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On the Hitting Set of Bundles Problem
Eric Angel∗, Evripidis Bampis∗, Laurent Gourvès‡

Résumé

Le problème de l’ensemble minimal de paquets (minimal hitting set of bundles
problemouHSB) est défini comme suit. On dispose d’un ensembleE = {e1, e2, . . . , en}
den éléments. Chaque élémentei (i = 1, . . . , n) a un coût positif ou nulci. Un pa-
quetb est un sous ensemble deE . On dispose aussi d’une collectionS = {S1, S2, . . . , Sm}
de m ensembles de paquets. De manière plus précise, chaque ensemble Sj (j =

1, . . . ,m) est composé deg(j) paquets distincts notésb1
j , b

2
j , . . . , b

g(j)
j . Une solution

du problèmeHSB est un sous ensembleE ′ ⊆ E tel que pour toutSj ∈ S, au moins
un paquet est couvert,i.e. bl

j ⊆ E ′. Le coût total de la solution, notéC(E ′), est
∑

{i|ei∈E ′} ci. Le problème consiste à trouver une solution de coût total minimum.

Nous donnons un algorithme déterministeN(1 − (1− 1
N

)M )-approché, oùN est le
nombre maximal de paquets par ensemble etM est le nombre maximal d’ensembles
à qui un élément appartient. Le rapport d’approximation està peu de choses près le
meilleur que l’on puisse proposer car on peut montrer queHSB ne peut être approché
avec un rapport7/6 − ε lorsqueN = 2 et N − 1 − ε lorsqueN ≥ 3. L’algorithme
proposé est aussi le premier offrant une garantie de performance pour le problème
classique d’optimisation de requêtes multiples [9, 10]. Son rapport d’approximation
pour le problèmeMIN k−SAT dont il est une généralisation est le même que celui du
meilleur algorithme connu [3].

Mots-clefs :optimisation combinatoire, algorithme d’approximation,problèmeHIT-
TING SET

Résumé

The minimum HITTING SET OF BUNDLES problem (HSB) is defined as fol-
lows. We are given a setE = {e1, e2, . . . , en} of n elements. Each elementei
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(i = 1, . . . , n) has a non negative costci. A bundleb is a subset ofE . We are also gi-
ven a collectionS = {S1, S2, . . . , Sm} of m sets of bundles. More precisely, each set

Sj (j = 1, . . . ,m) is composed ofg(j) distinct bundlesb1
j , b

2
j , . . . , b

g(j)
j . A solution

to HSB is a subsetE ′ ⊆ E such that for everySj ∈ S at least one bundle is covered,
i.e. bl

j ⊆ E ′. The total costof the solution, denoted asC(E ′), is
∑

{i|ei∈E ′} ci. The
problem is to find a solution withminimumtotal cost.

We give a deterministicN(1 − (1 − 1
N

)M )-approximation algorithm, whereN
is the maximal number of bundles per set andM is the maximal number of sets an
element can appear in. This is roughly speaking the best approximation ratio that we
can obtain for theHSB problem since we also prove thatHSB cannot be approximated
within 7/6−ε whenN = 2 andN−1−ε whenN ≥ 3. Our algorithm is also the first
approximation algorithm with guaranteed performance for the classicalMULTIPLE-
QUERY OPTIMIZATION problem [9, 10], while it matches the best approximation
ratio for theMIN k−SAT problem (for generalk) obtained by the algorithm of [3].

Key words : combinatorial optimization, approximation algorithm,HITTING SET

problem

1 Introduction

The minimumHITTING SET OF BUNDLESproblem (HSB) is defined as follows. We
are given a setE = {e1, e2, . . . , en} of n elements. Each elementei (i = 1, . . . , n) has
a non negative costci. A bundleb is a subset ofE . We are also given a collectionS =
{S1, S2, . . . , Sm} of m sets of bundles. More precisely, each setSj (j = 1, . . . , m) is
composed ofg(j) distinct bundlesb1

j , b
2
j , . . . , b

g(j)
j . A solution toHSB is a subsetE ′ ⊆ E

such that for everySj ∈ S at least one bundle is covered, i.e.bl
j ⊆ E ′. Thetotal costof the

solution, denoted asC(E ′), is
∑

{i|ei∈E ′} ci. Notice that, the cost of an element appearing
in several bundles is counted once. The objective is to find a solution with minimum total
cost.

The special case of theHSB problem, in which a bundle is only an element ofE is
the classicalMINIMUM HITTING SET problem3. It is one of the most notorious NP-hard
problems and it is known to be equivalent to the classicalMINIMUM SET COVER : posi-
tive and negative approximability results for theMINIMUM HITTING SET can be directly
derived from the classicalMINIMUM SET COVER problem [1]4.

3Given a collectionS of subsets of a finite setE , and nonnegative costs for every element ofE , aminimal
hitting setfor S is a subsetE ′ ⊆ E such thatE ′ contains at least one element from each subset inS and the
total cost ofE ′ is minimal.

4Recall that in theMINIMUM SET COVER, given a universe setU , and nonnegative costs for every
element ofU , a collectionT of subsets ofU , we look for a subcollectionT ′ ⊆ T , such that the union of
the sets inT ′ is equal toU , andT ′ is of minimal cost.
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Our motivation to study theHSB problem comes not only from its own theoretical
interest, but also from the fact that it models many other combinatorial optimization pro-
blems of the literature. We illustrate this fact with themultiple-query optimization problem
(MQO for short) in database systems [10] and theMIN k-SAT PROBLEM [3].

Applications of the HSB problem
Let us first see how theMQO problem in database systems can be formulated as anHSB

problem. In an instance of theMQO problem, we are given a setQ = {q1, q2, . . . , qk} of
k database queries and a setT = {t1, t2, . . . , tr} of r tasks. A planp is a subset ofT and
a queryqi can be solved byn(i) distinct plansPi = {p1

i , p
2
i , . . . , p

n(i)
i }. Each plan is a set

of elementary tasks, and each tasktj has a cost (processing time)cj ∈ Q+. Solving the
problem consists in selecting one plan per query, and the cost of a solution is the sum of
the costs of the tasks involved in the selected plans (the cost of a task which belongs to at
least one selected plan is counted once).
Clearly, a query of theMQO problem corresponds to a subset ofS in theHSB problem, a
plan to a bundle, and a task to an element ofE . In this context,N is the maximal number
of plans per query andM , is the maximal number of queries a task can appear in. As an
example, Figure 1 depicts the following instance withQ = {q1, q2, q3}, P1 = {p1

1, p
2
1},

P2 = {p1
2, p

2
2, p

3
2}, P3 = {p1

3, p
2
3}, p1

1 = {t1, t3, t4}, p2
1 = {t1, t2}, p1

2 = {t2, t4}, p2
2 = {t5},

p3
2 = {t1, t2, t3}, p3

1 = {t1, t3}, p2
3 = {t4}, andc1 = c2 = 3, c3 = c4 = 1, c5 = 2. We have

N = M = 3. The solution(1 3 1)5 is feasible and its total cost is8. Solutions(1 2 1) and
(2 1 2) with total cost7 are both optimal.

MQO was shown to be NP-hard in [10], and different solution methods have been
proposed, including heuristics, branch and bound algorithms [10] and dynamic program-
ming [9]. Up to now, no approximation algorithms with guaranteed performance were
known forMQO.

As another application, we consider theMIN k−SAT problem. The input consists of a
setX = {x1, . . . , xt} of t variables and a collectionC = {C1, . . . , Cz} of z disjunctive
clauses of at mostk literals (a constant≥ 2). A literal is a variable or a negated variable
in X . A solution is a truth assignment forX with cost equal to the number of satisfied
clauses. The objective is to find a truth assignment minimizing the number of satisfied
clauses. (See in Section 4 for the reduction ofMIN k−SAT to theHSB problem.) Kohliet
al [7] showed that the problem is NP-hard and gave ak-approximation algorithm. Marathe
and Ravi [8] improved this ratio to2, while Bertsimaset al [3] showed that the problem
is approximable within2(1− 1

2k ). Recently, Avidor and Zwick [2] improved the result for
k = 2 (ratio1.1037) andk = 3 (ratio1.2136).

5selectp1

1
, p3

2
, p1

3
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t1 = 3

t1 = 3

t1 = 3

t1 = 3

t2 = 3

t2 = 3

t2 = 3

t3 = 1

t3 = 1

t3 = 1

t4 = 1

t4 = 1

t4 = 1t5 = 2

p1
1

p2
1

p1
2

p2
2

p3
2

p1
3

p2
3

q1 q2 q3

FIG. 1 – Example of theMQO problem (from [9]).

1.1 Our contribution

We give a deterministicN(1 − (1− 1
N

)M)-approximation algorithm for theHSB pro-
blem, whereN is the maximal number of bundles per set andM is the maximal number of
sets an element can appear in. Our algorithm follows a ratherclassical scheme in the area
of approximation algorithms : LP formulation, randomized rounding, derandomization.
However, the analysis of the performance guarantee is quiteinvolved. The approximation
ratio is, roughly speaking, the best that we can expect for the HSB problem since we also
prove thatHSB cannot be approximated within7/6− ε whenN = 2 andN − 1− ε when
N ≥ 3. Our algorithm is also the first approximation algorithm with guaranteed perfor-
mance for theMQO problem [9, 10], while it matches the best approximation ratio for the
MIN k−SAT problem (for generalk) obtained by the algorithm of [3].

2 Inapproximability

We exploit the the fact that theMINIMUM HITTING SET problem can be formulated as
a MIN VERTEX COVER in hypergraphs. In the later problem, we are given a hypergraph
H and the goal is to find the smallest subset of the vertex set with non empty intersection
with each hyperedge ofH. Here, we are interested to the particular case of this problem
where each hyperedge is composed of exactlyk vertices (meaning that for the hitting set
instance, each subsetS ∈ S is such that|S| = k). We denote this case byMIN -HYPER

4 Cahiers du LAMSADE



k−VERTEX COVER. Whenk = 2, we get the classicalMIN VERTEX COVER problem on
graphs.MIN -HYPER k−VERTEX COVERadmits ak-approximation algorithm. This result
is essentially tight whenk ≥ 3 since Dinuret al [4] recently proved that for everyε > 0,
MIN -HYPER k−VERTEX COVER cannot be approximated within ratiok − 1 − ε. When
k = 2, a famous result of Håstad states thatMIN VERTEX COVER cannot be approximated
within 7/6 − ε while a2 − 2 ln ln |V |

ln |V |
(1 − o(1))-approximation algorithm exists [5].

The following result can be easily obtained (the proof is omitted due to space limita-
tions).

Theorem 1 If there is aρ-approximation algorithm for theHSB problem, then there is an
approximation algorithm with the same ratioρ for the MIN -HYPER k−VERTEX COVER

problem.

As a corollary of Theorem 1,HSB cannot be approximated within7/6−ε whenN = 2
andN − 1 − ε whenN ≥ 3.

3 An approximation algorithm for the HSB problem

The first natural idea is to consider a simple greedy algorithm which consists in selec-
ting the cheapest bundle for eachSj . However, this strategy may work poorly, since the
fact that some elements are shared by different bundles is not taken into account. Indeed,
one can easily see that such an algorithm isM-approximate and that this ratio is reached.

Another greedy algorithm, based on the one that was originally used for theSET CO-
VER problem [11] (using the effective cost of the subsets) does not achieve a better ap-
proximation ratio. Therefore, in what follows, we focus on LP-based algorithms.

3.1 LP-based algorithms

Solving HSB may also consist in choosing a bundle for each set ofS. This helps to
formulate the problem as an integer linear program (ILP).

minimize
∑

1≤i≤n xi ci (1)

subject to
∑g(j)

l=1 xj,l ≥ 1 j = 1 . . .m
∑

{l|ei∈bl
j}

xj,l ≤ xi ∀(i, j) s.t.ei appears in a bundle ofSj

xj,l ∈ {0, 1} j = 1 . . .m andl = 1 . . . g(j)

xi ∈ {0, 1} i = 1 . . . n

Cahiers du LAMSADE 5



Each bundlebl
j is represented by a variablexj,l (xj,l = 1 meansbl

j is a subset of the
solution,xj,l = 0 otherwise). Each elementei is represented by a variablexi (xi = 1
meansei belongs to the solution, otherwisexi = 0). Among all bundles of a subsetSj , at
least one is selected because of the first constraint

∑g(j)
l=1 xj,l ≥ 1. The second constraint

ensures that all elements of a selected bundle appear in the solution. Since the objective
function

∑

1≤j≤r xj cj has to be minimized, an element which does not belong to any
selected bundle will not belong to the solution. Let LP be thelinear relaxation of the ILP :

minimize
∑

1≤i≤n xi ci (2)

subject to
∑g(j)

l=1 xj,l ≥ 1 j = 1 . . .m (3)
∑

{l|ei∈bl
j}

xj,l ≤ xi ∀(i, j) s.t.ei appears in a bundle (4)

of Sj

xj,l ≥ 0 j = 1 . . .m andl = 1 . . . g(j) (5)

xi ≥ 0 i = 1 . . . n (6)

In the sequel,OPT andOPTf are respectively the cost of a solution of ILP and LP (f
stands for fractional). As stated before, a solution ofHSB may be viewed as anm-length
vectorh whosejth coordinate,hj, indicates which bundle is chosen forSj.

We first consider a simple algorithm calledD-ROUNDING : Solve LP and forj = 1 to
m, hj gets the valueargmax1≤l≤g(j){xj,l} (ties are broken arbitrarily).

Theorem 2 D-ROUNDING is N-approximate.

Proof.Let {x∗} (resp.{x}), be an optimal assignment for ILP (resp.LP). One has :
∑

1≤i≤n

xi ci ≤
∑

1≤i≤n

x∗
i ci

Let {x̃} be the solution returned byD-ROUNDING (x̃i = 1 if ei belongs to the solution
and x̃i = 0 otherwise). For any fixedi, if x̃i = 1 thenxi ≥ 1/N . Indeed, we take the
variable whose value is the greatest (at least1/N sinceN = maxj{g(j)}). Then, we have
x̃i ≤ N xi and

n
∑

i=1

x̃i ci ≤ N

n
∑

i=1

xi ci ≤ N

n
∑

i=1

x∗
i ci

2

A natural idea for rounding an optimal fractional solution is to interpret fractional va-
lues of 0-1 variable as probabilities. Now, we consider an algorithm, calledR-ROUNDING,
of this type : Solve LP and forj = 1 to m, select randomly a bundle ofSj with a proba-
bility distribution{xj,1, . . . , xj,g(j)}.

6 Cahiers du LAMSADE



Theorem 3 R-ROUNDING is N
(

1 − (1 − 1
N

)M
)

-approximate (in expectation).

Before giving a proof of Theorem 3, we need some intermediateresults. Letui be
the probability of the event "ei belongs to the solution returned byR-ROUNDING". Notice
that1 − ui ≥ (1 − xi)

M . Indeed, one has1 − ui =
∏

{j|ei∈bundle ofSj}

∑

{l′|ei 6∈bl′

j } xj,l′ =
∏

{j|ei∈bundle ofSj}
(1 −

∑

{l|ei∈bl
j}

xj,l) ≥
∏

{j|ei∈bundle ofSj}
(1 − xi) ≥ (1 − xi)

M . The last
but one inequality comes from inequality (4), and the last inequality comes from the
definition of M which is the maximal number of sets an element can appear in. Since
1 − ui ≥ (1 − xi)

M , one hasui ≤ 1 − (1 − xi)
M . The expected cost of the solution (say

C(E ′)) is then bounded as follows :

E[C(E ′)] =
n

∑

i=1

ui ci ≤
n

∑

i=1

(

1 − (1 − xi

)M
) ci (7)

In the following, we will show that :

n
∑

i=1

(

1− (1− xi)
M

)

ci ≤ N
(

1− (1−
1

N
)M

)

n
∑

i=1

xi ci = N
(

1− (1−
1

N
)M

)

OPTf (8)

whereN ≥ 2 andM ≥ 2.6

We would like to prove that, for allxi between 0 and 1, we have

1 − (1 − xi)
M ≤ N

(

1 − (1 −
1

N
)M

)

xi

Unfortunately, the inequality is false when0 < xi < 1/N . So, we show inequality (8)
globally.

With simple calculus, inequality (8) becomes :

n
∑

i=1

xi ci ≤
(

M − N(1 − (1 − 1/N)M)
)−1

n
∑

i=1

(

(1 − xi)
M − 1 + Mxi

)

ci (9)

In the following, we prove the existence of a fractional solution {x̃} which fulfills all the
constraints of the LP, and whose total cost is an upper bound for the left part of (9) and
a lower bound for the right part of (9). The proof is based on a modified version of the
relaxed linear program.

6The problem is easy whenN = 1 (there is only one solution) orM = 1 (the greedy algorithm which
consists in selecting the cheapest bundle for eachSj is optimal).
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Lemma 1 There exists an assignment{x̃} which fulfills all constraints of LP and the
following inequalities.

n
∑

i=1

xi ci ≤

n
∑

i=1

x̃i ci (10)

n
∑

i=1

x̃i ci ≤
(

M − N(1 − (1 −
1

N
)M)

)−1
n

∑

i=1

(

(1 − xi)
M − 1 + Mxi

)

ci (11)

Proof. Let {x} be the values of the variables when LP is solved for a given instance of
theHSB problem. Now, consider the following program called LP∗ for the same instance
wheref(M, N, x) =

(

M − N(1 − (1 − 1/N)M)
)−1(

(1 − x)M − 1 + Mx
)

.

minimize
∑

1≤i≤n x̃i ci (12)

subject to
∑g(j)

l=1 x̃j,l ≥ 1 j = 1 . . .m (13)
∑

{l|ei∈bl
j}

x̃j,l ≤ x̃i ∀(i, j) s.t.ei appears in a (14)

bundle ofSj

x̃j,l ≥ 0 j = 1 . . .m andl = 1 . . . g(j) (15)

x̃i ≥ 0 i = 1 . . . n (16)

x̃j,l ≤ f(M, N, xj,l) j = 1 . . .m andl = 1 . . . g(j) (17)

LP∗ is different from LP because of the additional constraint (17). To prove that LP∗

always admit a solution, we need to show that (17) is not in conflict with the constraints
(13) and (15).

The constraints (17) and (15) can be in conflict iff(M, N, x) < 0 for somex between
0 and 1. The functionf(M, N, x) is increasing between0 and1 sincef ′(M, N, x) =
(

M−N(1−(1−1/N)M )
)−1(

M−M(1−x)M−1
)

≥ 0. Indeed, we know thatM−N(1−
(1− 1/N)M) ≥ 0 since1− (1− 1/N)M ≤ M/N . Furthermore,M −M(1−x)M−1 ≥ 0
becauseM ≥ 1 and0 ≤ x ≤ 1. As a consequence,f(M, N, x) ≥ 0 when0 ≤ x ≤ 1
becausef(M, N, 0) = 0 andf(M, N, x) increases. Then, the constraints (17) and (15)
cannot be in conflict.

The constraints (17) and (13) can be in conflict if there exists a set ofN values{xt |
1 ≤ t ≤ N and0 ≤ xt ≤ 1} such that

∑N

t=1 xt ≥ 1 and
∑N

t=1 f(M, N, xt) < 1. The
functionf(M, N, x) is convex when0 ≤ x ≤ 1 sincef ′′(M, N, x) =

(

M − N(1 − (1 −

8 Cahiers du LAMSADE



1/N)M)
)−1(

M(M − 1)(1 − x)M−2
)

≥ 0. By the convexity, we have

1

N

N
∑

t=1

f(M, N, xt) ≥ f(M, N,
1

N

N
∑

t=1

xt) ≥ f(M, N,
1

N
)

1

N

N
∑

t=1

f(M, N, xt) ≥
(

M − N(1 − (1 −
1

N
)M)

)−1(
(1 −

1

N
)M − 1 + M/N

)

N
∑

t=1

f(M, N, xt) ≥
(

M − N(1 − (1 −
1

N
)M)

)−1(
M − N(1 − (1 −

1

N
)M)

)

N
∑

t=1

f(M, N, xt) ≥ 1

Then, constraints (17) and (13) cannot be in conflict. LP∗ admits an assignment{x̃} which
fulfills inequality (10).

Now, we prove that the following inequality holds for each elementei.

x̃i ≤ f(M, N, xi) (18)

Take an arbitrary elementei. We know from LP∗ that forj = 1 . . .m, we have

x̃i ≥
∑

{l|ei∈bl
j}

x̃j,l

Since
∑

1≤i≤n x̃i ci has to be minimized, there exists a value, sayq, such that

x̃i =
∑

{l|ei∈bl
q}

x̃q,l

By the constraint (17), we get

x̃i =
∑

{l|ei∈bl
q}

x̃q,l ≤
∑

{l|ei∈bl
q}

f(M, N, xq,l) (19)

In the Appendix, we show that
∑

{l|ei∈bl
q}

f(M, N, xq,l) ≤ f(M, N,
∑

{l|ei∈bl
q}

xq,l) (20)

Using constraint (4) of the LP, we know that
∑

{l|ei∈bl
q}

xq,l) ≤ xi. Sincef is increasing
between 0 and 1, we have

f(M, N,
∑

{l|ei∈bl
q}

xq,l) ≤ f(M, N, xi) (21)
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Then, inequality (18) follows from (19), (20) and (21). Finally, we use (18) and the
definition off to obtain (11). 2

Proof of Theorem 3.

Using Lemma 1 we know that (9) is correct and (8) follows from (9). Because of (7)
andOPTf ≤ OPT , the result follows.

2

3.2 Derandomization

The derandomization ofR-ROUNDING is done via the method ofconditional expecta-
tion (see for example [11]). We get a deterministic algorithm called D2-ROUNDING.

Solve LP
Pr[hj = l] = xj,l wherej = 1 . . .m andl = 1 . . . g(j)
For j = 1 to m Do

Let l∗ = argmin1≤l≤g(j)E[C(h) | h1 = l1, . . . , hj−1 = lj−1, hj = l]

Setlj = l∗

HereE[C(h)] is the expected cost of a solution constructed by randomly choosing for
each subsetSj a bundle (and therefore the elements inside it) according tothe distribution
probability given by the valuesxj,l for l = 1 . . . g(j). This expected cost can be computed
in polynomial time : If we noteui the probability that elementei belongs to the solution,
recall that one hasui = 1 −

∏

{j|ei∈bundle ofSj}

∑

{l′|ei 6∈bl′

j
} xj,l′, and we haveE[C(h)] =

∑n

i=1 uici. In the same way,E[C(h) | h1 = l1, . . . , hj−1 = lj−1, hj = l] denotes the

conditional expectation ofC(h) providedthat we have chosen the bundleb
lj′

j′ for the set
Sj′ (for 1 ≤ j′ ≤ j − 1), and bundlebl

j for the setSj. In the same way than before, this
conditional expectation can be exactly computed in polynomial time.

Theorem 4 D2-ROUNDING is a deterministicN(1 − (1 − 1
N

)M)-approximation algo-
rithm.

Proof.

In the following, we show that the expected cost never exceeds the original one.

Suppose we are givenl = (l1 . . . lj′), a partial solution of the problem such thatl1 ∈
{1, . . . , g(1)}, l2 ∈ {1, . . . , g(2)}, . . . , lj′ ∈ {1, . . . , g(j′)} andj′ ∈ {1, . . . , m − 1}.

10 Cahiers du LAMSADE



E[C(h) | h1 = l1, . . . , hj′ = lj′]

=

g(j′+1)
∑

l=1

E[C(h) | h1 = l1, . . . , hj′ = lj, hj′+1 = l] .Pr[hj′+1 = l | h1 = l1, . . . , hj′ = lj′]

=

g(j′+1)
∑

l=1

E[C(h) | h1 = l1, . . . , hj′ = lj′, hj′+1 = l] xj′+1,l

If l′ = argmin1≤l≤g(j′+1)E[C(h) | h1 = l1, . . . , hj′ = lj′, hj′+1 = l] then

E[C(h) | h1 = l1, . . . , hj′ = lj′, hj′+1 = l′] ≤ E[C(h) | h1 = l1, . . . , hj′ = lj′]

At each step, the algorithm chooses a bundle (fixes its probability to 1) and the new
expected cost does not exceed the previous one. SinceE[C(h)] ≤ N(1−(1− 1

N
)M) OPT

at the beginning of the algorithm,D2-ROUNDING converges to a solution whose total cost
is N(1 − (1 − 1

N
)M)-approximate. 2

3.3 Integrality gap

Theorem 5 The integrality gap of the LP isN(1 − (1 − 1
N

)M).

Proof.GivenN andm, we can build an instance as follows.
– S = {S0, . . . , Sm−1}
– Sj = {b0

j , . . . , b
N−1
j }, j = 0, . . . , m − 1

– E = {e0, . . . , eNm−1}
– ci = 1 ∀ei ∈ E
– Takei ∈ {0, . . . , Nm − 1} and letα be the representation ofi with the numeral

N-base system, i.e.i =
∑m−1

j=0 α(i, j) N j whereα(i, j) ∈ {0, . . . , N − 1}. We set
ei ∈ bl

j if α(i, j) = l.
We view solutions as vectors whosejth coordinate indicates which bundle ofSj is

selected. Given a solutionh, an elementei is not selected if, forj = 0 . . . N − 1, we
haveαj

i 6= hj. Then, exactly(N − 1)m elements are not selected. The total cost is always
Nm − (N − 1)m. Now consider LP. If the variablexj,l of each bundlebl

j is equal to1/N
then the fractional cost of the solution isNm−1. Indeed, an elementei appears in exactly
one bundle perSj and the value of its variablexi in LP is also1/N . As a consequence,
we haveOPTf = Nm−1. SinceM = m in the instance, we get the following ratio

OPT

OPTf

=
NM − (N − 1)M

NM−1
= N(1 − (1 −

1

N
)M)

2
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4 About MIN k−SAT

Theorem 6 If there is aρ-approximation algorithm forHSB then there is an approxima-
tion algorithm with the same ratioρ for MIN k−SAT.

Proof.Let A be aρ-approximation algorithm forHSB. Take an arbitrary instance ofMIN

k−SAT and build a corresponding instance ofHSB as follows. The collectionS is made
of t setsS1, . . . , St, one for each variable ofX . Each setSj is composed of two bundles
bT
j andbF

j . The setE containsz elementse1, . . . , ez, one for each clause. Each element
ei has a costci = 1. Finally, bT

j = {ei | Ci contains the unnegated variablexj} and
bF
j = {ei | Ci contains the negated variablexj}. The resulting instance ofHSB is such

thatN = 2 andM = k.

Let τ be a truth assignment for the instance ofMIN k−SAT with cost C(τ). One
can easily derive fromτ a solutionh for the corresponding instance ofHSB with cost
C(h) = C(τ). Indeed, lethj beT if xj is assigned the value inτ , otherwisehj = F .

Conversely, leth be a solution for theHSB instance (withN = 2 andM = k). One
can easily derive a truth assignmentτ for the corresponding instance ofMIN k−SAT with
costC(h) = C(τ). Indeed,xj gets the valuetrue if hj = T , otherwisexj is assigned the
valuefalse.

2

As a corollary of Theorem 6,MIN k−SAT admits a2(1 − 1
2k )-approximation algo-

rithm becauseD2-ROUNDING is aN(1− (1− 1/N)M)-approximation algorithm and the
reduction is such thatN = 2 andM = k. This result is equivalent to the one proposed in
[3].

5 Concluding remarks

Among the three deterministic approximation algorithms that we considered,D2-
ROUNDING is clearly the best in terms of performance guarantee sinceN(1 − (1 −
1/N)M) < min{N, M}. Because of the integrality gap, improving this ratio with an LP-
based approximation algorithm requires the use of a different (improved) formulation.
An interesting direction would be to use semidefinite programming and an appropriate
rounding technique as done in [5] for vertex cover in hypergraphs.
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Appendix

Proposition 1 Let N and M be two positive integers, andr1, r2, . . .rN a set of non
negatives real numbers such that

∑N

i=1 ri ≤ 1. Then, the following inequality holds :

N
∑

i=1

f(M, N, ri) ≤ f(M, N,
N

∑

i=1

ri),

with f(M, N, x) =
(

M − N(1 − (1 − 1
N

)M)
)−1(

(1 − x)M − 1 + Mx
)

.
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Proof. If a andb are two non negative reals such thata + b ≤ 1, we observe that

1 − (1 − a)M + 1 − (1 − b)M ≥ 1 − (1 − a − b)M (22)

Indeed, consider a probability space and two independent events,A andB, occurring
from an experimentE. Let a (resp.b) be the probability ofA (resp.B). Now, supposeE
is repeatedM times, and letA′ (resp.B′) be the event "A happens at least one time" (resp.
"B happens at least one time"). The probability ofA′ (resp.B′) is 1 − (1 − a)M (resp.
1− (1− b)M ). Let C ′ be the event "A or B happens at least one time". The probability of
C ′ is 1 − (1 − a − b)M . We have

Pr[A′] = Pr[A′ ∩ B′] + Pr[A′ ∩ B′],

P r[B′] = Pr[A′ ∩ B′] + Pr[B′ ∩ A′],

P r[C ′] = Pr[A′ ∩ B′] + Pr[A′ ∩ B′] + Pr[B′ ∩ A′].

Thus,Pr[A′] + Pr[B′] ≥ Pr[C ′] and inequality (22) follows.

Then, we can apply inequality (22)N − 1 times to get the following inequality.

N
∑

i=1

(

1 − (1 − ri)
M

)

≥ 1 − (1 −

N
∑

i=1

ri)
M

It is equivalent to

N
∑

i=1

(

(1 − ri)
M − 1 + Mri

)

≤ (1 −

N
∑

i=1

ri)
M − 1 + M

N
∑

i=1

ri (23)

Let K =
(

M − N(1 − (1 − 1
N

)M)
)−1

. We observe thatK ≥ 0 since

(1 − 1/N)M ≥ 1 − M/N

1 − (1 − 1/N)M ≤ M/N

N
(

1 − (1 − 1/N)M
)

≤ M

0 ≤ M − N
(

1 − (1 − 1/N)M
)

One can multiply both parts of inequality (23) by K to get the result.

2
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