

Laboratoire d'Analyse et Modélisation de Systèmes pour
l'Aide à la Décision

CNRS UMR 7024

CAHIER DU LAMSADE

265
Juillet 2007

Some tractable instances of interval data minmax regret

problems: bounded distance from triviality

Bruno Escoffier, Jérôme Monnot, Olivier Spanjaard

Some tractable instances of interval data minmax

regret problems: bounded distance from triviality

Bruno Escoffier∗, Jérôme Monnot∗, and Olivier Spanjaard†

Abstract

This paper focuses on tractable instances of interval data minmax
regret graph problems. More precisely, we provide polynomial and
pseudopolynomial algorithms for sets of particular instances of the in-
terval data minmax regret versions of the shortest path, minimum
spanning tree and weighted (bipartite) perfect matching problems.
These sets are defined using a parameter that measures the distance
from trivial instances. Tractable cases occur when the parameter is
bounded by a constant. Two kinds of parameters are investigated,
measuring either the distance from special weight structures or the
distance from special graph structures.

Keywords: Robust optimization; Interval data; Shortest path; Span-
ning tree; Bipartite perfect matching

1 Introduction

In recent years there has been a growing interest in robust optimization
problems [16]. Studies in this field concern problems where some parameters
are ill-known due to uncertainty or imprecision. Usually, in valued graph
optimization problems, the ill-known parameters are the valuations. In such
a case, a set of scenarios is defined, with one scenario for each possible
assignment of valuations to the graph. Two approaches can be distinguished
according to the way the set of scenarios is defined: the interval model where
each valuation is an interval and the set of scenarios is defined implicitly as
the cartesian product of all the intervals; the discrete scenario model where
each valuation is a vector, every component of which is a particular scenario.
Intuitively, a robust solution is a solution that remains suitable whatever
scenario finally occurs. Several criteria have been proposed to formalize
this: the minmax criterion consists of evaluating a solution on the basis of

∗LAMSADE-CNRS, Université Paris Dauphine, Place du Mal de Lattre, F-75775 Paris

Cedex 16, France,{escoffier,monnot}@lamsade.dauphine.fr
†LIP6, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05,

France, olivier.spanjaard@lip6.fr

1

its worst value over all scenarios, and the minmax regret criterion consists of
evaluating a solution on the basis of its maximal deviation from the optimal
value over all scenarios. We will mainly focus here on the robust shortest
path problem (RSP for short), the robust minimum spanning tree problem
(RST for short) and the robust weighted (bipartite) perfect matching problem
(R(B)PM for short), with the minmax regret criterion in the interval model.

Formally, an interval data minmax regret network optimization problem
can be defined as follows. Let G = (V, E) be a given directed or undirected
graph. A feasible solution is a subset π ⊆ E satisfying a given property Π
(for example, being a path or a tree). Each edge e ∈ E is valued by an
interval Ie = [le; ue] of possible weights. The set of scenarios is the cartesian
product S =

∏

e∈E Ie. In other words, a scenario s ∈ S consists in assigning
a weight ws(e) ∈ Ie for every e ∈ E. For any feasible solution π and any
scenario s ∈ S, the value of π under scenario s is ws(π) =

∑

e∈π ws(e)
and its regret under scenario s is Rs(π) = |ws(π) − opt(s)|, where opt(s)
is the value of an optimal solution for the standard instance valued by ws.
The max regret of solution π is defined by R(π) = maxs∈S Rs(π). The aim
of a minmax regret optimization problem is to find a feasible solution π∗

minimizing R(π∗). Note that, for a minimization problem, R(π) = Rs(π)(π),
where s(π), called worst case scenario for π, is defined by ws(π)(e) = ue if
e ∈ π and ws(π)(e) = le otherwise [3].

In this paper, we consider tractable instances of RSP and RST, that have
been proved strongly NP-hard [4] in the general case, as well as tractable
instances of RBPM, the restriction of which to complete bipartite graphs
(known as the interval data minmax regret assignment problem) has been
proved NP-hard [13]. For this purpose, as suggested by Guo et al. [11],
we introduce parameters that measure the distance from trivial instances.
For example, if all the intervals of an instance reduce to a single point –
degenerate intervals–, then the robust optimization problem reduces to a
standard optimization problem, and is therefore polynomially solvable pro-
vided that the standard version is polynomial. One can define the distance
from this trivial case as the number k of non degenerate intervals. If this
distance k is bounded by a constant, then the robust optimization problem
is polynomially solvable by a brute force algorithm [4]. In this work, we
focus on two kinds of parameters: the ones that measure the distance from
special valuation structures (instances the minmax regret of which is zero,
instances with linearly ordered valuations), and the ones that measure the
distance from special graph structures (series-parallel graphs, trees). The
paper is organized as follows. The first two sections deal with the first kind
of parameters: we show that RSP and RBPM are polynomially solvable
when the minmax regret is bounded by a constant k (Section 2), as well as
RST when the number of intersecting intervals in the instance is bounded by
a constant k (Section 3). More precisely, following parameterized complex-
ity terminology [9], these two problems are respectively in XP (problems

2

solvable in O(nf(k)) for some function f) and in FPT (problems solvable
in O(f(k)nc) for some constant c). The next sections deal with the sec-
ond kind of parameters: we show that RSP is pseudopolynomial for graphs
which are close to be series-parallel (Section 4), and that RSP and RBPM
are pseudopolynomial for graphs with bounded treewidth and bounded de-
gree (Section 5).

In the remainder of the paper, an edge e will be denoted by e = [v, w]
if the graph is undirected and by e = (v, w) if the graph is directed with
v as initial endpoint, and w as terminal endpoint. A directed graph will
be denoted by G = (V, A) whereas an undirected graph will be denoted by
G = (V, E). Given a (di)graph G = (V, E), n = |V | denotes the number of
vertices and m = |E| denotes the number of edges. For graph theoretical
terms not defined here, the reader is referred to Berge [6].

2 Upper bounded minmax regret

In this section, we investigate the hardness of solving an interval data min-
max regret graph optimization problem when there exists a solution with
bounded maximal regret. Note that studying instances where the optimum
value is upper bounded is a classical way to understand the intrinsic dif-
ficulty of a combinatorial optimization problem (problems which become
polynomially solvable in this case are called simple, see Paz and Moran
[17]). Here, we first show that we can easily determine if there is a solution
of maximal regret 0, i.e. a solution which is optimal under every possible
scenario. Next, we show that for RSP and RBPM, we can extend this result
to polynomially determine if there exists a solution of maximal regret at
most k.

First, let us prove that the problem of the existence of a solution of max-
imal regret 0 can be easily solved for any interval data minmax regret graph
optimization problem Π. We use a nice generic 2-approximation algorithm
proposed by Kasperski and Zielinski [14]. For any instance I this algorithm
outputs a solution π such that R(π) ≤ 2R(I) (where R(I) is the minmax
regret of I). If R(I) = 0, then R(π) = 0, else since R(π) ≥ R(I), we have
R(π) > 0. The expected result follows (Π being assumed to be polynomial).
Now, by a reduction to the regret 0 case, we prove the following:

Proposition 1 For RSP, the problem of determining if the minmax regret
is at most k can be solved in time O(n2mk).

Proof. Let I = (G, IE) be an instance of RSP and denote by r its
optimum regret. Let us remark that if there exists a degenerate interval
Ie = {0} in I with e = (v1, v2), then one can merge nodes v1 and v2 and
get an equivalent instance (possibly with multiedges). In particular, we can

3

assume that ue > 0 for any e. We construct m instances I1, . . . , Im of RSP
as follows: Ii is the same instance as I up to the interval [li, ui] associated
in I to ei which is transformed into [max{li − 1; 0}, ui − 1]. We claim that:

1. r∗i ≥ r − 1 (where r∗i denotes the optimum regret of Ii);

2. if r∗i = r − 1 then any optimum solution for Ii is optimum for I;

3. there exists at least one i such that r∗i = r − 1 (if r > 0).

If the claims are true, then by applying k times these procedures, I has
an optimum regret at most k if and only if (at least) one of the final instances
has optimum regret 0 (if at some point, we find an interval reduced to {0},
we can merge the corresponding nodes). We get mk instances; the generic
2-approximation algorithm is in O(n2) for RSP, and the complexity follows.
Claims (1) and (2) hold since the regret of any path π verifies Ri(π) ≥ R(π)−
1 (under any scenario, the value of any path has decreased by at most 1).
For Claim (3), consider an optimum solution π∗ = ((v0, v1), · · · , (vp−1, vp))
(where v0 = s and vp = t) of I, and its worst case scenario s(π∗) in I. We
prove that there exists at least one edge ei ∈ π∗ such that no shortest path
in s(π∗) contains this edge. Note that if this is true, then consider instance
Ii: in s(π∗), the value of the shortest path is the same in I and in Ii, hence
the regret of π∗ decreased by 1, and Claim (3) is true. Then, assume that
for any i, there exists a shortest path πi (in s(π∗)) which contains (vi−1, vi).
Let wi

1 be the value (in s(π∗)) of this path between s and vi−1 and wi
2 its

value between vi and t (hence w1
1 = w

p
2 = 0). Since π∗ has regret r, we get

(s(π∗) is omitted for readability) that

w(πi) = wi
1 + wi

2 + u(vi−1,vi) = w(π∗) − r. (1)

Summing up we obtain:
∑p

i=1(w
i
1 + wi

2) = pw(π∗) − pr −
∑p

i=1 u(vi−1,vi)

= (p − 1)w(π∗) − pr
(2)

But remark that for each i ∈ {2, · · · , p} we can build a path of value wi
1 +

wi−1
2 (composed by the initial part of πi from s to vi−1 and the final part

of πi−1 from vi−1 to t). Then, since each of these paths has value at least
w(π∗) − r:

∑p
i=2(w

i
1 + wi−1

2) ≥ (p − 1)(w(π∗) − r)
= (p − 1)w(π∗) − pr + r

(3)

But since w1
1 = w

p
2 = 0, Equations (2) and (3) are incompatible for r > 0.

2

4

The central property, leading to Claim (3), is that, in an optimum so-
lution π∗ for which R(π∗) > 0, there exists at least one edge that does not
belong to any optimum solution in s(π∗). Actually, one can show that this
property is also true for the interval data minmax regret perfect matching
problem in bipartite graphs. For any instance I = (G, IE) of R(B)PM,
we assume that G has a perfect matching (in particular, the number n of
vertices of G is even).

Proposition 2 For RBPM, the problem of determining if the minmax re-
gret is at most k can be solved in time O(n2mk).

Proof. The proof is quite identical to the one of Proposition 1. Let
I = (G, IE) be an instance of RBPM where G = (V, E) is a bipartite graph
which admits a perfect matching and denote by r its optimum regret. Wlog,
assume that le > k for any e. Actually, by adding any constant c > 0 to each
interval Ie, we obtain an equivalent instance since all the perfect matchings
have the same size. As previously, we build m instances I1, . . . , Im of RBPM
where Ii is the same instance as I up to the interval [li, ui] associated in I
to ei which is transformed to [li − 1, ui − 1]. Using the same notation than
those given in Proposition 1, we claim that:

(i) r∗i = R(Ii) ≥ r − 1;

(ii) if r∗i = r − 1 then any optimum solution for Ii is optimum for I;

(iii) there exists at least one i such that r∗i = r − 1 (if r > 0).

The proof of Claims (i) and (ii) is identical to the proof of Proposi-
tion 1. So, we only prove the Claim (iii). Consider an optimum solution
π∗ = {e1, · · · , en

2
} of I, and its worst case scenario s∗(π∗) in I. As pre-

viously, we prove that there exists at least one edge ei ∈ π∗ such that no
perfect matching with minimum weight in s∗(π∗) contains this edge. As-
sume the reverse, and let πi for i = 1, · · · , n

2 be a perfect matching with
minimum weight w(π∗) − r which contains edge ei in scenario s∗(π∗) (note
that eventually some πi are identical). Then, in scenario s∗(π∗) we have:

n
2

∑

i=1

w(πi \ ei) =
n − 2

2
w(π∗) −

n

2
r (4)

On the other hand, the subgraph G′ induced by ∪
n
2
i=1

(

πi \ ei

)

is (n
2 − 1)-

regular (we consider that G′ is a multigraph, that is if an edge (x, y) appears

p times in ∪
n
2
i=1

(

πi − ei

)

, then there are p parallel edges between x and y in
G′). Since G′ is bipartite and (n

2 − 1)-regular, G′ can be decomposed into
(n

2 − 1) matchings π′i for i = 1, . . . , n
2 − 1. These matchings π′i are perfect

5

in G and if π′ is a matching of minimum weight among the matchings π′i

for i = 1, . . . , n
2 − 1, then the value of π′ in scenario s∗(π∗) satisfies:

n − 2

2
w(π′) ≤

n
2

∑

i=1

w(πi \ ei) (5)

Using equality (4) and inequality (5) we obtain w(π′) ≤ w(π∗) − (1 + 2
n
)r,

which is impossible for r > 0 since w(π′) ≥ w(π∗) − r.
By applying k times this method, we build mk instances such that I

has an optimum regret at most k iff (at least) one of the final instances has
optimum regret 0. Since we supposed that ∀e ∈ E, le ≥ k for the initial in-
stance, all the interval lower bounds in the final instances are non-negative.
2

Our method seems to be quite general and may be fruitfully applied to
other problems, but however not to all of them. Indeed, the property leading
to Claim (3) is no more true for some problems such as RST or RPM (in
arbitrary graphs), and for them the question whether they are simple or
not remains open. Figure 1 illustrates why the property does not hold for
RPM in a non bipartite graph. The solution π∗ described by rigid lines is
the unique optimal solution for RPM. Its worst value is 6, its max regret
is 2, and in its worst scenario s∗(π∗), each edge of π∗ belongs to a perfect
matching of minimum weight.

Ie = [1, 6]

Ie = [1, 2]

Figure 1: An example for RPM in a non bipartite graph.

3 Upper bounded number of interval intersections

As previously mentioned, RST and RSP are fixed parameter tractable (FPT)
when the parameter is the number of non degenerate intervals (with a brute
force algorithm). Minimum spanning trees have special properties that leads
to another easy cost structure: when all intervals are disjoint (Ie ∩ If = ∅
for any edges e and f), any minimum spanning tree under any scenario is
an optimum solution for RST [1]. Indeed, Kruskal algorithm leads then to
the same tree, independently of the scenario. This tree is optimal, and its

6

regret is 0. Note that, on the other hand, if all intervals are [0, 1], then RST
is NP-hard [1, 4]. Here, we show that considering as parameter the number
of intervals that intersect at least one other interval, then RST is FPT.
Although using brute force, the optimality of the algorithm is not obvious.

Proposition 3 RST can be solved in time O(2k m log(m)), where k is the
number of intervals that intersect at least one other interval.

Proof. Let I = (G, IE) be an instance of RST where G = (V, E) and
Ie = [le, ue] for any e ∈ E. We define J = {Ie1 : ∃e2 6= e1, Ie1 ∩ Ie2 6= ∅},
and set k = |J |. Let J ′ ⊆ J . We want to compute the best (in terms
of regret) spanning tree π such that π ∩ EJ = EJ ′ (where EJ denotes the
set of edges corresponding to intervals in J). If EJ ′ contains a cycle, there
is no such tree. If not, we proceed as follows: we remove from E the set
EJ\J ′ and, considering EJ ′ as part of the spanning tree, we complete it by
applying Kruskal algorithm to the remaining graph (choosing any valuation
w(e) ∈ [le, ue] since the output does not depend on the value of an edge
e 6∈ J). Let πJ ′ be the obtained solution.

Now, let π be a spanning tree such that π ∩ EJ = EJ ′ . We want to
prove that R(πJ ′) ≤ R(π). First, note that πJ ′ and π agree on EJ . Then,
under any scenario where w(e) = ue for e ∈ EJ ′ and w(e) = le for e ∈ EJ\J ′ ,
Kruskal algorithm will produce the same optimum solution π∗. In particular
π∗ is optimal both in s(π) and s(πJ ′). However, π∗ has not the same value
in these two scenarios. Then:

R(πJ ′) − R(π) = ws(πJ′)(πJ ′) − ws(πJ′)(π
∗)

−
(

ws(π)(π) − ws(π)(π
∗)

)

We upper bound this by considering each edge of the graph. If πJ ′ and π

agree on an edge e (either take it or not), then the difference is 0 for this
edge, since this edge has the same value in s(π) and s(πJ ′), and since we
refer to the same tree π∗. Note that this includes all edges in EJ . If πJ ′ and
π disagree on e:

• either e is in πJ ′ \ π. If e is not in π∗, then in the regret it counts ue

for πJ ′ (ue for πJ ′ and 0 for π∗) and 0 for π (0 for π and 0 for π∗).
If e is in π∗, it counts 0 for πJ ′ and −le for π. The loss (in terms of
regret) from πJ ′ respect to π is at most ue;

• or e is in π \ πJ ′ . If e is not in π∗, then it counts 0 for πJ ′ and ue for
π. If e is in π∗, it counts −le for πJ ′ and 0 for π. Then, respect to π,
πJ ′ “wins” at least le.

Summing these inequalities for all edges leads to:

R(πJ ′) − R(π) ≤
∑

e∈πJ′\π

ue −
∑

e∈π\πJ′

le (6)

7

Now, recall that π and πJ ′ agree on J , and that the intervals not in J

do not intersect. Hence, whatever the value of edges not in J , πJ ′ will have
a better value than π. This is true in particular when the weight of each
e 6∈ J is fixed to ue if e is in πJ ′ and to le otherwise. This means that

∑

e∈πJ′\π

ue ≤
∑

e∈π\πJ′

le (7)

Equations (6) and (7) lead to the result that πJ ′ is the best tree π such that
π ∩ J = J ′.

To conclude, we only have to consider each possible J ′ ⊆ J , and take the
best solution so computed. The global complexity is hence 2kO(m log m). 2

Note that for RSP, making assumptions on interval intersections does
not simplify the problem.

Proposition 4 RSP is NP-hard even if there are no intersection between
intervals.

Proof. We simply modify the instances given in [15] showing that the
problem is NP -hard in series-parallel graphs. We have a set of n + 1 nodes
v1, . . . , vn+1. There is an edge from v1 to vn+1, and two edges e1

i and e2
i

from vi to vi+1, i = 1, · · · , n Then a path from v1 to vn+1 is either the edge
(v1, vn+1) or contains exactly one edge from vi to vi+1, i = 1, · · · , n. Let M

be greater than the largest number of the instance. We replace each edge e1
i

(resp. e2
i) by two consecutive edges (vi, v

1
i) and (v1

i , vi+1) (resp. (vi, v
2
i) and

(v2
i , vi+1)), where v1

i (resp. v2
i) is a new vertex. Then, if [l1i , u

1
i] and [l2i , u

2
i]

are the intervals of e1
i and e2

i , we set

• the interval of (vi, v
1
i) to [4iM + l1i , 4iM + u1

i],

• the one of (v1
i , vi+1) to [(4i + 3)M ; (4i + 3)M],

• the one of (vi, v
2
i) to [(4i + 1)M + l2i , (4i + 1)M + u2

i],

• the one of (v2
i , vi+1) to [(4i + 2)M ; (4i + 2)M].

Moreover, we replace the interval [l, u] of the edge (v1, vn+1) by [l+K, u+
K], where K =

∑n
i=1(8i + 3) = 3n + 4n(n + 1)M . Of course, there are no

more intersection between intervals. Moreover, we have added a constant
value (namely K) to any path from v1 to vn. Since regrets are not modified
by this transformation, the hardness follows. 2

8

4 Upper bounded reduction complexity

We now consider a particular class of directed acyclic graphs (DAGs), namely
series-parallel graphs. This class can be defined using the following kinds of
reductions in a DAG: (1) a series reduction at v is possible when e1 = (u, v)
is the unique edge into v and e2 = (v, w) is the unique edge out of v: then
e1 and e2 are replaced by e = (u, w); (2) a parallel reduction at u, w replaces
two edges e1, e2 joining u to w by a single edge e = (u, w). Two nodes s

and t are distinguished as the source and the sink (st-DAG). A graph is said
to be edge series-parallel (ESP) if it can be reduced to a single edge (s, t)
by using such reductions. Kasperski and Zielinski have recently shown that
RSP is NP-hard in ESP graphs, but admits a pseudopolynomial algorithm
in this case [15]. In this section, we extend this result to graphs close to be
ESP. For the convenience of the reader, we first describe the basic principles
of the pseudopolynomial algorithm for ESP graphs. It operates by applying
a sequence of series and parallel reductions from the input graph G = (V, E)
to a single edge (s, t). This sequence is given by an algorithm in O(m) to
recognize ESP graphs [18], where m = |E|. In a reduced graph, a subset
Ei ⊆ E is associated with every edge ei. These subsets are defined recur-
sively: the set {e} is associated with every e ∈ E; let e1, e2 denote the edges
involved in a reduction, then the set E1∪E2 is associated with the new edge.
For every edge ei, the subgraph of G induced by Ei is denoted Gei

. Let uπ

and R(π) denote respectively the worst value and the max regret of a path
π in an induced subgraph Ge. The principle of the algorithm is, for each
reduction yielding a new edge e = (v, w), to keep only a minimal subset Pe

of non-dominated paths from v to w, where π dominates σ if uπ ≤ uσ and
R(π) ≤ R(σ). Indeed, those paths are potential subpaths of a minmax regret
path from s to t in G. Initially, Pe = {e} for every edge e. Then, for any new
edge e obtained by a reduction involving e1 and e2, set Pe is computed from
Pe1 ∪Pe2 in a parallel reduction, and from Pe1 ×Pe2 (concatenated paths) in
a series reduction. When the sequence of reductions concludes, there is only
a single edge (s, t), and path π∗ = arg minπ∈P(s,t)

R(π) is a minmax regret
path from s to t in G. Noticing that |Pe| is upper bounded by Lmax, where
Lmax is the value of the longest path from s to t in G over all scenarios, the
authors, thanks to a recursive computation of u and R (avoiding shortest
path computations from scratch when computing R(π) for π ∈ Pe1 ∪ Pe2

or Pe1 × Pe2), establish that the running time is O(mL2
max), and therefore

pseudopolynomial.
We now extend this result to graphs close to be ESP. We first need to

measure how far a graph is from being ESP. For that purpose, the notion
of reduction complexity has been introduced [5]. It uses a third kind of
reduction, called node reduction. Such a reduction can be performed at a
node v when v has in-degree or out-degree 1: suppose v has out-degree
1, let e1 = (u1, v), . . . , eδ = (uδ, v) be the edges into v and eδ+1 = (v, w)

9

be the edge out of v, then {e1, . . . , eδ+1} is replaced by {e′1, . . . , e
′
δ}, where

e′i = (ui, w) (the case where v has in-degree 1 is symmetric). Note that
every st-DAG can be reduced to a single edge (s, t) by iterating the three
types of reductions. The reduction complexity of a graph G is defined as
the minimum number of node reductions sufficient –along with series and
parallel reductions– to reduce G to (s, t). There exists an O(n2.5) algorithm
to compute an optimal reduction sequence [5] (i.e., involving a minimum
number of node reductions), and hence to determine reduction complexity.
Thanks to this, the result of Kasperski and Zielinski [15] can be extended:

Proposition 5 RSP can be solved in time O(2km2 L2
max) in st-DAGs of

reduction complexity k.

Proof. Let R denote the set of nodes involved in a node reduction. The
idea is to compute, for each of the 2k subsets M ⊆ R, a robust shortest path
among paths including all nodes of M (Mandatory) and none of F = R \M

(Forbidden). We proceed as follows. Series and parallel reductions are han-
dled as above up to the following: when computing Pe, we restrict ourselves
to paths including all nodes of M∩Ge, and excluding all nodes of F . A node
reduction involving a node of in-degree or out-degree δ > 1 is performed as
δ series reductions. Let PM

(s,t) denote the (possibly empty) set of paths ob-
tained when the sequence of reductions concludes. A minmax regret path
is arg min{R(π) : π ∈ ∪M⊆RPM

(s,t)}. Note that, due to node reductions, the

value of R(π) in induced subgraphs must be computed from scratch. This
reduces to find a shortest path in the worst case scenario, which requires
time O(m) in DAGs. Hence, the overall complexity follows. 2

5 Upper bounded treewidth and max degree

The treewidth of a graph can be seen as a measure of how far it is from being
a tree (the treewidth of a tree is 1). It is well-known that the treewidth of
an (undirected) ESP graph is at most 2. A natural extension of the previous
result is therefore to investigate complexity of RSP in graphs of bounded
treewidth (more precisely, in graphs whose corresponding undirected simple
graph has a bounded treewidth). Clearly, RSP is polynomially solvable in
a graph G the treewidth of which is k = 1 (G is a tree), or the max degree
of which is ∆ ≤ 2 (G is a set of cycles and/or chains). However, it is NP-
hard when k = 2 and ∆ = 3 (since there is a polynomial reduction from
the partition problem involving an ESP graph -without multiedges- of max
degree 3 [15]). We show here its pseudopolynomiality for bounded k and ∆.

Proposition 6 RSP can be solved in time O((n+m)2∆(k+1)((n−1)umax)
k+1)

in graphs of treewidth k and max degree ∆, where umax = max
(i,j)∈A

uij.

10

Proof. Let G = (V, A) denote a directed graph with a source node
s and a sink node t, and let G′ = (V, E) denote the simple undirected
graph obtained from G by removing orientation of edges and by simplifying
multiedges. Solving RSP in G amounts to solve the following integer linear
program (ILP) [12]:

min
∑

(i,j)∈A

uijyij − xt (8)

s.t. xj ≤ xi + lij + (uij − lij)yij ∀(i, j) ∈ A, (9)

∑

(j,k)∈A

yjk −
∑

(i,j)∈A

yij =







1 if j = s

-1 if j = t

0 if not
∀j ∈ V, (10)

xs = 0, yij ∈ {0, 1} ∀(i, j) ∈ A, xj ∈ N ∀j ∈ V. (11)

The interaction graph of an ILP includes a vertex for each variable of the
program and an edge between two vertices if both corresponding variables
appear in the same constraint. We now show that the program is solvable in
pseudopolynomial time by applying a dynamic programming technique on a
tree decomposition of the interaction graph IG = (I, U), i.e. a labeled tree
(T, L) such that (a) every node t of T is labeled by a non-empty subset L(t)
of V s.t. ∪t∈T L(t) = V , (b) for every edge {i, j} ∈ U there is a node t of T

whose label L(t) contains both i and j, (c) for every vertex i ∈ I the nodes
of T whose labels include i form a connected subtree of T . The width of a
tree decomposition is maxt∈T |L(t)| − 1. The treewidth of IG is the smallest
k for which IG has a tree decomposition of width k. If the treewidth of a
graph is bounded by a constant k, then a tree decomposition of treewidth
at most k can be constructed in linear time (in the number of nodes) [8].
This tree decomposition can itself be converted in linear time in a nice tree
decomposition of the same width, i.e. a rooted tree decomposition such that
each node has at most two children, with four types of nodes t: leaf nodes
with |L(t)| = 1, join nodes with two children t′, t′′ s.t. L(t) = L(t′) = L(t′′),
introduce nodes with one child t′ s.t. L(t′) = L(t)∪{v} for some v ∈ V , for-
get nodes with one child t′ s.t. L(t) = L(t′)−{v} for some v ∈ V . The proof
of pseudopolynomiality of the approach is in three steps: (i) we show that if
the max degree of G and the treewidth of G′ are bounded by some constant,
then the treewidth of IG is bounded by some constant; (ii) we show how to
solve by dynamic programming an ILP whose IG has a bounded treewidth;
(iii) we show that the previous approach is pseudopolynomial since variables
xj are upper bounded by (n − 1)umax, where umax = max(i,j)∈A uij .

Proof of (i). Assume that G′ has treewidth k and G has max degree ∆. Note
that IG restricted to constraints (10) is the line graph of G, i.e., the graph
where each vertex represents an edge of G and any two vertices are adjacent
iff their corresponding edges are incident. It can be shown that the treewidth
of the line graph is at most ∆(k + 1) − 1 [2]. Assuming (T, L) is a tree de-

11

composition of width k of G′, the idea is to consider the labeled tree (T, L′)
where L′(t) is the set of edges of G incident to some node in L(t). Indeed, one
can show that (T, L′) is then a tree decomposition of the line graph [2]. We
now show that (T, L∪L′) is a tree decomposition of IG (where we identify a
vertex or an edge of G with the corresponding variable in the ILP). For this
purpose, one can consider the following partitions of I and U : I = X ∪ Y ,
where X = {xj : j ∈ V } and Y = {yij : (i, j) ∈ A}, and U = UX∪UY ∪UXY ,
where UX = {[xi, xj] : (i, j) ∈ A}, UY = {[yjk, yij] : (i, j) ∈ A, (j, k) ∈ A}
and UXY = {[xi, yij], [xj , yij] : (i, j) ∈ A}. Condition (a) holds since
∪t∈T L(t) = X and ∪t∈T L′(t) = Y . Conditions (b) and (c) hold for edges of
UX and for vertices in X since (T, L) is a tree decomposition of G′. They also
hold for edges of UY and for vertices in Y since (T, L′) is a tree decomposition
of the line graph. Besides, condition (b) holds for edges of UXY by construc-
tion of L′. Hence, (T, L ∪ L′) is a tree decomposition of IG. Furthermore,
the treewidth of IG is upper bounded by maxt∈T L(t) + maxt∈T L′(t)− 1 =
k + ∆(k + 1).

Proof of (ii). By using a method related to non-serial dynamic program-
ming [7], we now show how to solve an ILP in the following general form:

(P)







min
∑n

j=1 cjxj
∑n

j=1 aijxj Ri bi where Ri ∈ {≤, =,≥} ∀i ≤ m

xj ∈ Dj

For this purpose, let us introduce the notion of subprogram of an ILP. For
each node t of T , P (t) denotes the subprogram of P restricted to the variables
whose indices belong to D(t) =

⋃

t′ L(t′) for t′ = t or t′ a descendant of t:

(P (t))







min
∑

j∈D(t) cjxj
∑n

j=1 aijxj Ri bi ∀i : [∀j, (aij 6= 0 ⇒ j ∈ D(t))]

xj ∈ Dj , j ∈ D(t)

For t ∈ T and A : L(t) → Πj∈L(t)Dj an assignment of values to variables of
L(t), let Rt(A) denote the min value of a feasible solution x of P (t) under the
constraint xj = A(j) ∀j ∈ L(t). One sets Rt(A) = +∞ if no feasible solution
of P (t) is compatible with A. The dynamic programming algorithm consists
of traversing the nice tree decomposition in a bottom up manner, and com-
puting recursively the tables Rt for each t ∈ T , where table Rt has an entry
Rt(A) for each possible assignment A: let t be a leaf node, say L(t) = {j},
then Rt(A) = cjA(j); let t be a join node with two children t′ and t′′, then
Rt(A) = Rt′(A) + Rt′′(A) −

∑

j∈L(t) cjA(j); let t be an introduce node, say

L(t) = L(t′)∪{j}, then Rt(A) = +∞ if A violates a constraint of P (t), other-
wise Rt(A) = Rt′(At′)+cjA(j) where At′ denotes the assignment A restricted
to the variables in L(t′); let t be a forget node, say L(t) = L(t′)− {j}, then
Rt(A) = mindj∈Dj

{Rt′(A
′) : A′(k) = A(k) ∀k 6= j and A′(j) = dj}. The

optimum is minA Rr(A) at the root node r of the nice tree decomposition.

12

Proof of (iii). We have |I| = n + m since there are n xi’s and m yij ’s in
the ILP formulation of RSP. There are therefore O(n + m) nodes in the
nice tree decomposition. Noticing that a table Rt can be computed in time
O(2∆(k+1)((n − 1)umax)

k+1) since there are at most ∆(k + 1) boolean vari-
ables and k + 1 integer variables in L(t), the result follows. 2

This approach based on properties of the interaction graph of an ILP
formulation is quite general, and can be also fruitfully applied to RBPM.
As in Section 2, for any instance of RBPM, we assume that there exists a
perfect matching.

Proposition 7 RBPM can be solved in time O((n+ m)2∆(k+1)((n+1)umax)
k+1)

in graphs of treewidth k and max degree ∆, where umax = max
[i,j]∈E

uij.

Proof. Let G = (V1 ∪ V2, E) denote an undirected bipartite graph, where
V1 and V2 partition the set of vertices into two independent sets. Solving
RBPM in G amounts to solve the following ILP [13]:

min
∑

[i,j]∈E

uijyij −





∑

j∈V2

xj −
∑

i∈V1

xi



 (12)

s.t. xj ≤ xi + lij + (uij − lij)yij ∀[i, j] ∈ E, (13)
∑

j∈V2

yij = 1 ∀i ∈ V1, (14)

∑

i∈V1

yij = 1 ∀j ∈ V2, (15)

yij ∈ {0, 1} ∀[i, j] ∈ E, (16)

xi ∈ Z ∀i ∈ V1, xj ∈ Z ∀j ∈ V2. (17)

Variables xi’s and xj ’s (resp. constraints (13)) represent potentials as-
signed to vertices of G (resp. constraints) in the dual version of the weighted
perfect matching problem in bipartite graphs. More precisely, given a per-
fect matching characterized by a vector y of booleans, constraints (13) cor-
respond to the dual version of the problem weighted according to the worst
case scenario for y. Hence,

∑

j∈V2
xj −

∑

i∈V1
xi takes the value of the best

perfect matching in scenario s(y). Actually, variables xi’s and xj ’s are real
variables in the formulation of Kasperski and Zielinski [13], which leads to
a mixed integer model. However, there always exists integer potentials xi’s
and xj ’s that are optimal in the dual problem. Indeed, for instance, the
primal dual algorithm of Ford and Fulkerson [10] builds an optimal dual
solution, the potentials of which are integers within {−numax, . . . , umax} by
construction. Therefore the solution obtained by solving the above ILP
remains optimal. The proof of Proposition 7 is then identical to the one

13

of Proposition 6, constraints (13) (resp. (14) and (15)) playing the role of
constraints (9) (resp. (10)), G the role of G′, and (n + 1)umax the role of
(n − 1)umax. 2

6 Concluding remarks

Several results given in this paper deserve to our opinion further research.
For instance, we conjecture that RSP, as well as other problems, can be
pseudopolynomially solved in graphs with bounded treewidth (without any
degree restriction). Alternatively, devising a general method for solving in
polynomial time any problem with bounded minmax regret could be very
appealing, but the existence of such a method seems quite hypothetical to
us.

Besides, the problematic we dealt with can also be investigated in the
discrete scenario model. In that model, each edge e is valued by (se

1, · · · , se
b).

For example, the robust shortest path and spanning tree problems can be
trivially solved under the minmax criterion when the set of valuations is
comonotone, i.e. se

i ≤ se
j ⇒ s

f
i ≤ s

f
j for any i, j and e, f . Indeed, the value

of every solution is maximized under the same scenario. Then, one can
measure the distance from comonotony as the minimum number of edges
the removal of which leads to a comonotone instance. Interestingly enough,
it can be shown that, even if the distance from comonotony is 1, and even if
there are 2 scenarios, the robust shortest path and minimum spanning tree
problems are NP-hard.

References

[1] I. D. Aron, P. Van Hentenryck, On the complexity of the robust span-
ning tree problem with interval data, Operations Research Letters 32
(2004) 36–40.

[2] A. Atserias, On digraph coloring problems and treewidth duality, URL
www.lsi.upc.es/˜atserias/ (2006).

[3] I. Averbakh, On the complexity of a class of combinatorial optimiza-
tion problems with uncertainty, Mathematical Programming Ser. A 90
(2001) 263–272.

[4] I. Averbakh, V. Lebedev, Interval data minmax regret network opti-
mization problems, Discrete Applied Mathematics 138 (2004) 289–301.

[5] W. W. Bein, J. Kamburowski, M. F. M. Stallmann, Optimal reduction
of two-terminal directed acyclic graphs, SIAM J. on Computing 21 (6)
(1992) 1112–1129.

[6] C. Berge, Graphs and hypergraphs, North Holland, Amsterdam, 1973.

14

[7] U. Bertele, F. Brioschi, Nonserial Dynamic Programming, Academic
Press, 1972.

[8] H. L. Bodlaender, A linear-time algorithm for finding tree-
decompositions of small treewidth, SIAM J. on Computing 25 (6) (1996)
1305–1317.

[9] R. G. Downey, M. R. Fellows, Parameterized Complexity, Springer,
1999.

[10] M. Gondran, M. Minoux, Graphs and algorithms, John Wiley & Sons,
1984.

[11] J. Guo, F. Hüffner, R. Niedermeier, A structural view on parameterizing
problems: Distance from triviality, in: IWPEC 2004, vol. 3162 of LNCS,
2004.

[12] O. E. Karasan, M. C. Pinar, H. Yaman, The robust shortest path prob-
lem with interval data, Tech. rep., Bilkent Univ., Dpt of Industrial
Engineering (2001).

[13] A. Kasperski, P. Zielinski, Minimizing maximal regret in the linear as-
signment problems with interval costs, Tech. Rep. 007, Instytut Matem-
atyki Wroclaw (2004).

[14] A. Kasperski, P. Zielinski, An approximation algorithm for interval data
minmax regret combinatorial optimization problems, Inf. Proc. L. 97
(2006) 177–180.

[15] A. Kasperski, P. Zielinski, The robust shortest path problem in series-
parallel multidigraphs with interval data, Operations Research Letters
34 (2006) 69–76.

[16] P. Kouvelis, G. Yu, Robust Discrete Optimization and Its Applications,
Kluwer Academic Publishers, 1997.

[17] A. Paz, S. Moran, Non deterministic polynomial optimisation problems
and their approximation, Theoretical Computer Science 95 (1981) 251–
277.

[18] J. Valdes, R. Tarjan, E. Lawler, The recognition of series-parallel di-
graphs, SIAM J. on C. 11 (2) (1982) 298–313.

15

