trivial is called prime.

An important property of maximal modules is that if G and co-G are both connected,
then the maximal modules of G are pairwise disjoint. Moreover, from the above definition it
follows that if U and W are maximal modules, then either there are all possible edges between
U and W , or there are no edges between them. This property is crucial for the modular
decomposition, which provides a reduction of many graph problems from a graph G to the
graph G0 obtained from G by contracting each maximal module to a single vertex.

We formally describe this reduction for the EWIS problem in the recursive procedure
Modular ewis(G, W, M) below. It turns out that in order to apply this decomposition to
the EWIS problem, we need to relax the problem so that each vertex of the input graph is
equipped with a nonempty set of possible weights (instead of just a single one). For simplicity,
we still name this problem EWIS. When all sets are singletons, the problem coincides with
the original EWIS problem.

EXACT WEIGHTED INDEPENDENT SET (EWIS)
INSTANCE: An ordered triple (G, W, M), where G = (V, E) is a graph, M is a positive
integer and W = (Wv : v ∈ V ) with Wv ⊆ [M ] for all v ∈ V is the collection of possible
weights for each vertex of G.
QUESTION: Is there an independent set I of G and a mapping w : I → [M ] such that
w(v) ∈ Wv for all v ∈ I, and

∑

v∈I w(v) = M?

In graph classes that are closed under duplicating vertices, this extended version is pseudo-
polynomially equivalent to the original one: given an input (G, W, M) to the extended version,
we can construct a weighted graph (G′, w′) from (G, W ) by replacing each vertex v of G with
a clique Kv on |Wv| vertices, assigning different weights from Wv to different vertices of Kv,
and joining a vertex from Ku with a vertex from Kv by an edge if and only if [u, v] was an
edge of G. Then, it is clear that EWIS(G, W, M) = yes if and only if EWIS(G′, w′, M) = yes.
However, working with the extended version enables us to apply modular decomposition to
arbitrary graph classes.

Let us now describe how modular decomposition can be applied to our problem.10

Algorithm Modular ewis(G, W, M)

Input: An ordered triple (G, W, M), where G = (V, E) is a graph, M is a positive integer
and W = (Wv : v ∈ V ) with Wv ⊆ [M ] for all v ∈ V is the collection of possible weights for
each vertex of G.

Output: (EWIS(G, W, k) : k ∈ [M ])

1. If |V | = 1, say V = {v}, set, for each k ∈ [M ],

EWIS(G, W, k) =

{

yes, if k ∈ Wv;
no, otherwise

and stop.

2. If G is disconnected, partition it into connected components M1, . . . ,Mr, and go to
step 5.

3. If co-G is disconnected, partition G into co-components M1, . . . ,Mr, and go to step 5.

10See [32] for a description of the analogous result for the WIS problem.
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4. If G and co-G are connected, partition G into maximal modules M1, . . . ,Mr.

5. For all j ∈ [r], let

(EWIS(G[Mj ], W, k) : k ∈ [M ]) = Modular ewis(G[Mj ], W, M) .

Construct a graph G0 from G by contracting each Mj (for j ∈ [r]) to a single vertex,
and assign to that vertex the set of weights

WMj
= {k ∈ [M ] : EWIS(G[Mj ], W, k) = yes} .

6. For each k ∈ [M ], let

EWIS(G, W, k) = EWIS(G0, (WMj
: j ∈ [r]), k)

and stop.

We remark that for each input graph, at most one of the steps 2-4 is performed. (At most
one among {G, co-G} is disconnected; moreover, if G and co-G are both connected, then the
maximal modules of G are pairwise disjoint.) Observe that the graph G0 constructed in step 5
of the algorithm is either an edgeless graph, a complete graph, or a prime graph. Therefore,
the modular decomposition approach reduces the problem from a graph to its prime induced
subgraphs.

The correctness of the procedure is straightforward: every independent set I of G consists
of pairwise disjoint independent sets in the subgraphs of G induced by M1, . . . ,Mr; moreover,
those Mi’s that contain a vertex from I form an independent set in G0. And conversely, for
every independent set I0 in G0 and every choice of independent sets {Ij : j ∈ I0} with Ij

independent in G[Mj ], the set ∪j∈[r]Ij is independent in G.

The following theorem answers the question on the complexity of such a reduction.

Theorem 4.22. Let G be a class of graphs and G∗ the class of all prime induced subgraphs of
the graphs in G. If there is a p ≥ 1 and a q ≥ 2 such that EWIS can be solved for graphs in
G∗ in time O(M qnp), then EWIS can be solved for graphs in G in time O(M qnp + m).

Proof. Let G be a graph in G with n vertices and m edges. The recursive decomposition of G
produced by the algorithm can be implemented in time O(n + m) [34]. This decomposition
associates with G a tree T (G) whose leaves correspond to the vertices of G, while the internal
nodes of T (G) represent induced subgraphs of G with at least two vertices.

Consider an internal node U of T (G), and let GU denote the induced subgraph of G
corresponding to U . Then the children of GU correspond to the subgraphs G[M1], . . . , G[Mr],
where {M1, . . . ,Mr} is the partition of GU defined in steps 2–4 of the algorithm.

If GU is disconnected, then G0
U is an empty graph, and the problem can be solved for G0

U

in time O(M2|V (G0
U )|), since it is a generalized subset sum problem (cf. Lemma 4.1). If GU

is disconnected, then G0
U is a complete graph, and the problem can be solved trivially for G0

U

in time O(M |V (G0
U )|).

If both G and co-G are connected, then G0
U is a prime induced subgraph of G, and the

problem can be solved for G0
U in time O(M q|V (G0

U )|p) by our assumption. Summing up over
all internal nodes of T (G), we conclude that the total time complexity of the problem on G is
bounded by O(M q

∑

U

|V (G0
U )|p). It is not difficult to see that the total number of vertices in

all graphs G0
U corresponding to internal nodes U ∈ V (T (G)) equals to the number of edges of
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T (G), i.e., |V (T (G))| − 1. Since the number of leaves of T (G) is n and the number of internal
nodes is at most n − 1, we conclude that

M q
∑

U

|V (G0
U )|p ≤ M q

(

∑

U

|V (G0
U )|

)p

≤ M q(2n − 2)p = O(M qnp).

Adding the term O(n + m) needed to obtain the decomposition tree, we obtain the desired
time complexity. The theorem is proved.

Just like for the weighted independent set problem, modular decomposition is the key
to pseudo-polynomial-time solutions to EWIS in several subclasses of P5-free and fork-free
graphs. The results are summarized in the following theorem; all graphs mentioned in the
theorem or its proof are depicted in Figure 4.

s s s s s

P5

s s s s

s

TT��
Q

QQ
�

��

gem

s s s s

s

co-gem

s

s s

sQQ
��%

%��
QQ

s s

double-gem

s

s s

sQQ
��

��
QQ

s s

co-domino

s s s

s

s

��
QQ

co-P

s s s s

s

TT��

bull

s s s

s

s

��
QQ

fork

Figure 4: Some 5- and 6-vertex graphs

Theorem 4.23. EWIS is solvable in pseudo-polynomial time for each of the following classes:

• (P5, double-gem, co-domino)-free graphs (and their subclass, (P5, co-P)-free graphs),

• (bull, fork)-free graphs,

• (co-P, fork)-free graphs,

• (P5, fork)-free graphs.

Proof. This theorem essentially follows from Theorem 4.22 and the results in [12] and [28] (see
also [11] for some applications of modular decomposition to the WIS problem). We briefly
summarize the main ideas.

Every prime (P5, double-gem, co-domino)-free graph is 2K2-free (the complementary ver-
sion of this statement is proved in [28]). Since we can easily extend Theorem 4.4 to the extended
version of EWIS, this implies the result for (P5, double-gem, co-domino)-free graphs.

The (extended) EWIS problem can be solved in pseudo-polynomial time for co-gem-free
graphs. Indeed, for every vertex v of a co-gem-free graph G, the non-neighborhood of v in G
is P4-free. So the problem reduces to solving O(nM) subproblems in P4-free graphs, which
can be done by modular decomposition. It is well known (and can be easily shown) that every
P4-free graph is either disconnected, or its complement is disconnected. Thus, the only prime
P4-free graph is the graph on a single vertex.
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In [12], it is shown that prime graphs that contain a co-gem and are either (bull , fork)-
free, (co-P, fork)-free or (P5, fork)-free have a very simple structure. The (extended) EWIS

problem can be solved in pseudo-polynomial time for such graphs. Together with the above
observation about co-gem-free graphs and Theorem 4.22, this concludes the proof.

5 Concluding remarks

As we saw in the introduction, the motivation for studying the exact weighted independent
set problem comes from the fact that the complexity of the exact matching problem is still
unknown, even for bipartite graphs. Hence, the problem of determining the complexity of
EWIS is of particular interest for line graphs of bipartite graphs, and their subclasses and
superclasses. We will now show that the class L(Bip) of line graphs of bipartite graphs is
sandwiched between two graph classes for which the complexity of EWIS is known, and
whose (infinite) sets of forbidden induced subgraphs differ only in two graphs.

Recall that the line graphs of bipartite graphs are precisely the (claw , diamond , C5, C7, . . .)-
free graphs. Replacing the diamond in the above characterization by its subgraph C3 results
in a smaller class of (claw , C3, C5, C7, . . .)-free graphs. It is easy to see that this is precisely the
class of bipartite graphs of maximum degree 2. Every connected graph in this class is either
an even cycle or a path, and the treewidth of such graphs is at most 2. By Corollary 4.2 and
Theorem 4.18, the problem is solvable in pseudo-polynomial time in this class.

On the other hand, if we replace the claw = K1,3 with K1,4 in the above characterization of
L(Bip), we obtain a class of graphs that strictly contains line graphs of bipartite graphs. This
class of (K1,4, diamond , C5, C7, . . .)-free graphs contains the class of (K1,4, C3, C5, C7, . . .)-free
graphs, which is precisely the class of bipartite graphs of maximum degree at most 3. The
results of Section 3.1 imply that the problem is strongly NP-complete for this class, and hence
also for the larger class of (K1,4, diamond , C5, C7, . . .)-free graphs.

To summarize, the class L(Bip) of line graphs of bipartite graphs is sandwiched between
two graph classes for which the complexity of EWIS is known, as the following diagram shows.

Free({claw , C3, C5, C7, . . .}) ⊂ L(Bip) ⊂ Free({K1,4, diamond , C5, C7, . . .})
pseudo-polynomial ??? strongly NP-complete
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[13] A. Brandstädt, V.B. Le and J. Spinrad, Graph classes: a survey. SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia, PA, 1999.
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[15] A. Brandstädt and S. Mahfud, “Maximum weight stable set on graphs without claw
and co-claw (and similar graph classes) can be solved in linear time,” Inform. Process. Lett.
84 (2002) 251–259.

[16] H. Broersma, T. Kloks, D. Kratsch and H. Müller, “Independent sets in asteroidal
triple-free graphs,” SIAM J. Discrete Math. 12 (1999) 276–287.

[17] O. Cogis and E. Thierry, “Computing maximum stable sets for distance-hereditary
graphs,” Discrete Optim. 2 (2005) 185–188.

[18] D.G. Corneil and U. Rotics, “On the relationship between clique-width and
treewidth,” SIAM J. Comput. 34 (2005) 825–847.

[19] G. Damiand, M. Habib and C. Paul, “A simple paradigm for graph recognition: appli-
cation to cographs and distance hereditary graphs.” Combinatorics and computer science
(Palaiseau, 1997). Theoret. Comput. Sci. 263 (2001) 99–111.

[20] M. Dawande, P. Keskinocak, J.M. Swaminathan and S. Tayur, “On Bipartite and
Multipartite Clique Problems,” J. Algorithms 41 (2001) 388–403.
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