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Abstract

In this paper, we study the approximability properties of symmetric TSP under an
approximation measure called the differential ratio. More precisely, we improve up to
3/4 − ε (for any ε > 0) the best differential ratio of 2/3 known so far, given in Hassin
and Khuller, “z-Approximations”, J. of Algorithms, 41(2), 429-442, 2001.

Keywords: Approximation algorithm; Differential ratio; Traveling salesman problem.

1 Introduction

Due to both its practical and theoretical interests, symmetric TSP is one of the most fa-
mous combinatorial optimization problems. Given a complete edge-weighted graph, one
seeks a tour (Hamiltonian cycle) either of minimum length (MinTSP) or maximum length
(MaxTSP). Shown to be NP -hard in the very early development of the complexity theory
([24]), it has been widely studied since then from an approximate point of view. A polyno-
mial algorithm A is said to be ρ-approximate if for any instance I, m(A(I)) ≤ ρ opt(I) for a
minimization problem (resp. m(A(I)) ≥ ρ opt(I) for a maximization problem), where m(x)
denotes the value of the solution x of I, and opt(I) the optimum value of I.

While MinTSP is not 2p(n)-approximable where n = |V |, for any polynomial p, if
P 6= NP , MaxTSP is in APX : the well known 3/4-approximation algorithm by Serdyukov
[29] has recently been slightly improved up to 61/81 in [8], or even 25/33 using a random-
ized algorithm [22]. Many classical subcases have been studied, the most famous being the
so-called metric case, restriction where the weights satisfy the triangle inequality. Using this
assumption, Christofides devised in [9] a 3/2-approximation algorithm for MinMetricTSP,
and this is up to now the best ratio obtained. Dealing with MaxMetricTSP, the 3/4-ratio
that holds for the general case can be improved up to 17/20 [8], or even 7/8 using a ran-
domized algorithm [23]. Note that all these problems do not admit approximation schemes
if P 6= NP [28].

In this article, we further study the approximation properties of symmetric TSP, but
using another measure of the quality of a solution called the differential ratio. The differ-
ential ratio of a solution x of value m(x) is defined as δ(x) = m(x)−wor(I)

opt(I)−wor(I) , where opt(I) is

the value of an optimum solution, and wor(I) is the value of a worst solution. For instance,
if one studies MaxTSP, then a worst solution is a minimum length tour. In other words,
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this ratio measures the relative position of m(x) in the interval [wor(I), opt(I)] containing
all feasible values (the definition can be rephrased for a maximization problem as : the
solution x is δ-approximate if m(x) ≥ δ opt(I) + (1 − δ)wor(I)). Of course, δ ∈ [0, 1] (0 for
wor(I) and 1 for opt(I)), and the closer to 1 the better the solution. The main property of
this ratio is to be stable under affine transformation of the objective function (see [14] for a
mathematical and operational justification of the ratio). Introduced in [2, 3], this ratio has
been first used for studying mathematical programming problems, where the standard ratio
is not suitable when very common operations such as “removing a constant” are performed,
see for instance [31]. Afterwards, this approach has been considered for the main combina-
torial optimization problems, leading to the development of new techniques and interesting
results (see for instance [5] for vehicle routing, [20] for several results on graph problems,
[10, 15, 17] for MinColoring, [21] for several weighted versions of graph partitioning, [12, 13]
for Bin Packing, [7, 16] for satisfiability, [11, 6] for Set Cover, and very recently [18] for
weighted Set Cover, etc.). A survey of many results about differential approximation can
be found in the book chapter [4].

Dealing with symmetric TSP, we shall point out two major differences when using the
differential ratio instead of the standard one. First, the dissymmetry between maximizing
and minimizing completely disappears. More precisely, using an affine transformation of
weights (w(e) → w′(e) = M − w(e), for a sufficiently large M , as for instance the heaviest
weight plus 1), one can easily see that solving MinTSP (resp. MaxTSP) with the initial
weights is equivalent to solve MaxTSP (resp. MinTSP) on the transformed weights. Indeed,
the value of any tour T verifies w′(T ) = nM − w(T ). Since the differential ratio is stable
under affine transformation, this means that a δ-approximation algorithm for MinTSP (resp.
MaxTSP) can be immediately derived from a δ-approximation algorithm for MaxTSP (resp.
MinTSP).

The other difference, maybe rather surprising, is the equivalence between the metric case
and the general case. While considering a metric distance is a rather important assumption
when using the standard ratio, TSP and MetricTSP are equivalent when using the differ-
ential ratio. Indeed, again, one only has to affinely transform weights w(e) → wM + w(e),
where wM is the weight of an heaviest edge, to get an equivalent metric instance of sym-
metric TSP.

To sum up, dealing with differential approximation ratios, MinTSP, MaxTSP, Min-
MetricTSP and MaxMetricTSP are all equivalent. These problems have been tackled sev-
eral time from a differential approximation point of view. The best ratio obtained so far is
2/3 ([20, 25]), which can be improved up to 3/4 when the weights are restricted to be 1 or
2, [27] (note that in this case the best ratio known for the standard ratio is 7/6, see [28]).
Let us also mention that classical optimization strategies have been studied, such as the
well known local 2-opt which has been shown in [26] to be a 1/2-differential approximation
(while not being a constant standard approximation algorithm even for MinMetricTSP).
Note that, as well as in the standard approximation framework, these problems do not
admit differential approximation schemes. Finally, dealing with asymmetric TSP, the best
differential ratio obtained so far is 1/2 [20].

In this article, we improve these results by showing that symmetric TSP (i.e. MinTSP,
MaxTSP, MinMetricTSP and MaxMetricTSP) is differential approximable within an asymp-
totic ratio of 3/4 (more precisely within a ratio of 3/4−O(1/n)). Note that this is a notice-
able improvement respect to 2/3 also because this is very close to the best ratio known for
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MaxTSP (61/81). Since for a maximization problem the differential ratio is smaller than
the standard one (m(x) ≥ δ opt(x) + (1− δ)wor(x) implies m(x) ≥ δ opt(x), when solution
values are nonnegative), the gap is now almost as small as it can be.

Let us already mention that, carrying on with this line of research, the study of sym-
metric TSP in the geometric case seems to be of particular interest. Indeed, when vertices
are points in the plane (and the weight is the Euclidean distance), then it has been shown
that both MaxTSP and MinTSP admit an approximation scheme (see resp. [30] and [1]).
The existence of a differential approximation scheme is undoubtedly a very interesting and
challenging question that would deserve further research.

In the following, we denote by opt(I), apx(I) and wor(I) the value of an optimal, an
approximate and a worst solution respectively for an instance I. Due to the equivalence
between MaxTSP and MinTSP, the results, only proven for MaxTSP, are obviously also
valid for MinTSP. The proof of the result of the paper consists of two parts : in Section 2
we devise a 3/4-differential algorithm when the number of vertices is even. In Section 3,
we show that the general case reduces to the previous subcase obtaining asymptotically the
same ratio (3/4 − O(1/n) in our case).

2 Approximation for even instances

In this section, we assume that the number of vertices is even (ie |V | = 2n), and provide a
3/4-differential approximation for symmetric TSP.

The method used is based on the computation of a maximum weight 2-matching E2 =
{C1, . . . , Cp} of I = (K2n, w), which can be done in polynomial time, [19]. We separate two
cases depending on the existence of a cycle of size 3 in E2.

Case 1: There exists j ∈ {1, . . . , p} such that |Cj | = 3. Wlog, assume that j = p and
Cp = {v1, v2, v3}.

We present a heuristic which is an adaptation of the Serdyukov’s algorithm working for
MaxTSP, [29].

Let us first remind this algorithm and the result that can be derived from it (Lemma
2.1). This method consists in computing a maximum weight perfect matching E1 of I and
moving one edge of each cycle Ci of E2 to E1 in such a way that we do not create any cycle
(see Figure 1 for an illustration). At the end of the process, we obtain two collections of
paths P1 (containing E1) and P2 such that:

Lemma 2.1 The collection of paths P1 and P2 satisfy the following properties:

(i) P1 and P2 are two collections of vertex disjoint paths such that the vertex sets of these
collections of paths are exactly V (K2n).

(ii) If Vi are the endpoints of the paths of Pi for i = 1, 2, then V1 ∪ V2 = V (K2n) and
V1 ∩ V2 = ∅.

(iii) Each path P of P1 alternates between edge of E1 and E2 and the end edges of P are
in E1.

Proof: By construction, (i) is true for P2.
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Figure 1: The two partition into paths P1 and P2.

Let Pj
2 be the set of the j paths built from C1, . . . , Cj , i.e. after iteration j (and similarly

Pj
1 the collection of paths built from E1 after iteration j). In particular, Pp

k = Pk, k = 1, 2.
We will prove the result by induction.

At the beginning (before moving any edge), (ii) and (iii) are true for P0
1 and P0

2 , and
(i) is true for P0

1 . Suppose this is true after iteration j − 1, and proceed the jth iteration
as follows: choose any vertex v in Cj , and consider the two edges e1 = [v, a] and e2 = [v, b]

incident to v in Cj . v cannot be an internal vertex of a path of Pj−1
1 since otherwise v

would be incident to 3 edges of E2 (using (iii)), contradiction. Using (i), we obtain that v
is an endpoint of a path P of Pj−1

1 . Thus, since a 6= b, at least one of these two vertices
(assume that it is a) is not the other endpoint of P . For the same reason, a is also the
endpoint of another path P ′ of P1. When we move e1:

• properties (i) (for Pj
1) and (iii) still hold;

• property (ii) also, since now v and a are new endpoints of a path in Pj
2 , but are no

more endpoints of paths in Pj
1 .

Now, we describe our method. It uses the fact that we assume the existence of a triangle
Cp = {v1, v2, v3} in E2 in order to apply two times the previous construction, thus producing
4 collections of paths P1, P2,P

′
1,P

′
2, as follows.

We apply once the construction and get a first couple P1, P2. Then remark that, at each
iteration in the construction, we can choose the vertex v incident to the two edges candidate
to move from E2 to E1. Then, wlog., assume that when applying the first construction the
edge [v1, v2] has moved from Cp ∈ E2 to E1. To get P ′

1,P
′
2, we apply exactly the same

construction as previously, except for the last cycle. For Cp, we choose to move one of
the two edges [v1, v3] or [v2, v3] incident to v3 (instead of [v1, v2]). Wlog, assume that it
is [v1, v3]; using arguments of the proof of Lemma 2.1, we obtain two other collections of
paths P ′

1 (containing E1) and P ′
2 satisfying properties (i), (ii) and (iii).

Moreover, if V ′
i denotes the endpoints of P ′

i for i = 1, 2, then we can observe that
v3 ∈ V1, v2 ∈ V ′

1 and V1 \{v3} = V ′
1 \{v2}. Thus, it is possible to complete P1 into a tour T1
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and P ′
1 into a tour T ′

1 such that the added edges form an hamiltonian path HP1 on vertices
V1 ∪ {v2} and with endpoints v2, v3.

Similarly, we have v2 ∈ V2, v3 ∈ V ′
2 and V2 \ {v2} = V ′

2 \ {v3}. Thus, we can also add
some edges to P2 (resp., P ′

2) in order to obtain a tour T2 (resp., T ′
2) in such a way that the

added edges form an hamiltonian path HP2 on vertices V2∪{v3} and with endpoints v2, v3.

An illustration of this construction is given in Figure 2. For completeness, let us also
give a formal proof of this claim for HP2. Let V2 = {ai, bi : i = 1, . . . p} be the endpoints
of the paths of P2, where [ai, bi] is the edge that has moved from E2 to E1 at iteration
i. In particular, we have ap = v1 and bp = v2. Similarly, let V ′

2 = {a′i, b
′
i : i = 1, . . . p}

be the endpoints of the paths of P ′
2 with a′p = v1 = ap, b′p = v3 and a′i = ai, b′i = bi for

i = 1, . . . , p − 1. The two tours T2 and T ′
2 depend on the parity of p and can be described

as follow.

• Assume first that p is odd. We build T2 = P2 ∪ {[ai, bi+1] : i = 1, . . . , p} and
T ′

2 = P ′
2 ∪ {[b′i, a

′
i+1] : i = 1, . . . , p}, with bp+1 = b1 and a′p+1 = a′1. Since ap = a′p,

bp = v2, b′p = v3, and a′i = ai, b′i = bi for i = 1, . . . , p − 1, we deduce that the added
edges HP2 = {[ai, bi+1], [b

′
i, a

′
i+1] : i = 1, . . . , p} form an hamiltonian path from b′p to

bp described by the sequence HP2 = (b′p, a1, b2, . . . , ap, b1, a2, b3, . . . , bp).

• Now, if p is even, then we only modify T ′
2 and define T ′

2 = P ′
2 ∪ {[b′i, a

′
i+1] : i =

1, . . . , p − 1} ∪ {[a′p, a
′
1], [b

′
p, b

′
p−1]}. As previously, one can easily check that the

added edges HP2 = {[ai, bi+1] : i = 1, . . . , p} ∪ {[b′i, a
′
i+1] : i = 1, . . . , p − 1} ∪

{[a′1, a
′
p], [b

′
p, b

′
1]} form an hamiltonian path from b′1 to b1 described by the sequence

HP2 = (b′p, b1, a2, b3, . . . , ap, a1, b2, a3, . . . , ap−1, bp).

In conclusion, we get 4 tours T1, T
′
1, T2 and T ′

2. By taking the solution of maximum
weight with cost apx(I), we obtain:

4apx(I) ≥
2

∑

i=1

(w(Ti) + w(T ′
i )) = 2(w(E1) + w(E2)) + (w(HP1) + w(HP2)) (1)

On the one hand, we have w(E2) ≥ opt(I) and w(E1) ≥ opt(I)/2, and on the other
hand since HP1 ∪ HP2 is a tour on K2n, we get w(HP1) + w(HP2) ≥ wor(I). Plugging
these inequalities with inequality (1), we deduce:

apx(I) ≥
3

4
opt(I) +

1

4
wor(I) (2)

Case 2: For all j ∈ {1, . . . , p} we have |Cj | ≥ 4. In this case, we extend the method
proposed in [20, 25]. We study 2 subcases depending on the parity of p.

Case 2.1: If p is odd. Obviously, we can assume p > 1. For each cycle Ci of the 2 matching
E2 = {C1, . . . , Cp}, we consider 4 consecutive edges Ai = {[ai, bi], [bi, ci], [ci, di], [di, fi]}
1(with eventually fi = ai if |Cj | = 4), and we produce 4 solutions by starting from E2: the
first solution Ta deletes the edge [ai, bi] for each cycle Ci with i = 1, . . . , p, and for each

1we denote the fourth vertex by f in order to avoid confusion with edges, denoted e in this article
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Added edges in V
′

2

v3

HP2

v2

v1

v1v2

v1v2

v3

v3

v3

v1

v3

v2

v2

v1

v1

v2

v1

v3

V
′

2

V2

v3

v2 v1

v3

v2 v1

P2

P
′

2

T2

T
′

2

E1

E2

Added edges in V2

Figure 2: The construction of tours T2 and T ′
2 and the hamiltonian path HP2.

i ∈ {1, . . . , p− 1} adds the edge [ai, ai+1] if i is odd, adds the edge [bi, bi+1] if i is even and
finally adds the edge [ap, b1]. The 3 other solutions Tb, Tc and Td are described similarly by
deleting edges [bi, ci], [ci, di] and [di, fi] respectively. In particular, for the last solution Td,
we have added for i ∈ {1, . . . , p− 1} the edges [di, di+1] if i is odd, [fi, fi+1] if i is even and
finally edge [dp, f1].

In the multigraph of these 4 solutions, that is (V, Ta + Tb + Tc + Td), each edge e of
A = ∪p

i=1Ai appears exactly 3 times whereas the other edges of E2 appears exactly 4 times.
On the other hand, the edges of B = (Ta ∪ Tb ∪ Tc ∪ Td) − E2 appears one time.

Thus, by considering the best of the 4 solutions we produced, we get: 4apx(I) ≥
3w(A) + 4w(E2 − A) + w(B) = 3w(E2) + w(B + E2 − A) ≥ 3opt(I) + w(B + E2 − A).

Now, remark that B+E2−A is a tour of I. Indeed, E2−A contains paths (fi, gi, . . . , ai)
for each i = 1, . . . , p. In B, we get a path P = (ap, b1, b2, . . . bp, c1, . . . , cp, d1, . . . , dp, f1), and
edges [ai, ai+1] (i odd) or [fi, fi+1] (i even). These edges and the paths of E2−A create a path
from f1 to ap, which constitutes together with P a tour. Hence, w(B + E2 −A) ≥ wor(I).
We get:

apx(I) ≥
3

4
opt(I) +

1

4
wor(I) (3)
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Case 2.2: If p is even, then the previous construction does not produce a tour. We adapt it
as follows. As previously, we consider 4 consecutive edges Ai = {[ai, bi], [bi, ci], [ci, di], [di, fi]}
in cycle Ci of the 2-matching E2, except for the last cycle Cp where we replaced edge [dp, fp]
by [zp, ap] with zp is the other neighbor of ap in Cp (eventually, zp = dp if |Cp| = 4). Thus,
Ap = {[zp, ap], [ap, bp], [bp, cp], [cp, dp]}.

Moreover, for C2, we do not choose consecutive vertices a2, b2, c2, d2, f2 at random. We
choose them such that:

w([a1, b2]) + w([a2, b1]) ≤ w([a1, a2]) + w([b1, b2]) (4)

Actually, this is always possible since otherwise for all e = [x, y] ∈ C2 we would get
w([a1, y]) + w([a2, x]) < w([a1, x]) + w([b1, y]) (here, we assume that each edge e = [x, y]
is considered as a directed edge where the orientation is given when one walks around
C2). Summing up the previous inequality for each edge e ∈ C2, we obtain the inequality
∑

v∈V (C2) (w([a1, v]) + w([b1, v])) >
∑

v∈V (C2) (w([a1, v]) + w([b1, v])), contradiction.

Then, we produce 4 tours Ta, Tb, Tc and Td as follows: first, Ta deletes from E2 edges
[ai, bi+1] if i < p and [zp, ap]; then, solution Ta adds edges [ai, ai+1] if i < p is odd, adds
the edge [bi, bi+1] if i < p is even and finally adds the edge [zp, b1]. The other tours Tb, Tc

and Td are constructed similarly. In particular, Td deletes edges [di, fi] if i < p and [zp, ap],
adds for i ∈ {1, . . . , p − 1} edges [di, di+1] if i is odd, [fi, fi+1] if i is even and edge [cp, f1].

As previously, in the multigraph (V, Ta + Tb + Tc + Td), each edge e of A = ∪p
i=1Ai

appears exactly 3 times whereas the other edges of E2 appears exactly 4 times. On the
other hand, the edges of B = (Ta∪Tb∪Tc∪Td)−E2 appears one time. Thus, by considering
the best of these 4 solutions, we get:

4apx(I) ≥ 3w(A) + 4w(E2 − A) + w(B) = 3w(E2) + w(B + E2 − A) (5)

However, now B + E2 − A is not a tour of I, but a 2-matching constituted by two
cycles. The first one is (b1, b2, . . . , bp, d1, . . . , dp, g1, . . . , gp, b1), constituted of edges in B ;
the second one is constituted by the path (ap, c1, . . . , cp, f1) of B, the paths (fi, gi, . . . , zi, ai)
of E2 − A, and edges [ai, ai+1] (i odd) or [fi, fi+1] (i even).

But using inequality (4), one can flip edges [a1, a2], [b1, b2] by edges [a1, b2], [a2, b1] with-
out increasing the global weight and one obtain a tour T such that wor(I) ≤ w(T ) ≤
w(B + E2 − A). In conclusion, using this inequality and inequality (5), we obtain:

apx(I) ≥
3

4
opt(I) +

1

4
wor(I) (6)

Combining the results obtained in cases 1 (equation (2)) and 2 (equation (6)), we obtain
the following result.

Theorem 2.2 When the number of vertices is even, symmetric TSP is 3/4-differential
approximable.

3 General case

In the previous section, we dealt with even instances. Here, we show that one can solve
symmetric TSP also on odd instances within an asymptotic differential ratio of 3/4.
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Theorem 3.1 In the general case, symmetric TSP can be differential approximated with
ratio 3/4 − O(1/n).

Proof: From the discussion above, we have to deal with instances the number of vertices
of which is odd. In this case, we find a (3/4 − O(1/n))-approximate solution using the
previous result on even instances. Let n odd, I = (Kn, w) an instance of symmetric TSP
and denote V = {v1, . . . , vn} the set of vertices.

We find an approximate solution as follows: for each i ∈ {1, . . . , n}, we consider the
sub-instance Ii on the subgraph induced by V \ {vi}. On this instance, we apply our
approximation method given above and get a tour Ti. Then, we insert vi in the best
position in Ti, thus producing a tour T ′

i on I. Finally, we take the best tour T among these
n tours T ′

i , i.e. apx(I) = w(T ) = maxi=1,...,n w(T ′
i ).

Note that, when inserting vertex vi in Ti between two vertices vj and vk (consecutive in
Ti), we get a tour of value w(Ti) + w([vj , vi]) + w([vi, vk]) − w([vj , vk]). Since we take the
best of these nodes, by considering the n − 1 possible insertions, we get:

(n − 1)w(T ′
i ) ≥ (n − 1)w(Ti) + 2

∑

k,k 6=i

w([vi, vk]) − w(Ti)

≥ (n − 2)w(Ti) + 2
∑

k,k 6=i

w([vi, vk])

Since we take the best tour among the T ′
i ’s, we get:

n(n − 1)apx(I) ≥ (n − 2)
n

∑

i=1

w(Ti) + 2S (7)

where S =
∑n

i=1

∑

k,k 6=i w([vi, vk]) is twice the total weight of all edges in the graph.

Similarly, by inserting vi in any position in a worst tour on Ii, we get a tour on I. The
worst solution on I is of course worse than each of these solutions, i.e.:

(n − 1)wor(I) ≤ (n − 1)wor(Ii) + 2
∑

k,k 6=i

w([vi, vk]) − wor(Ii)

≤ (n − 2)wor(Ii) + 2
∑

k,k 6=i

w([vi, vk])

Hence:

n(n − 1)wor(I) ≤ (n − 2)
n

∑

i=1

wor(Ii) + 2S (8)

Finally, consider an optimum solution (v∗1, v
∗
2, . . . , v

∗
n) on I. By deleting v∗i in this tour,

we get a tour on Ii the value of which is opt(I)−w([v∗i , v
∗
i−1])−w([v∗i , v

∗
i+1])+w([v∗i−1, v

∗
i+1]) ≤

opt(Ii). By considering each of the possible deletion, we get (obviously v∗0 means v∗n and
v∗n+1 means v∗1):

n × opt(I) − 2
n

∑

i=1

w([v∗i , v
∗
i+1]) +

n
∑

i=1

w([v∗i−1, v
∗
i+1]) ≤

n
∑

i=1

opt(Ii)

Since n is odd,
∑n

i=1 w([v∗i−1, v
∗
i+1]) is the value of a tour, hence at least wor(I). Then:

(n − 2) × opt(I) + wor(I) ≤
n

∑

i=1

opt(Ii) (9)
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Now, using equations (7), (8), (9) and the fact that w(Ti) ≥ (3opt(Ii) + wor(Ii))/4, we get:

4n(n − 1)apx(I) ≥ 3(n − 2)
n

∑

i=1

opt(Ii) + (n − 2)
n

∑

i=1

wor(Ii) + 8S

≥ 3(n − 2)2opt(I) + 3(n − 2)wor(I) + n(n − 1)wor(I) + 6S

Finally, recall that S is twice the total weight of the n(n− 1)/2 edges of the graph. But by
symmetry, the medium value of all the tours on the graph is equal to n times the medium
value of the edges, i.e. n×S/(n(n−1)). This medium value of the tours is of course greater
than the worst value. Hence, wor(I) ≤ S/(n − 1). This leads to:

4(n2 − n)apx(I) ≥ 3(n2 − 4n + 4)opt(I) +
(

n2 + 8n − 12
)

wor(I)

This is apx(I) = (3/4− α(n))opt(I) + (3/4 + α(n))wor(I), where α(n) = (9n− 12)/(4n2 −
4n) = O(1/n) (remark that 4(n2 − n) = 3(n2 − 4n + 4) + (n2 + 8n − 12)).

Let us remark that Theorem 3.1 also holds for any ρ-differential approximation of sym-
metric TSP: any ρ-differential approximation algorithm of symmetric TSP on even instances
can be polynomially converted in a ρ(1−α(n))-differential approximation of symmetric TSP
(working on any instance) where we recall that α(n) = (9n − 12)/(4n2 − 4n) = O(1/n).

An interesting open question is to know whether one can improve the differential ratio
of 1/2 for asymmetric TSP given in [20] using similar ideas.
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