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Abstract: This paper is concerned with the integer quadratic multidimensional
knapsack problem (OMKP) where the objective function is separable. Our objective is
to determine which expansion technique of the integer variables is the most
appropriate to solve (OMKP) to optimality using the upper bound method proposed
by Quadri et al. (2007). To the best of our knowledge the upper bound method
previously mentioned is the most effective method in the literature concerning
(OMKP). This bound is computed by transforming the initial quadratic problem into a
0-1 equivalent piecewise linear formulation and then by establishing the surrogate
problem associated. The linearization method consists in using a direct expansion
initially suggested by Glover (1975) of the integer variables and in applying a
piecewise interpolation to the separable objective function. As the direct expansion
results in an increase of the size of the problem, other expansions techniques may be
utilized to reduce the number of 0-1 variables so as to make easier the solution to the
linearized problem. We will compare theoretically the use in the upper bound process
of the direct expansion (I) employed in Quadri et al. (2007) with two other basic
expansions, namely: (1) a direct expansion with additional constraints and (Il1) a
binary expansion. We show that expansion (I1) provides a bound which value is equal
to the one computed by Quadri et al (2007). Conversely, we provide the proof of the
non applicability of expansion (I11) in the upper bound method. More specifically, we

will show that if (I11) is used to rewrite the integer variables into 0-1 variables then a



linear interpolation can not be applied to transform (OMKP) into an equivalent 0-1

piecewise linear problem.
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Introduction

This paper deals with the integer quadratic multi-knapsack problem (OMKP) where
the objective function is separable. Problems of this structure arise in numerous
industrial and economic situations, for instance in production planning [12], reliability
allocation [10] and finance [5]. These include the main application of (OMKP) which
is in the portfolio management area where the investments are independent, see [4]
and [5]. Nevertheless, solving (OMKP) efficiently will constitute a starting point to
solve the more general and realistic portfolio management problem where the

investments are dependent, i.e. the objective function is non separable.
The integer quadratic multi-knapsack problem (OMKP) where the objective function

IS separable consists in maximizing a concave separable quadratic integer function

subject to m linear capacity constraints. It may be stated mathematically as follows:

max f(x) zz;l»:lcjxj _djsz' zifj(xj)
=1

(OMKP) 24X, <b, i=1m
S.t. OSx_/Suj, j=1...,n
x; integer, j=1..,n



where the coefficients ¢;, d;, a;;, b; are nonnegative. The bounds u; of variables x; are

pure integers, with u; < (cj /2dj). Indeed, the separable objective function is concave
which implies that for all function f;, 7 < (c_]. /2dj), where x’; is the optimal solution of

the program max fj(xj)-

The problem (OMKP) which is a NP-hard problem [3] is a generalization of both the
integer quadratic knapsack problem [2] and the 0-1 quadratic knapsack problem

where the objective function is subject to only one constraint [1].

Since, (OMKP) is NP-hard, one should not expect to find a polynomial time algorithm
for solving it exactly. Hence, we are usually interested in developing branch-and-
bound algorithms. A key step in designing an effective exact solution method for such
a maximization problem is to establish a tight upper bound on the optimal value.

Basically, the available upper bound procedures for (OMKP) may be classified as
attempting either to solve efficiently the LP-relaxation of (QMKP) (see [2] and [8]) or
to find a good upper bound, of better quality than the LP-relaxation of (OMKP),
transforming (OMKP) into a 0-1 linear problem easier to solve (see [4] and [9]). To
the best of our knowledge, the upper bound method we have proposed in a previous
work [11] is better than the existing methods (Djerdjour, Mathur and Salkin algorithm
[4], a 0-1 linearization method, a classical LP-relaxation of (OMKP)) from both a
qualitative and a computational standpoint. We have first used a direct expansion of
the integer variables, originally suggested by Glover [7], and apply a piecewise
interpolation to the objective function: an equivalent 0-/ linear problem is thus
obtained. The second step of the algorithm consists in establishing and solving the

surrogate relaxation problem associated to the equivalent linearized formulation.

Nevertheless the transformed linear formulation encounters numerous 0-/ variables
because of the direct expansion used (denoted by expansion (1) in the following).
Consequently, other expansions techniques may be utilized to reduce the number of

0-1 variables so as to make easier the solution to the linearized problem. Let us



consider the three basic expansions for rewriting the integer variables of (OMKP) into
0-1 variables:

e Expansion (1): direct expansion
szlyjk =X
X, e{l } Y€ 01}
Vi=1l..n, k=1 u;

e Expansion (I1): direct expansion with additional constraint
( ZZilky‘jk =X

2:;1)";1{ <1

e{l...uj} ,y'jk e {01}

9 Vi=l..n, k=1 u

e Expansion (I11): binary expansion.
( [l09(“ )-|2k
Z Tk =X

< Z[Iog(u <u

J

g xje{l...uj}, zjke{O,l} Vi=1...n, kzl...’rlog(uj)—l

The purpose of this note is to evaluate the impact of the use of the above expansion
techniques, on the upper bound computation developed in [11]. More specifically, we
will determinate which expansion is the most appropriate to be used in the upper
bound method for (OMKP) [11]. We will compare theoretically the use of the direct
expansion (1) with the direct expansion with additional constraints (1) and with the
binary expansion (I11). We will show that the use of (I1) provides a bound which value
is equal to the one computed in [11]. Conversely, we provide the proof of the non
applicability of both (111) and a linear interpolation to transform (OMKP) into an

equivalent 0-1 piecewise linear problem.



The paper is organized as follows. The next section summarizes the upper bound
method developed in [11] detailing the direct expansion (I) of integer variables and
the piecewise interpolation. In Section 3, the direct expansion with additional
constraints (I1) is applied to (OMKP) so as to compute the upper bound suggested by
Quadri et al. [11]. Section 4 is dedicated to the binary expansion (111). We finally
conclude in Section 5.

In the remainder of this paper, we adopt the following notations: letting (P) be an
integer or a 0-1 program, we will denote by (P ) the continuous relaxation problem of
(P). We let Z[P] be the optimal value of the problem (P) and Z[ P ] the optimal value
of (P). Finally [x] (resp. | x|) will denote the smallest (resp. highest) integer greater

(resp. lower) than or equal to x.

Section 2. Direct expansion of the integer variables

In this section we summarize the upper bound method for (OMKP) proposed
by Quadri et al. [11]. First, an equivalent formulation is obtained by using a direct
expansion (1) of the integer variables x; as originally proposed by Glover [7] and by
applying a piecewise interpolation to the initial objective function as discussed in [4].

The direct expansion of the integer variables x; consists in replacing each
variables x; by a sum of u; 0-7 variables y; such that}" " y, = x . Since the objective
function f'is separable a linear interpolation can then be applied to each objective

function term f;. Consequently, (OMKP) is equivalent to the 0-/ piecewise linear
program (MKP):

max [(y) = z;:l (Z:‘ils./kyﬂc)

Zizl(%z,tilyjk)ébn i=1...,m
yjk 6{0'1}' ]:1 ..... }’Z,k =1..., u

(MKP)
5. 1.

Where, 37 v =x; v s =fi = Frea N [ =cjk—d jk*.



In the second step of the algorithm, a surrogate relaxation is applied to the LP-
relaxation of (MKP). The resultant formulation (KP, w) is the surrogate relaxation

problem of (MKP) and can be written as:

max 3 (7,50,
j=1\Lak=1 kY jk
n m

Zj:l [Zi=l Widjj ]szzl Vi S sz=1 wib;
v el j=Ll..nk =1 u

(KP, w)
S.t.

As proved by Glover [7], (KP, w) is a relaxation of (MKP). For any value of w>0
z[kP.w| the optimal value of (kP,w) constitutes an upper bound for z[pkp| . But the
value of the bound z[KP,W] depends on the choice of the surrogate multiplier

employed. It is proved in [10] that if w* is chosen as the optimal solution of the dual
of (M) then the optimal value of (KP,w*) is a tight upper bound for (OMKP) and it

is obtained in a very competitive CPU time.

Nevertheless, the direct expansion used in the above upper bound procedure results in

an increase of the size of the linearized problem. Indeed, the number of 0-1 variables

is equal to Z;’Eluf whereas it is well known that fewer variables are included in the

program so less running time is consumed. The purpose of the next sections is to try
to reduce the equivalent linearized problem size, using other expansion techniques
and to evaluate the impact of such techniques on the computation of the upper bound

proposed in [11].

Section 3. Direct expansion of integer variables with additional constraints

In this section we apply to the integer variables of (OMKP) the direct expansion with

additional constraints (I1). That is each variable x; is replaced by the following
expression >/ ky, where y, €{01}, k =1,..,u; and j=1,...n. Since the integer

variables are now replaced by 0-1 variables, we transform the resultant 0-1 quadratic



program into a 0-1 linear problem as follows: we replace each objective function term

u] i
fi(x;) by ijkyjk where fix = cjk — dik? .
k=1

The problem (OQMKP) is thus equivalent to the following problem (MKP:):

(MKP,)

maximize h(y) =" Zilfjky‘jk)

Z‘,':l(aijzkilyjk)gbi, i=l,...,m
s.t.l %,
Y <1 j=1..,n
k=1
Yk € {0,1}, J=Ll...nk =1 u;

Following the upper bound method developed in [11] we then establish the surrogate
problem (KP,,w) associated to (MKP,). The problem (KP,,w) can be written as:

(szvw)

maximize h(y') = Z_’;:l :ilfjkyljk)

S. 1.

5 30 by o)< Sn,

I

zyjkgl j=1..,n

k=1

Yik € {0’1}1 j=L...n k =1..., u;

Utilizing the optimal solution w* of the dual of (MKP,) as the surrogate multiplier,

the optimal value of the LP-relaxation of (KP, w*) provides an upper bound of

(OMKP). The following proposition and its corollary show that this upper bound,

computed in this section through the use of expansion (Il), is equal to the one

computed in [11].

Proposition 3.1 Let w be any real surrogate multiplier, w > 0. The following result

holds:



Z[KP, w|= z|KP2,w|
Proof 3.1

e We first show that: Z[KPZ,w]g Z[KP,w]

Let »' be an optimal solution for (M) We derive from 3" a solution y
feasible for (KP,w), such that #(5") < g (7).
Let je{l,...,n}. We denote:
- X = ik;‘/'jk . Obviously ¥, €[0,u,];
k=1
- P :\_)?jj, where | x| stands for the highest integer lower than or

equal to the real x. p;is the integer part of X ;. Note that p; <u; since

=I
IA
<

J J?

- & =X,-p;, the fractional part of x: X,

. =p;+é&;. Note that

£ € [0,1[.

We define the solution y as follows:

v =1 forl<k<p;
Viel .l 17,0=¢
Vi =0 forp, +2<k<u;

We immediately get: Vje{l,....n}, Y k¥, =X, =y, . This implies that

y is feasible for (KP, w) since we have:

D wb; (since y'is feasible for (KP2,w))
i=1

I
[
=
7

IA

Let us now show that 4(y") < g(¥) . It suffices to prove that:



/
vj E Z f <25 yjk

Let je{l,...,n}. We first note that:

ZJ:Sﬂc Vi = {isﬂc} tSjpnE; = {i(fﬂc - fj,k—l)} + (f./',Pﬁl ~Jin; )51
k=1 k=1

k=1
= (1_ € )fj,pj & S

In the following we name A ; the quantity (1—gj)fj’pj +&; fj,pﬁl. We now

Mj i
show that A ; constitutes an overestimation of Z S ¥ 1f we suppose as
k=1

j '
previously mentioned that Zkyjk =p,; +¢&,;. For a given index j, let us
k=1

consider the following linear problem ( ) and its dual problem ( )

ll

maximize h(y') = ijky]k
k=1
Mj .
Zyjk =1
k=1
u/ .

k=1

¥y 20 k=1..u

minimize a+(pj+8j)ﬂ
()4, |@+kB= sy k=1
az=0

The solution y defined by ()7”,], =1l-¢;, J7j,p,+1 =&;, yp=0 for k#p,

and k= p;+1) is clearly feasible for (P_].) and of value A;. The

complementary slackness conditions suggest to consider the following

solution (@, 3 )for (D, ):



%: (pj +1)fj,pj _pjfjvpfrl
ﬂ:fjvpfrl_fiypj

We now prove that (&ﬁ) is feasible for (Dj). Since its value in (Dj) is

clearly A, the feasibility of (&,,5) for (Dj) will imply by duality in linear
programming that A =Z[Pj] : (&,ﬁ) is feasible for (Dj) if and only if:

a >0 and Vke{l,...,uj} Ez+k,§2fjk. Noting that £, =0, we only have
to prove the following result:
Vke{O,...,u-}, , &+k,§2fjk

J

Let us denote IT, (k) = (pj +1—k)fj,p_/_ +(k—pj)fj’pj+1 — [ We thus have

to prove that:
Vke,...u;} , T1,(k)20
Using the definition of £, (/4 =cjk—djk2), we find with some easy
algebra:
;(k)=dk*—(2p, +Dd;k+d,p;(p; +1)

Thus, IT,(k) is a degree 2 polynomial in £. Its discriminant is equal to d?, so
[T, (k) admits two roots: p, and p; +1. Since the coefficient of k% in I, (k),
d;, is nonnegative, IT;(k) is also nonnegative for & outside the roots, namely
for k<p; and k> p; +1. Since we only consider integer values of &, we get:

Vk e {O”/} I, (k) = 0, which implies that (&,ﬁ) is feasible for (Dj) and

u

/ .
therefore that A ; is an overestimation of ijk Vi
k=1

uj ‘ uj
DS T SAEY S
k=1 k=1

This last inequality implies that 4(y"') < g(») and therefore that:

z[kP2,w|< z[KPw] .

10



e We now show that: Z [KP, W]S Z [KPZ, w]

The proof is analogous to the one of the previous point. Let y be an optimal

solution for (KP, w). We derive from y a solution y' feasible for (KPZ,w),
such that g(y) =h(3").

Since (KP, w) is linear continuous knapsack problem, y admits at most one

fractional component, y, , . If such a fractional variable y, , = exists, we

denote:
JO
Xjo = kzyjo'k v Py :\_ijJ and Ejo =Xjo ~ Pjy-
=1

pj,and &, are respectively the integer and fractional parts of x, . Since
Xj, Su; ., pj, <u; . Webegin to define y":

y.jOvij :1—5/.0

y JoiPjg+1 =€

y.liovkzo Vke{l""'uj}_{pjo’p.io+1}

For all jefl,...,n}-{j,} (or for all je{l,...,n} if ¥ has no fractional

component, i.e. if yis integer), y, belongs to {O,l} (Vk) and therefore
uj

X; = ZJ_’jk is an integer lower than or equal to ;. We then finish to define
k=1

7

if X, 21, 5, =1and 7, =0 Vkefl...,u, [~ {5}
if¥,=07,=0Vkel.u,j

Vje{l,...,n}—{jo},{

We immediately get:

11



wjoo uj
Vield,...nj—{j} Zkfjk =x; = ijk
k=1 k=1

o 3 o
f0rj=jo,];ky_,-o,k =Pj (1_8.1'0 )+(p.io +1)";_/'0 =Pjy TEj =X :kz_lyjoﬁ

which implies that y' verifies the surrogate constraint of (KP2,w) (since y
- wjo
verifies the one of (KP,w)). Since Vj e {l,...,n}, > ¥, <1, 3" is feasible for
k=1

(KP2,w).

Let us now prove that g(») =A4(y').

- For j=j,, we have:

/0
zf./'o,ky./'o,k = ijijo ijijO + ijij0+1yj01pj0+l
k=1

- (1_ € )ij!PjO + gjijOvpjo 1= Ajo

10 Pjg
Now: zsjo,kyjo,k - zsjo,k + SjOij0+1€jO (: A./'o )
k=1 k=1

This equality holds since (KP,w) is a linear continuous knapsack

problem: for a given index j, all the variables y ;, k e {1u/} have

the same coefficient in the knapsack constraint (Zwiaij) and the
i=1

coefficients of these variables in the objective function g(y) are in

decreasing order (because of the concavity of function f):

S 280 2.8 .
J1 Jj2 Juj

Yo ) J0
Therefore the following result holds: > /. 7,04 = 2.8 04V jok -
(= k1

uj ‘ u; %)
- For j = j,,wehave: Y f,7, =f5, and DS aVa=D. 5k =fis,-

k=1 k=1 k=1

This last equality holds for the same reason as in the previous

12



paragraph (the coefficients of variables y; in the unique knapsack

constraint are identical and the coefficients of these variables in the
objective function are in decreasing order). This implies that:

Mj llj
PWIATEDNIITE
k=1 k=1

We thus get: g(¥) = A(y"), wich implies the result Z[KP, W]S Z[KPZ, w]

O

Corollary 3.2 The upper bound obtained by the surrogate linearization [11] (using

expansion (1)) and the upper bound obtained by the surrogate linearization using

expansion (Il) are equal: Z [KP,W*]:Z |_KPZ,0)*] , where w* and @ ™* respectively

stand for the optimal surrogate multiplier of the LP-relaxation of problems (MKP)
and (MKP2).

Proof 3.2 The result of Proposition 3.1 is true whatever the surrogate multiplier w is
used, so it remains true if we successively consider w* andw™ as a surrogate

multiplier. O

We thus have proved in this Section that solving (OMKP) with a linearization
technique and a surrogate relaxation may be equivalently done with expansion (I) or
with expansion (I1) of the integer variables. We proved that expansions (1) and (I1) are
equivalent in the sense that they provide the same upper bound. However, expansion
(1) involves n added constraints without improving the quality of the upper bound in

comparison with expansion (1).

Section 4. Binary expansion of integer variables

This section is dedicated to the use of a binary expansion (referred as expansion (111))
of this integer variables in the upper bound procedure developed in [11]. Such

expansion consists in rewriting each integer variable x; (=1, ...,n) as:

13



ﬂOQ(uj)w k
x; = > 2 z; Where zj € o1} (1)

k=0

Using (1) involves only iﬂogz(u/’)—‘ 0-1 variables instead of 214, 0-1 variables
j=1 =1

when a direct expansion is applied.

As previously mentioned, the aim of this study is to compare other expansion
techniques in the upper bound process developed in [11]. Since, the variables are now
binary the next step of the algorithm of Quadri et al. [11] concerns with a piecewise
linear interpolation of the objective function so as to obtain an equivalent 0-1 linear

problem with only Zn:]_logz(uj)—‘ 0-1 variables.
=

The following proposition shows the non applicability of both expansion (I11) and a

linear interpolation to transform (QOMKP) into an equivalent 0-/ piecewise linear

problem through the use of only Zn:ﬂogz(u,ﬂ 0-1 variables.
=

Proposition 4.1 Considering the integer quadratic multi-knapsack problem (QMKP).

If a binary expansion is used to rewrite the integer variables of (OMKP) as

Zﬂogz(u_i)-‘ 0-1 variables then an equivalent 0-1 piecewise linear problem can not
j=1

be established applying a linear interpolation.

Proof 4.1 Assume that it is possible to replace each function f;(x;) = cix; — dix;? for all

j from 1 to n, by a linear function gj(z;) using exactly ﬂogz(ujﬂ 0-1 variables. We
denote by (H) this assumption.

If (H) is true then it should exist coefficients gj such that:

hOQZ(uj)1

fj(xj)zcjx.f_djsz' = ;g./kzjk’vx./ 6{1---”1} (2)

14



A ﬁOQ(“_/ﬂ k
with x. = % 27z, 2,01} (3.
k=0
The assumption (/) must be satisfied for all problem data. Let us set u; = 3, ¢; = 10
and d; = 4.

Consequently,
- ifx; =1 (cf. (2) and (3)) theng;; =6 (i), z; = 1 and zj, = 0.
- ifx; =2 (cf. (2) and (3)) then g;» = 4 (ii), zj; = 0 and z;; = 1.
- ifx; =3 then (cf. (3)) then z;; = z;; = 1 which implies (cf. (2)) that 3¢;— 9 d; =
gj1 + g2 = -6 (iii).
The equations system (1), (I1) and (I11) has clearly no solution. Consequently there is a
contradiction with (H). O

Proposition 4.1 shows the non applicability of a binary expansion of the integer
variables for (OMKP) so as to transform the initial problem into a 0-1 linear program.
Consequently, the upper bound method proposed in [11] can not be applied together

with expansion (111).

Section 5. Concluding remarks

In this paper we have theoretically compared the use of three techniques to rewrite
integer variables into zero-one variables in an upper bound procedure for (OMKP)
developed by Quadri et al. [11], which provides, to the best of our knowledge a bound
closer to the optimum than the existing methods. More specifically, we have
compared a direct expansion of the integer variables, originally employed in [11] with
a direct expansion with additional constraints (I11) and with a binary expansion (I11).
We have proved that (I1) provides the same upper bound as the one computed in [11]
whereas it involves n additional constraints. We therefore do not expect an
improvement of the upper bound computational time. Finally, we provide a proof of

15



the non applicability of both (111) and a linear interpolation to transform (QMKP) into

an equivalent 0-7 piecewise linear problem through the use of only anﬂogz(u‘/)—‘ 0-1
«.:1

variables.

A possible way to get a further decrease of the number of 0-1 variables would be the
use of a classical linearization technique as suggested by Foret (1959) [6]. This
linearization scheme would first consist in applying (111) to the integer variables and
then using the basic linearization technique for 0-1 variables. Nevertheless,
preliminary computational experiments have shown that the bound provided by this
technique is of worst quality than the one computed in [11]. Moreover, this process

seems to be more time consuming than [11].
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