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Abstract

Structure of approximability classes by introduction of approximation preserving reduc-
tions has been one of the main research programmes in theoretical computer science during
the last thirty years. This paper surveys the main results achieved in this domain.

1 Introduction

The issue of polynomial approximation theory is the construction of algorithms for NP-hard
problems that compute “good” (under some predefined quality criterion) feasible solutions for
them in polynomial time. This issue appears very early (in the seminal paper by Johnson (|59])),
only three years after the celebrated Cook’s theorem ([25]). For over thirty years, polynomial
approximation has been a major research programme in theoretical computer science that has
motivated numerous studies by researchers from all over the world.

One of the main goals of this programme is, in a first time, to provide a structure for the
principal class of optimization problems, called NPO in what follows, and formally defined in
Section 2. Providing such a structure for NP O, consists first of dividing it into sub-classes, called
approzimability classes, the problems belonging to each of them sharing common approximability
properties (e.g., they are approximable within constant approximation ratios). Indeed, even if
NP-hard problems can be considered equivalent regarding their optimal resolution by polynomial
algorithms, they behave very differently regarding their approximability. For instance, some NP-
hard problems are “well” approximable (e.g., within constant approximation ratios, or within
ratios arbitrarily close to 1) while there exist other problems for which such approximability
qualities are impossible unless a highly improbable complexity hypothesis is true (for example
P =NP).

In a second time, the objective is to structure every such sub-class by exhibiting “hard” prob-
lems for each of them. This requires a processing of the same type as for NP-completeness but
adapted to the combinatorial characteristics of each of the approximability classes handled. This
can be done by the introduction of notions of approzimability preserving reductions. Sections 4
to 8 are dedicated to such reductions.

The technique of transforming a problem into another in such a way that the solution of
the latter entails, somehow, the solution of the former, is a classical mathematical technique
that has found wide application in computer science since the seminal works of Cook ([25])
and Karp (|61]) who introduced particular kinds of transformations (called reductions) with
the aim of studying the computational complexity of combinatorial decision problems. The
interesting aspect of a reduction between two problems consists in its twofold application: on
one side it allows to transfer positive results (resolution techniques) from one problem to the



other one and, on the other side, it may also be used for deriving negative (hardness) results.
In fact, as a consequence of such seminal work, by making use of a specific kind of reduction,
the polynomial-time Karp-reducibility, it has been possible to establish a complexity partial
order among decision problems, which, for example, allows us to state that, modulo polynomial
time transformations, the SATISFIABILITY problem is as hard as thousands of other combinatorial
decision problems, even though the precise complexity level of all these problems is still unknown.
In the same spirit, approximation preserving reductions allow us to establish a preorder among
combinatorial optimization problems with respect to their common approximability properties
and independently of the particular approximability properties of each of them.

Strictly associated with the notion of reducibility is the notion of completeness. Problems
that are complete in a complexity class via a given reducibility are, in a sense, the hardest
problems of such class. Besides, given two complexity classes C and C’ C C, if a problem II
is complete in C via reductions that belong (preserve membership) to C’, in order to establish
whether C’ C C it is “enough” to assess the actual complexity of II (informally we say that IT is
a candidate to separate C and C’).

The paper is organized as follows. In Section 2 generalities about the classes P, NP, NPO
as well as two seminal reducibilities, the Karp and the Turing ones are given, while in Section 3
basic notions about polynomial approximation are presented. Section 4 deals with the notion
of an approximation preserving reduction and the notion of completeness in an approximation
class. Sections 5, 6 and 7 the basic techniques for deriving completeness results in approximation
classes are discussed. Finally, in Section 8, completeness results for differential-approximation
classes are presented.

2 Preliminaries: P, NP, NPO and the reductions of Karp and Turing

In this section we revisit some basic notions of complexity theory that will be used later. More
details about them can be found in [53, 77, 78, 81].

A decision problem is defined by a set D of instances and a question ). Given an instance
I € D, one wishes to determine if the answer to @) is yes, or no, on I. More formally, a decision
problem is a set D of instances partitioned into two sets DT and D~, where DT is the set of
positive instances (the ones where the answer to @ is yes) and D~ is the set of negative instances,
where the answer to @) is no. Solution of such a problem consists of determining, given I € D,
if € DV ornot (I € D).

The resolution of a decision problem can be done by using an algorithm, formalized by the
introduction of the notion of Turing machine (see, for instance |69, 77|). The time-complexity
of an algorithm is expressed by the number of steps carried out by the corresponding Turing
machine in order to determine if / € DT. It is considered, in an ad hoc manner, that an
algorithm is efficient if its time-complexity is bounded above by a polynomial of the size |I| of
instance I. Such a consideration introduces the complexity class P. Formally, this class is the
set of decision problems that can be solved in time polynomial (with the size of their instances)
by a deterministic Turing machine.

Unfortunately, for a huge number of natural decision problems no polynomial algorithms are
known to solve them. As an example, consider MAX INDEPENDENT SET. In its decision version
this problem consists, given a graph G and a constant K, to decide if G contains an independent
set (i.e., a subset of mutually non-adjacent vertices) of size at least K. For this problem, we are
not able up to now to devise a polynomial algorithm that gives the correct answer for a graph G
and a constant K. However, one can verify in polynomial time if a subset of the vertex-set of
the input graph is an independent set of size at least K, for any K > 0, or not. In other words,
one can verify in polynomial time if a given part of the instance (a set of vertices in the case of



MAX INDEPENDENT SET) is a proof certifying that this instance is positive.

The capacity of having polynomial certificates is a common point for numerous decision
problems. This introduces complexity class NP. Formally, a decision problem belongs to NP if
there exists a polynomial binary relation R and a polynomial p such that for any instance I € D,
I € DY if and only if there exists x, |z| < p(]I]), such that R(I, z) (in other words, given I and z,
one can answer in time polynomial with |I| + |z| if R(I,z) or not). This becomes to say that
the class NP is exactly the set of problems solvable in polynomial time by a non-deterministic
Turing machine (|69, 77]).

The major open question in computer science is: “P = NP?” (inclusion of P in NP being
obvious). Almost the whole of the past and actual research in complexity theory is legitimated
by the conjecture (very largely admitted by the computer science and discrete mathematics
researchers communities) that P # NP.

Face to the impossibility to answer this question, other questions arise:

e “Can one say that a problem is computationally harder than another one?”

e “Can one, based upon the computational hardness of a problem, say something about the
hardness of other ones?”

e “Can one build some kind of problem hierarchy based upon the notion of their computa-
tional hardness?”

The notion of Karp-reduction gives answers to these questions. Let D = (Df', Dy ) and Dy =
(D;r ,D5 ) two decision problems. Then D; reduces to Dy under Karp-reduction (denoted by
Dy <k D) if there exists a function f such that:

e VI € Dy, f(I) € Dy;
e I eDf & f(I) € Dy;
e f is computable in polynomial time.

The fundamental property of this reduction is that, if Dy € P and if D1 <k Das, then Dy € P.
Indeed, for obtaining a polynomial algorithm solving Dy, it suffices, given an instance I of Dy, to
compute f(I) and to use a polynomial algorithm solving Do (note that since f is computable in
polynomial time, |f(I)| is a polynomial function of |I|). In other words, Karp-reduction preserves
membership in P.

A Karp-reduction of a problem D; to a problem Dy obviously implies that Ds is compu-
tationally harder than D; in the sense that if one could solve Dy in polynomial time, then
she/he could solve also D; in polynomial time. A problem D is said to be NP-complete if any
problem of NP reduces to D under Karp-reduction. Immediate corollary of this definition is
that an NP-complete problem D is polynomial if and only if P = NP. This stipulates that
if P # NP, classes P and NP-complete are disjoint. Moreover, as it is proved in [67], these
two classes do not partition NP. In other words, there exist problems that are neither in P, nor
NP-complete. These are the so-called NP-intermediate problems (with respect to P and under
Karp-reduction). Indeed, Ladner proves in [67| that there exists an infinity of complexity-levels
in the complexity-hierarchy built by the Karp-reduction.

The existence of intermediate problems for NP raises a fundamental question regarding the
power of Karp-reduction. There, one transforms an instance of a problem Dj into an instance
of another problem Dy in such a way that one can solve in polynomial time the instance of the
former if she/he can do so for the instance of the latter. Moreover, as noticed, this reduction
preserves membership in P. However, we can note that if, instead of building (and solving)



only one instance of Do, we build more than one instances of it (let say a polynomial number
of such instances), we still preserve membership in P. So this restriction “one instance to one
instance” implied by Karp-reduction, does not seem major for the foundation of the notion of
NP-completeness. This motivates the introduction of another reduction, seemingly larger than
the one of Karp, the Turing-reduction.

Let D and D’ be two decision problems. Then, D reduces to D’ under Turing-reduction
(denoted by D <1 D’) if, given a polynomial oracle O) that solves D’, there exists a polynomial
algorithm A solving D by running (calling) (). A polynomial oracle for D’ is a kind of fictive
algorithm that solves D', i.e., it correctly determines if an instance I € D'*. So, A would remain
polynomial even if it called O) on a polynomial number of instances of D’ derived from a single
instance of D. As for Karp-reduction, given two decision problems D and D', if D' € P and
D <1 D', then D € P. In other words, Turing-reduction also preserves membership in P. Hence,
in a similar way as for Karp-reduction, one can define NP-completeness under Turing-reduction.

A notion of NP-intermediate problems under Turing-reduction (and relatively to P) can also
be considered. However, this reduction still remains insufficiently surrounded. It seems to be
larger than the one of Karp (|68]), but we do not know yet if it is indeed more powerful than it,
or not. The question of the existence of intermediate problems under this reduction remains, to
our knowledge, open.

In any case, what is of interest with Turing-reduction is the fact that it calls an algorithm
for some problem in order that another one is solved. Hence, it can capture more than deci-
sion problems (for example, optimization problems also). This fact is largely used in defining
approximation preserving reductions.

In the previous discussion, we only have dealt with a particular kind of problems, the decision
problems. Many of them come from problems where one asks for finding a solution optimizing
some criterion, i.e., from optimization problems. In what follows, we handle optimization prob-
lems that have decision counterparts in NP. The class of these problems is called NPO.

Definition 1. An NP optimization (NPO) problem IT is commonly defined (see, for example, [8])
as a four-tuple (Z, Sol, m, goal) such that:

e 7 is the set of instances of Il and it can be recognized in polynomial time;

e given I € 7, Sol(I) denotes the set of feasible solutions of I; for every x € Sol(I), |z| is
polynomial in |I]; given any I and any z polynomial in |I|, one can decide in polynomial
time if 2 € Sol(1);

e at least one x € Sol(/) can be computed in time polynomial in |I|;

e given [ € 7 and x € Sol(I), m(I, z) is polynomially computable and denotes the value of z
for I; this value is sometimes called “objective value”;

e goal € {max, min}.

Solving IT on I consists of determining a solution z* € arggoal{m([,z) : = € Sol(I)}. Quan-
tity m(I,z*) will be denoted by opt(I). I

From any NPO problem II = (Z, Sol, m, goal), one can derive its decision counterpart by con-
sidering an instance I € 7 and an integer K and by asking whether there exists a solution of
value at least (resp., at most) K if goal = max (resp., min), or not. It can be easily shown that
such a decision problem is in NP.

Given a class of problems C C NPO, we denote by Max-C and Min-C the restrictions
of C to maximization and minimization problems, respectively.



For a combinatorial problem II € NPO, II is said to be polynomially bounded if there exists a
polynomial p such that, for every instance I of IT and every = € Sol(I), m(I,z) < p(|I]). Also, I
is said to be differentially polynomially bounded, if there exists a polynomial p such that, for every
instance I of IT and every pair of solutions (z,y) € Sol(I) x Sol(I), |m(I,z) —m(I,y)| < p(|I]).
Given a problem-class C C NPO, we denote by C-PB (resp., C-DPB), the restriction of C to
polynomially bounded (resp., differentially polynomially bounded) problems.

3 Polynomial approximation

3.1 Approximation ratios

Issue of polynomial approximation theory can be summarized as “the art of solving an NP-
hard problem in polynomial time by algorithms guaranteeing a certain quality of the solutions
computed”. This implies the definition of quality measures for the solutions achieved; these are
the so-called approximation ratios.

Let x be a feasible solution of an instance I of some NPO problem II. The standard ap-
prozimation ratio of x on I is defined by pr(I,x) = m(I,z)/opt(l). This ratio is in [0, 1], if
goal(Il) = max, and in [1,00], if goal(II) = min. In both cases the closer to 1 the better the
solution. Let us note that, for simplicity, when it is clear by the context, subindex II will be
omitted. Details and major results dealing with the standard approximation paradigm can be
found in [8, 58, 90, 81].

Even if most of the approximation results have been produced using this ratio, this is not
the only approximation measure used. Already, a most restrictive measure than the standard
approximation ratio is the one that measures the absolute difference between m (I, z) and opt([),
i.e., the measure |m(l,z) — opt(I)| ([53]). But this measure is too restrictive to allow many
positive approximation results.

However, it would be interesting to measure the quality of a feasible solution not only with
respect to an optimal one. One could be interested in situating the value of this solution with
respect either to the values of all the other solutions of the instance, or yet with respect to other
feasible values of the instance. Another requirement could be the stability of the approximation
ratio with respect to elementary transformations of the value of the problem. Clearly, consider
an NPO problem II' | where instances, feasible solutions and goal are the same as for problem II
but, for an instance I and a solution z, my(I,z) = ammn(l,x) + B, where a and [ are some
non-zero constants. Both II and II' are “equivalent” in the sense that a solution for the one
immediately provides a solution for the other. Hence, one could require that an algorithm
solving II and I’ has the same or quite similar approximation ratios for both of them. This is
not the case for the standard-approximation ratio. The dissymmetry MAX INDEPENDENT SET,
MIN VERTEX COVER! is the most known example.

Such consideration have led to the introduction by Ausiello et al. ([9], see also [10]) of what
has been called later in [38| differential approximation ratio. This ratio measures the quality
of a solution by comparing its value not only with the optimal value but also with the worst
value of an instance, denoted by w(I). Formally, a worst solution of an instance I of an NPO
problem II is defined as an optimal solution of a problem having the same set of instances and
feasible solutions, but its goal being the opposite of the goal of II. Worst solution of an instance
of NPO problem can be easy or hard to be computed, depending on the problem at hand. For
instance, computing a worst solution for an instance of MIN TSP? becomes computing an optimal

!Given a graph G(V, E), a vertex cover is a subset V' C V such that, for every (vi,v;) € E, either v; € V’, or
v; € V'; MIN VERTEX COVER consists of determining a minimum-size vertex cover in graph.

2Given a complete edge-weighted graph on n vertices MIN TSP consists of finding a Hamiltonian tour in K,
minimizing the sum of its edge-weights.



solution for MAX TSP? on the same instance; this computation is NP-hard. On the other hand,
a worst solution for MIN VERTEX COVER is the vertex-set of the input graph; its computation is
trivial.

Let = be a feasible solution of an instance I of an NPO problem II. The differential-
approximation ratio of x in I is defined by: oy(I,z) = (m(I,x) — w(l))/(opt(I) — w(l)). By
convention, when opt(I) = w(I) (every solution of I has the same value), ér(I,z) = 1. As one
can see, differential ratio takes values in [0, 1], the closer to 1, the better the ratio.

Even if it is introduced since 1977 (hence, just a few time after the paper by Johnson ([59])),
differential ratio has been very punctually and rarely used until the beginning of 90’s. Indeed,
the papers by [1, 10, 91] are, to our knowledge, the most known works using this ratio until 1993
when the beginnings of an axiomatic approach for the theory of the differential polynomial
approximation that have led to more systematic use of the differential ratio have been presented
in [37] and completed in (38, 34, 39].

Each of the two approximation paradigms induces its own results that, for the same problem,
can be very different from one paradigm to the other one, in particular for minimization problems.
On the other hand, for maximization problems, the following direct relation links the two ratios.

Proposition 1. IfII is a maximization problem, then for every instance I and every solution x
of I, on(I,x) < pn(I,x). Consequently, if I1 is r-differentially approximable, it is also r-standard
approximable.

Let II be an optimization problem and r be a function: r : Z — R. An approximation algorithm A
for II is an algorithm computing, for every instance I of II, a feasible solution x for I. Algorithm A
is said to be an r-approximation algorithm if, for every instance I, the approximation ratio of z
is better than r(I). Problem II is said to be r-approzimable if there exists an r-approximation
algorithm for II.

One of the main stakes of polynomial approximation is, given an NP O problem II, the devel-
opment of algorithms achieving the best possible approximation (performance) guarantees. This
is a two-fold stake. In a first time it aims at devising and analyzing polynomial approximation
algorithms for obtaining fine performance guarantees for them. These are the so-called positive
results. Another question relative to the achievement of a positive result is if the particular
analysis made for a particular algorithm is the finest possible for it, i.e., if there are instances
where the approximation ratio proved for this algorithm is attained (this is the so-called tightness
analysis). This concerns particular algorithms and the underlying question is if our mathemat-
ical analysis to get the particular positive result is as fine as possible. However, there exists a
more global question, addressed this time not to a single algorithm but to the problem II itself.
Informally, this stake does not only consist of answering if our analysis is good or fine, but if the
algorithm devised is the best possible (with respect to the approximation ratio it guarantees).
In other words, “do there exist other better algorithms for II?”. Or, more generally, “what is
the best approximation ratio that a polynomial algorithm could ever guarantee for I17”. This
type of results are said to be megative, or inapproximability results. Here, the challenge is to
prove that II is inapproximable within some ratio r unless a very unlikely complexity hypothesis
becomes true (the strongest such hypothesis being P = NP). More details about the stake of
inapproximability are given in Section 3.3.

One can now summarize the study of a problem II in the framework of polynomial approxi-
mation. Such a study consists of:

1. establishing that IT is approximable within approximation ratio r (for the best possible r);

3This is as MIN TSP but this time one asks for a maximum total edge-weight Hamiltonian tour.



2. establishing that, under some complexity hypothesis (ideally P # NP), II is inapprox-
imable within some ratio r’;

3. trying to minimize the gap between r and 7’ (the ideal being that these quantities coincide
or are arbitrarily close).

Getting simultaneous satisfaction of items 1, 2 and 3 above, is not always easy; however, there
exist problems for which this has been successfully achieved?. Let us consider, for example, MAX
E3SAT. Here, we are given m clauses over a set of n boolean variables, each clause containing
exactly 3 literals (a literal is a variable or its negation). The objective then is to determine
an assignment of truth values to the variables that maximizes the number of satisfied clauses.
In [59], it is shown that MAX E3SAT is approximable within standard approximation ratio of 7/8.
On the other hand, Hastad has shown more recently in [56] that this problem is inapproximable
within more than 7/8 + ¢, for every € > 0, unless P = NP.

3.2 Approximation classes

NP-hard problems behave very differently with respect to their approximability. For instance,
there exist problems approximable within constant approximation ratios (e.g., MAX E3SAT, for
the standard paradigm) while, for others (e.g., MAX INDEPENDENT SET), such approximability
is impossible unless P = NP. The construction of approximation classes aims at building
a hierarchy within NPO, any class of this hierarchy including problems that are “similarly”
approximable.

The most notorious approximability classes widely studied until now are the following (note
that, in fact, there exists a continuum of approximation classes):

e Exp-APX (resp., Exp-DAPX for the differential approximation): a problem II € NPO
is in Exp-APX (resp., Exp-DAPX), if there exists a positive polynomial p such that
the best approximation ratio known for II is O(2P()) if goal(II) = min, or O(1/2P()) if
goal(IT) = max (resp., O(1/2P()), where n is the size of an instance of II;

e Poly-APX (resp., Poly-DAPX): a problem II € NPO is in Poly-APX (resp., Poly-
DAPX), if there exists a positive polynomial p such that the best approximation ratio
known for IT is O(p(n)) if goal(IT) = min, or O(1/p(n)) if goal(II) = max (resp., O(1/p(n)));

e Log-APX (resp., Log-DAPX): a problem II € NPO is in Log-APX (resp., Log-
DAPX), if the best approximation ratio known for IT is O(logn) if goal(II) = min,
or O(1/logn) if goal(Il) = max (resp., O(1/logn));

e APX (resp., DAPX): a problem IT € NPO is in APX (resp., DAPX), if there exists a
fixed constant 7 > 1 such the best approximation ratio known for II is r if goal(II) = min,

or O(1/r) if goal(II) = max (resp., O(1/r));

e PTAS (resp., DPTAS): a problem II € NPO is in PTAS (resp., DPTAS) if, for any
constant € > 0, II is approximable within ratio 1+ ¢ if goal(II) = min, or 1 —¢ if goal(II) =
max (resp., 1 — ¢); a family of algorithms (A;)c~¢ that guarantees such ratios (depending
on the goal, or on the paradigm) is called polynomial time (standard-, or differential-)
approximation schema;

4Note that simultaneous satisfaction of these three items designs, in some sense, what can ideally be done in
polynomial time for the problem at hand.



e FPTAS (resp., DFPTAS): a problem II € NPO is in FPTAS (resp., DFPTAS) if it
admits a standard- (resp., differential-) approximation schema (A.).~¢ that is polynomial
in both n and 1/¢; such a schema is called fully polynomial time (standard-, or differential-)
approximation schema.

Finally, the class of the NPO problems that have decision counterparts in P will be denoted
by PO. In other words, PO is the class of polynomial optimization problems.
Dealing with the classes defined above, the following inclusions hold:

PO Cc FPTAS Cc PTAS C APX C Log-APX C Poly-APX C Exp-APX C NPO

These inclusions are strict unless P = NP. Indeed, for any of these classes, there exist natural
problems that belong to each of them but not to the immediately smaller one. For instance:

KNAPSACK FPTAS \ PO
MAX PLANAR INDEPENDENT SET PTAS \ FPTAS
MIN VERTEX COVER APX \ PTAS

MIN SET COVER Log-APX \ APX
Poly-APX \ Log-APX

Exp-APX \ Poly-APX

MAX INDEPENDENT SET

M M M M M M

MIN TSP

The landscape is completely similar (with respect to the architecture of the hierarchy and the
strictness of the class-inclusions) for the differential paradigm modulo the fact that no natural
problems are known for Exp-DAPX \ Poly-DAPX and for Log-DAPX \ DAPX.

Also, let us mention that in the differential hierarchy, another class can be defined, namely,
the class 0-DAPX ([|20]). This is the class of problems for which any polynomial algorithm
returns a worst solution on at least one instance, or, equivalently, on an infinity of instances. In
other words, for the problems in 0-DAPX, their differential approximation ratio is equal to 0.
More formally, a problem IT € NPO is in 0-DAPX, if IT is not d-differential-approximable, for
any function § : N — RJ. The first problem shown to be in 0-DAPX is MIN INDEPENDENT
DOMINATING SET, where, given a graph, one wishes to determine a minimum cardinality maximal
(for the inclusion) independent set.

3.3 Inapproximability

We have already mentioned that the study of approximability properties of a problem includes
two complementary issues: the development of approximation algorithms guaranteeing “good”
approximation ratios and the achievement of inapproximability results. In this section, we focus
ourselves on the second issue. We first introduce the notion of GAP-reduction that has led to
the achievement of the first inapproximability results, and then, the more general technique of
approzimability preserving reductions. Next, we briefly describe the very powerful tool of the
probabilistically checkable proofs upon which the major inapproximability results are based.

3.3.1 Initial technique: the GAP-reduction

An inapproximability result for an NPO problem II consists of showing that if we had an
approximation algorithm achieving some approximation ratio 7, then this fact would contradict
a commonly accepted complexity hypothesis (e.g., P # NP). A first idea that comes in mind is
to properly adapt Karp-reduction to this goal.



Example 1. Revisit the the NP-completeness proof for COLORING (the decision version of
MIN COLORING®), given in [53]. The reduction proposed there constructs, starting from an
instance ¢ of E3SAT®, a graph G such that G is 3-colorable if ¢ is satisfiable, otherwise G is at
least 4-colorable.

Suppose now that there exists a polynomial algorithm for MIN COLORING guaranteeing
standard-approximation ratio (4/3) — €, with € > 0. Run it on the graph G constructed from ¢.
If ¢ is not satisfiable, then this algorithm computes a coloring for G using more than 4 colors.
On the other hand, if ¢ is satisfiable (hence G is 3-colorable), then the algorithm produces a
coloring using at most 3((4/3) —€) < 4 colors, i.e., a 3-coloring. So, on the hypothesis that a
polynomial algorithm for MIN COLORING guaranteeing approximation ratio (4/3) — € exists, one
can in polynomial time decide if a CNF ¢, instance of E3SAT, is satisfiable or not, contradicting
so the NP-completeness of this problem. Hence, MIN COLORING is not ((4/3) — €)-standard-
approximable, unless P = NP. 1

One can find an analogous reduction for MIN TSP in [84] (see also [53]).

The reduction of Example 1 is a typical example of a GAP-reduction. Via such a reduction
one tries to create a gap separating positive instances of a decision problem from the negative
ones.

More generally, starting from an instance I of an NP-complete decision problem D, a GAP-
reduction consists of determining a polynomially computable function f, transforming I into an
instance of an NPO problem II (suppose that goal(Il) = min) such that:

e if I € D, then opt(f([)) < L;
o if I € D7, then opt(f(/)) > U (for L < U).

Obviously, in an analogous way, one can define a GAP-reduction for maximization problems.
Using such a reduction, one can immediately deduce an inapproximability result: II is inap-
proximable within standard-ratio U/Lj; if not, then D would be polynomial, implying so P = NP.

3.3.2 Generalization: approximation preserving reductions

GAP-reduction, seen in Section 3.3.1, reduces an NP-complete decision problem to an NPO
problem creating a gap. In what follows, we will see how one can generalize its principle in order
to reduce an optimization problem II; to another optimization problem II,. If such a reduction
is carefully devised, one is able, by analogous arguments, on the hypothesis of the existence of
an inapproximability result for Iy, to get an inapproximability result for IIs.

Example 2. ([8, 90]) Let ¢ be an instance of MAX E3SAT on n variables and m clauses. We
construct a graph G = f(¢) instance of MAX INDEPENDENT SET as follows: for each clause of ¢
we build a triangle, each of its vertices corresponding to one literal of the clause. For every pair
of opposite literals (e.g., z; and Z;), we add an edge in the graph under construction.

Assume now an assignment of truth values to the variables of ¢ satisfying k clauses. Con-
sider in G, for each triangle corresponding to a satisfied clause, a vertex corresponding to a
literal assigned with value “true”. The so-chosen set of vertices is an independent set of G of
size k. Conversely, consider an independent set of size k in G, assign with “true” the literals

Given a graph G(V, E), the objective of MIN COLORING is to determine a minimum-size partition of V into
independent sets.

5Given a set of m clauses over a set of n variables, SAT consists of finding a model for the conjunction of these
clauses, i.e., an assignment of truth values to the variables that simultaneously satisfies all the clauses; E3SAT is
the restriction of SAT to clauses with exactly three literals.



corresponding to its vertices and arbitrarily complete the assignment giving truth values to all
the variables of p. Obviously, this assignment satisfies at least k clauses of (.

Putting things together, we get that an independent set S of G satisfying m(G,S) >
ropt(G), derives, in polynomial time, a truth assignment 7 for ¢ satisfying m(p,7) > m(G,S) >
ropt(G) > ropt(p). In other words, a polynomial time algorithm achieving a standard-appro-
ximation ratio r for MAX INDEPENDENT SET, leads to a polynomial time algorithm achieving
the same approximation ratio for MAX E3SAT. As a corollary, the inapproximability bound of
(7/8) + €, for any € > 0, of [56] for MAX E3SAT applies also to MAX INDEPENDENT SET. So,
MAX INDEPENDENT SET is inapproximable within more than (7/8) + €, for any e > 0, unless
P=NP.1

Approximation preserving reductions, as the one of Example 2, allow the transfer of approxi-
mation results from a problem to another. This type of reductions is one of the main topics of
this survey. Also, additional details and informations about this type of reductions can be found
in [12, 26].

3.3.3 Some words about the PCP theorem

The use of GAP-reductions, or of several types of approximation preserving ones, was the main
tool for achieving inapproximability results until the beginning of 90’s. However, they have
left open several problems which, at that time, were impossible to be tackled only via this
tool, as for example, the approximability of MAX INDEPENDENT SET. For this problem, ratios
of O(n™1) can be very easily achieved by a bunch of polynomial algorithms. On the other hand,
MAX INDEPENDENT SET has a kind of self-improvement property implying that, unless P = NP,
either it is approximable by a polynomial time approximation schema, or no polynomial algorithm
for it can guarantee a constant approximation ratio (|53]).

The major advance in the domain of inapproximability has been performed with the achieve-
ment of a new characterization of NP, using probabilistically checkable proofs. In 1991, the notion
of transparent proof was introduced by Babai et al. (|14]) and has generated the exciting concept
of probabilistically checkable proofs or interactive proofs. Shortly, an interactive proof system
is a kind of particular conversation between a prover (P) sending a string ¢, and a verifier (V)
accepting or rejecting it; this system recognizes a language L if, (i) for any string ¢ of L (sent
by P), V always accepts it, and (ii), for any ¢ ¢ L, neither P, nor any imposter substituting P,
can make V accept ¢ with probability greater than 1/3. An alternative way of seeing this type
of proofs is as maximization problems for which the objective is to find strategies (solutions)
maximizing the probability that V accepts £.

Interactive proofs have produced novel very fine characterizations of the set of NP languages,
giving rise to the development of very sophisticated gap-techniques (drawn rather in an algebraic
spirit) that lead to extremely important corollaries in the seemingly unrelated (to the one of
probabilistically checkable proofs) domain of polynomial approximation theory.

The relation of probabilistically checkable proofs with the class NP have been initially studied
by Feige et al., in [49] (see also the full version in [50]) and has been completed by Arora et al.,
in [3] (see also [4] for the detailed version) in 1992. This new characterization of NP by [3|, known
as the PCP theorem, has been the breakthrough for the achievement of inapproximability results
for numerous NP O problems. In particular it has produced answers for famous open problems in
polynomial approximation as: “is MAX 3SAT in PTAS?”, “is MAX INDEPENDENT SET in APX7?”
etc. PCP theorem has been refined in the sequel, in order to produce negative results for many
other well-known NPO problems, as for MAX E3SAT (|57]), MAX INDEPENDENT SET ([56]), MIN
SET COVER ([47, 48]), MIN COLORING (|21, 51, 70, 71]), etc., or to refine the existing ones.
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Detailed presentation of PCP theorem is out of the scope of this paper. However, we will
try to present in what follows its main ideas. For a more detailed presentation and proofs, the
interested reader can refer to [8, 90|. Also, more details about the refinement of PCP theorem
and its applications to inapproximability can be found to the survey by Trevisan (|88, originally
published in French in [89]), as well as in [2].

Recall that NP is the class of problems for which there exist polynomial size certificates
constituting polynomial time deterministic proofs for the fact that an instance is positive or not.
Then, one can consider substitution of this deterministic verification by a randomized process.
Such a process receives as inputs the instance, the certificate and a vector of random bits. The
verification process will only have access to a part of the certificate, determined via the random
bits. It has to decide on the positivity of the instance by only reading this part of the certificate.
Of course, we wish that this random process is mistaken as rarely as possible.

The class PCP[r(n),q(n)] is the class of problems D = (D", D7) for which there exists a
polynomial random algorithm RA (certificate or proof controller) such that:

e the size of vector of random bits is at most r(n);
e RA has access to at most g(n) bits of the certificate;

e if I € DT, then there exists a polynomial size certificate such that RA accepts with prob-
ability 1 while, if I € D™, then for any certificate of polynomial size RA accepts it with
probability less than 1/2.

The fundamental theorem by [3, 4], relates the class PCP][-, -] with the usual complexity classes
and mainly with NP.

Theorem 1. (PCP Theorem, [3]) NP = PCP[O(log(n),O(1))].

Via Theorem 1 and its corollaries to approximation theory, numerous open problems have re-
ceived strong answers. For instance, it has led to proofs about inapproximability of MAX 3SAT and
MAX INDEPENDENT SET by polynomial time approximation schemata. For this latter problem,
this inapproximability result, combined with the self-improvement property mentioned above,
allows us to conclude that MAX INDEPENDENT SET does not belong to APX.

3.4 Logic, complexity, optimization and approximation

Complexity theory is classically founded on language theory ([69]). An alternative approach
based upon a logical definition of NP has been proposed by Fagin in [46] and since the end of 80’s
has been fruitfully used in polynomial approximation theory. In this section, we briefly present
this approach. It is based upon the seminal work of Papadimitriou and Yannakakis (|79, 80])
exhibiting strong links between logic, complexity and approximation.

Let us first present the logical characterization of NP. Fagin, trying to solve an open question
in mathematical logic” has shown that answering it was equivalent to determining if P = NP.
By this way, he has provided an alternative characterization of NP in terms of mathematical
logic. Before giving it, let us, for readability, explain it by means of an example.

Example 3. Given a graph G(V, E), 3-COLORING consists of determining if G is 3-colorable
or not. This problem is obviously in NP. The graph G can be seen as a set V = {vy,...,v,}
of vertices (called the universe in terms of logic), together with a set E of edges that can be
represented as a binary relation on V' x V| E(z,y) meaning that edge (z,y) exists in G. A
3-coloring in G is a partition of V into three independent sets S, So and S3. Then, representing

Is the complement of a generalized spectrum always a generalized spectrum or not?
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a set V! C V as a unary relation on V' (V’/(u) meaning that u € V'), one can characterize any
3-colorable graph as one for which the following formula is true:

35135355 [(VaSi(z) V Sa(z) V Ss(z)) (1)
A (Vo (2S1(z) A =S2(x)) V (—S1(x) A —S3(x)) (2)

V (=S2(x) A =S3(2))) (3)

A (Va¥y ((S1(z) A Si(y)) V (Sa(z) A Sa(y)) (4)

V (S3(2) A S3(y))))] (5)

= ~E(z,y) (6)

Indeed, considering that S, Sy and Ss are the three colors, line (1) means that every vertex
has to receive at least one color, and lines (2) and (3) that every vertex has to receive at most
one color. Finally, lines (4) to (6) model the fact that adjacent vertices cannot receive the same
color. 11

Example 3 above shows that 3-COLORING can be expressed by means of a second-order logical
formula, positive instances of it being the ones satisfying it. This can be generalized for any
problem in NP.

Let n € N and 0 = (01,...,0,) C N". A o-structure is an (n + 1)-tuple (A, Py,..., P,)
where: A is a non-empty finite set called the universe and P; is a predicate of arity o; on A.
Fagin’s theorem claims that for any decision problem D = (D, D™) of NP, there exist 0 € N1,
u € N™ and a first-order formula ® such that D can be modeled in the following way:

e cvery instance I of D can be represented by a o-structure I,;

e an instance I is positive if and only if there exists a p-structure S such that (I,,S)

d(1,,S).

A detailed proof of this theorem can be also found in |77].

The work by [79, 80| consists, based upon NP’s characterization by Fagin, of determin-
ing natural syntactic classes of NPO problems, each of them having particular approximation
properties.

For every n € N, we denote by ¥, (resp., II,), the set of first-order logic formulee in prenex
form comprising n successive groups of quantifiers starting from an 3-group (resp., V-group) and
alternating V-groups and 3-groups (resp., 3-groups and V-groups).

Consider a problem D € NP, expressed by formula 3S(1,S) = ®(I,S), ® being a first-order
formula. If it starts from V, one can define the optimization problem Ilp, “corresponding” to D,
as follows:

Ip :mngx :(1,8) | ®'(x,1,9)}]

where @’ is the formula obtained from ® by removing the first quantifier and x is a k-tuple of
elements from the universe of I.
Then, the most important approximation classes of [80] can be defined as follows.

Definition 2. ([80]) Consider a quantifier-free first-order logic formula . Then:

e Max-SNP is the set of maximization problems defined by: maxg|{z : (I,S) = ¢(x, I,S)}|;
the objective of any of these problems is to determine a structure S* maximizing quantity

Hz: (1,9) (e, 1, 5)};
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e Max-NP is the set of maximization problems defined by:
max{z : (1,5) = 3yp(z,y, 1, )}
The objective is to determine a structure S* maximizing quantity:

{z:(1,9) F Iye(z,y,1,5)} 1

Definition 2 does not really fit the formal framework of NPO problems. In this definition,
structures S represent, in some sense, the feasible solutions of an instance. So, considering for
an instance I, m(I,S) = {z : (I,5) E ¢(z,I,S5)}|, for Max-SNP, or m(I,5) = |{z: (I,9)
Jyp(z,y,1,S)}, for Max-NP, one can recover the formal framework of NPO.

Many well-known optimization problems belong to classes Max-SNP and Max-NP. For
instance, MAX 3SAT®, MAX INDEPENDENT SET-B (the restriction of MAX INDEPENDENT SET to
graphs of maximum degree bounded by B), MAX cUT?, etc., belongs to Max-SNP, while MAX
SAT belong to Max-NP.

The following theorem (|79, 80]) describes a first link between Max-SNP, Max-NP and
approximation.

Theorem 2. (/80]) Every problem in Max-SNP and in Maz-NP is approximable within
constant standard-approximation ratio. Furthermore, Max-SNP C Max-NP C APX.

4 Reductions and completeness

When the problem of characterizing approximation algorithms for hard optimization problems
was tackled, soon the need arose for a suitable notion of reduction that could be applied to
optimization problems in order to study their approximability properties.

What is it that makes algorithms for different problems behave in the same way? Is
there some stronger kind of reducibility than the simple polynomial reducibility that
will explain these results, or are they due to some structural stmilarity between the
problems as we define them? ([59])

Approximation preserving reductions provide an answer to the above question. Such reductions
have an important role when we wish to assess the approximability properties of an NPO
optimization problem and locate its position in the approximation hierarchy. In such case, in
fact, if we can establish a relationship between the given problem and other known optimization
problems, we can derive both positive information on the existence of approximation algorithms
(or approximation schemes) for the new problem or, on the other side, negative information,
showing intrinsic limitations to approximability. With respect to reductions between decision
problems, reductions between optimization problems have to be more elaborate. Such reductions,
in fact, have to map both instances and solutions of the two problems, and they have to preserve,
S0 to say, the optimization structure of the two problems.

The first examples of reducibility among optimization problems were introduced by Ausiello,
d’Atri and Protasi in [10, 11| and by Paz and Moran in [82]. In particular in [11] the notion
of structure preserving reducibility is introduced and for the first time the completeness of MAX

8Given a CNF, MAX SAT consists of determining an assignment of truth values to the variables of the formula
maximizing the number of the satisfied clauses; MAX 3sAT is the restriction of MAX SAT to clauses containing at
most three literals.

9Given a graph G(V, E), we wish to determine a subset V' of V' maximizing the number of edges having one
and only one endpoint in V.
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WSAT (this problem will be defined later in Section 5.1) in the class of NPO problems is proved.
Still it took a few more years until suitable notions of approximation preserving reducibilities
were introduced by Orponen and Mannila in [76]. In particular their paper presented the strict
reduction (see Section 5.1) and provided the first examples of natural problems which are com-
plete under approximation preserving reductions.

4.1 Approximation preserving reductions

Let us revisit Example 2 of Section 3.3.2. Reduction from MAX E3SAT to MAX INDEPENDENT
SET given in this example consists of transforming:

e an instance ¢ of MAX E3SAT into an instance G = f(¢) de MAX INDEPENDENT SET;

e a feasible solution S of G into a feasible solution g(¢,S) = 7 of ¢, so that standard-
approximation ratios of solutions S and 7 are related by: p(G,S) < p(p, 7).

This reduction allows to claim that, if MAX INDEPENDENT SET is approximable within standard-
approximation ratio r, for some constant r, then MAX E3SAT is so. Conversely, it allows also to
claim that, if MAX E3SAT cannot be approximated within standard-approximation ratio r’ (under
some complexity hypothesis), so does MAX INDEPENDENT SET (under the same hypothesis).

This example summarizes the principle ant the interest of the notion of an approximation
preserving reduction. This kind of reduction comprises three basic components:

1. a polynomially computable function f that transforms instances of some (initial) problem IT
into instances of some other (final) problem IT';

2. a polynomially computable function g that, for every instance I of II and every feasible
solution 2’ of f(I), returns a feasible solution x = g(I,2’) of I;

3. a property concerning transfer of approximation ratios from z’ to x; this property implies
that if 2’ attains some approximation level, then x = g(I,z’) also attains some approxima-
tion level (possibly different from the one of z').

If such a reduction exists from II to II' (both being NPO problems), one can use an approxima-
tion algorithm A’ for IT" in order to solve II in the following way: one transforms an instance [
of IT into an instance f(I) of II'; one runs A" in f(I) and finally uses ¢ in order to finally recover a
feasible solution for I. This specifies an approximation algorithm A for IT which, for an instance I
returns solution A(I) = g(I,A'(f(I))). Obviously, A is polynomial if A" is so.

In order to further clarify this brief introduction to approximation preserving reductions we
give two examples of very frequently used reductions: the L-reduction (Definition 3) and the
AF-reduction (Definition 4).

Definition 3. ([80]) A problem IT € NPO reduces to a problem II' € NPO under the L-
reduction (denoted by II < IT') if there exist two functions f et g computable in polynomial
time and two constants « et § such that:

1. for every I € Iy, f(I) € Zyy; furthermore, opty (f(I)) < aopty(1);

2. for every I € Zy1 and every x € Sol(f(I)), g(I,z) € Sol(Zr); furthermore:

Imu(Z,9(1, ) — optyy (1)| < Blmuw (f(I),2) — opty (f(1))] W
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Let us note that conditions 1 and 2 imply that |prr(Z, g(I,z)) — 1| < aB|pw (f(I),z) — 1|. Hence,
if, for example, IT and IT' are both maximization problems and if x is a p’-approximated solution
for f(I), then pr(I,g9(I,x)) = 1 — Ba(l — p’). This allows us to get the following fundamental
property of L-reduction (holding also for minimization problems): if II' € PTAS and if I1 < 1T,
then Il € PTAS;, in other words, L-reduction preserves membership in PTAS.

Example 4. Let us show that MAX INDEPENDENT SET-B10 L-reduces to MAX 2SAT!!. Consider
an instance G(V, E) of MAX INDEPENDENT SET-B. We build the following instance ¢ of MAX
28AT:

e with any vertex v; € V, we associate a variable x;;

o for every edge (v;,v;) € E we build the clause Z; V Z; and for every vertex v; we build the
clause x;.

This specifies function f of the reduction.

We now specify function g. Consider an assignment 7 of truth values to the variables of ¢.
Transform 7 into another assignment 7’ using the following rule: if a clause z;\V z; is not satisfied,
change the value of z; (i.e., set it to “false”). The so-obtained assignment 7’ satisfies at least as
many clauses as 7. Consider now the set V' of vertices corresponding to variables that have been
set to “true” by 7/. This set is an independent set of G since all the clauses corresponding to F
are verified. Function g is so specified.

It remains to show that the reduction just described is an L-reduction. We first note that
m(e,7) <m(p, ) =|E|+ |V']. Given that the maximum degree of G is bounded by B, |E| <
nB/2 and, on the other hand, there exists an independent set of size at least n/(B + 1) ([22]).
Based upon these two facts, we get: |E| < B(B + 1)opt(G)/2. In this way, any independent set
of size k in G can be transformed into a truth assignment 7 satisfying |E| = k clauses. Hence,
opt(p) = |E| 4+ opt(G) < ((B(B+1)/2) + 1)opt(G). Condition 1 of Definition 3 is verified,
taking @« = B(B + 1)/2 + 1. On the other hand, opt(¢) — m(p,7) = opt(p) — m(p,7') =
opt(G) — m(G,V’). This is condition 2 with 5 =1.11

The second reduction, called the AF-reduction, is very pertinent for the differential-approximation
paradigm.

Definition 4. A problem II € NPO reduces to a problem II'’ € NPO under the AF-reduction
(denoted by IT <af IT') if there exist two functions f et g, computable in polynomial time, and
two constants o # 0 et 3 such that:

e for every I € Iy, f(I) € Iy

e for every I € Ity and every x € Sol(f([1)), g(I,x) € Sol(Zy); furthermore, my (I, g(I,x)) =
amyy (f(1),z) + 5;

e for every I € Iy, function g(Z,.) is onto;
e II and IT" have the same goal if o > 0, and opposite goals if a < 0. Il

Thanks to the fact that function g(7,.) is onto, opt et w verify opty(I) = aopty (f(I)) + 8 and
wi(l) = awrr (f(I)) + 8. Hence, if I € DPTAS (resp., II' € DAPX) and if II <af I, then
IT € DPTAS (resp., I € DAPX). In other words, AF-reduction preserves membership in both
DAPX and DPTAS.

0The restriction of MAX INDEPENDENT SET to graphs with maximum degree bounded above by B.
1 The restriction of MAX SAT to CNF’s all the clauses of which contain at most two literals.
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4.2 Completeness

Every reduction can be seen as a binary hardness-relation'? among problems. Reductions are,

in general (this is the case of all the reductions known) reflexive and transitive. In other words,
they induce a partial preorder'3 on the set of problems linked by them. This preorder is partial
because it is possible for two problems to be incomparable with respect to a reduction, i.e., it
is possible that there exist two problems II and II' such that, for some reduction R, neither
II <g IT, nor IT" <R II.

Starting from a relation that is reflexive and transitive, one can define an associated equiv-
alence relation, in a very classical manner. Let R be a reduction. We define the equivalence
relation =g by II =g II' if and only if II <g I’ and II" <g II. Then, II et II' are said to be
equivalent under R-reduction.

Given a set C of problems and a reduction R, it is natural to ask if there exist maximal
elements in the preorder induced by R, i.e., if there exist problems II € C such that any problem
II' € C, Rreduces to II. Such maximal elements are called in complexity theory complete
problems.

Let C be a class of problems and R be a reduction. A problem II € C is said to be C-complete
(under R-reduction) if for any II' € C, I’ <g II. A C-complete problem (under reduction R) is
then (in the sens of this reduction) a computationally hardest problem for class C. For instance,
in the case of NP-completeness, NP-complete problems (under Karp-reduction) are the hardest
problems of NP since if one could polynomially solve just one of them, then one would be able
to solve in polynomial time any other problem in NP. Let C be a class of problems and R a
reduction. A problem II is said to be C-hard (under R-reduction) if for any II' € C, II' <g IIL.
In other words, a problem II is C-complete if and only if II € C and II is C-hard.

Finally, from a structural point of view, it is interesting to determine the closure of a problem-
class under a given reduction, this closure being defined as the set of problems reducible under this
reduction to a problem of the class under consideration. We could see the closure of a class as a set
of problems computationally “easier” than at least one of the problems of this class. Formally, the
closure of a problem-class C under some reduction R is defined by: R = {IT: 3" e C, 11 <R IT'}.

4.3 Links with approximation

It hopefully has been obvious that the concept of approximation preserving reduction is very
strongly linked to polynomial approximation. This link is mainly used for the achievement of
inapproximability results. Reductions preserving approximability generalize, in some sense, the
concept of GAP-reduction and allow transfer of inapproximability bounds from an optimization
problem to another.

Even if such reductions mainly concern transfer of results among pairs of problems, we can
use them in order to complete the structure of approximability classes. For this purpose we need
to introduce notions of completeness, associated with these reductions, proper to each of the
approximation classes defined in Section 3.2.

Revisit for a while L-reduction introduced in Section 4.1. We have stated there that if a
problem II" € PTAS and if a problem II L-reduces to II', then II € PTAS. In other words
L-reduction preserves membership in PTAS. Consider now an approximation class that contains

12Recall that a binary relation R on a set E is said to be: reflezive, if for every & € E, xRx; transitive, if
for every (z,y,2) € E*, xRy AyRz = xRz; symmetric, if for every (x,y) € E?, xRy = yRx; antisymmetric,
if for every (z,y) € E?, xRy A yRx = & = y; a relation is said to be an order, if it is reflexive, transitive and
antisymmetric, a preorder, if it is reflexive and transitive, and an equivalence relation, if it is reflexive, symmetric
and transitive.

13We speak about preorder and not about order because reductions are not, in general, antisymmetric.
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PTAS, say APX and assume that one has proved the existence of a problem II that is APX-
complete under L-reduction. If IT admits a polynomial time approximation schema then, since
L-reduction preserves membership in PTAS, one can deduce the existence of polynomial time
approximation schemata for any problem that is L-reducible to II, hence, in particular, for any
problem in APX. In other words, by the assumptions just made, we have: Il € PTAS =
APX = PTAS. Since, under the hypothesis P # NP, PTAS ¢ APX, one can conclude that,
under the same hypothesis, IT ¢ PTAS.

The above schema of reasoning can be generalized for any approximation class. Let C be a

class of problems. We say that a reduction R preserves membership in C, if for every pair of
problems II and II': if IT € C and I’ <g II, then II' € C. We then have the following.

Proposition 2. Let C and C ' be two problem-classes with C ' & C. If a problem II is
C-complete under some reduction preserving membership in C', then I1 & C'.

Obviously, if the strict inclusion of classes is subject to some complexity hypothesis, the conclu-
sion IT ¢ C' is subject to the same hypothesis.

The analogy with NP-completeness is immediate. The fundamental property of Karp- (or
Turing-) reduction is that it preserves membership in P. Application of Proposition 2 to NP-
completeness framework simply says that INP-complete problems can never be in P, unless
P = NP. Let us continue for a while this analogy. As we have mentioned in Section 2, [67]
establishes the existence of NP-intermediate problems under Karp-reduction. This becomes to
say that there are not only two levels in the hierarchy induced by Karp-reduction (problems in P
and NP-complete problems), or, said in another way, under this reduction and the assumption
P # NP, NP-completeness is not equivalent to “non-polynomiality”. This type of questions
can be also asked when dealing with approximability-hierarchy. In other words, “can we say, for
example, that a problem in APX that does not admit a polynomial time approximation schema
is APX-complete?”. This is the question of intermediate problems in approximation classes.

Let C and C’ be two problem-classes with C’ C C, and R be a reduction preserving mem-
bership in C’. We say that a problem II is C-intermediate (under R-reduction and with respect
to C'') if, under the hypothesis C’ ¢ C, II is neither C-complete under R-reduction, nor it
belongs to C'.

In what follows, in Sections 5, 6 et 7 we describe the three main techniques used to derive
completeness results for several approximation classes.

5 Completeness by Cook’s like proofs

In this section we survey completeness in standard approximation paradigm for three approx-
imation classes, namely, NPO (Section 5.1), APX (Section 5.2) and PTAS (Section 5.3).
Achievement of these results is based upon careful (and sometimes tricky) transformations of the
proof of Cook’s theorem ([25]) by adapting it to an “optimization” context and without using
the PCP theorem (Theorem 1 in Section 3.3.3).

5.1 NPO-completeness

NPO-completeness has been initially introduced and studied by Orponen and Mannila in |76].
It is based upon a very natural idea of approximation preserving reduction, informally, that
function g returns a solution g(I,x) that is at least as good as z itself.

Definition 5. (|76]) Let IT and I’ be two maximization problem of NPO. Then II reduces to II'
under the strict reduction if there exist two functions f et g, computable in polynomial time,
such that:
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e for every I € Iy, f(I) € Iyy;
e for every I € 7y and every = € Sol(f(I)), g(I,z) € Sol(Zn);
e for every I € 7y and every x € Sol(f(1)), pu(I,9(I,z)) = pr(f(I),z). K

In an analogous way strict-reduction can be defined for minimization problems.

By its simplicity, strict reduction has the advantage to preserve membership in any approxi-
mation class and, simultaneously, the drawback to be too restrictive, since it does not allow any
“deterioration” on the quality of the solution derived by g. However, it has been able to provide
the first completeness results achieved for approximability classes that, even if somewhat partial,
have their own mathematical and historical value.

Consider problems MAX WSAT et MIN WSAT. For both of them, instances are instances of SAT,
i.e., CNF’s ¢ on m clauses and n binary variables, each variable x; having weight w(x;). Feasible
solutions for these problems are the models of . The value of a model 7 is the sum of the weights
on the variables set to “true”, i.e., quantity ;" ; w(x;)7(x;). The objective is to maximize (for
MAX WSAT), or to minimize (for MIN WSAT) this value over any model of ¢. However, so defined
these two problems do not fit the definition of NPO (Definition 1, Section 2). Indeed, in order
to find a feasible solution for ¢ (when such a solution exists) one has to solve SAT, impossible
in polynomial time unless P = NP. In order to remedy to this, and make that both problems
belong to NPO, we add a trivial additional solution, namely, the one where all variables are set
to “false” (for MAX WSAT; this solution has value 0), or the one where all variables are set to
“true” (for MIN WSAT; the value of this solution is, obviously, Y 7" | w(z;)).

Theorem 3. ([76/) MIN WSAT is Min-NPO-complete under strict-reducibility.
An analogous result has been shown in [10] for Max-NPO.
Theorem 4. ([10/) MAX WSAT is Max-NPO-complete under strict-reducibility.

Let us note that in 76|, the Min-NPO-completeness of many other problems is also shown:
MIN W3SAT! MIN TSP and MIN LINEAR PROGRAMMING 0-1'% (see also [66, 82| for alternative
proofs of these results).

Theorems 3, or 4 leave however open the question of the existence of complete problems for
the whole class NPO. No such result has been produced using strict-reduction. This seems to be
due to a certain dissymmetry between maximization and minimization problems. More precisely,
Kolaitis and Thakur show in [65] that rewriting every maximization problem into a minimization
one, on the same set of instances and in such a way that optima coincide, is equivalent to showing
that NP = co-NP!6. So, it seems necessary that, in order to prove a completeness result for
(the whole class) NPO, one has to use a reducibility that does not preserve optimality.

This has led Crescenzi et al. to propose, in [27], a new reduction, the AP-reduction defined
as follows.

Definition 6. ([27]) Let IT and IT" be two NPO problems. Then, II reduces to II" under AP-
reduction (denoted by IT <ap IT'), if there exist two functions f et g and a positive constant «
such that:

14Restriction de MIN WSAT to formulae with clauses of size at most 3.

15Civen a matrix A(m xn) with entries in Z, a vector b € N™ and a vector & € N”, the objective is to determine
a vector Z € {0,1}" satisfying AT > b and minimizing quantity @- #; MAX LINEAR PROGRAMMING O-1consists,
under the same data, of determining a vector Z € {0,1}" satisfying A% < b and maximizing quantity &- .

16Decision problems of co-NP are complementary to the ones of NP; positive instances of a co-NP problem
are the negative instances of an NP problem (and vice-versa); obviously, P C co-NP; question “NP = co-NP?”,
although considered as “less crucial” than “P = NP?” is another famous question in complexity theory, answer
of which is conjectured to be negative.
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e for every I € Iy and for every r > 1, f(I,r) € Iyy; f is polynomial with |I|;

e for every I € Ty, every r > 1 and every =z € Sol(f(I,r)), g(I,r,xz) € Sol(Zn); g is
polynomial with both |I| and |z|;

o for every I € Iy, every r > 1 and every = € Sol(f(I,r)), Ru/(f(I,r),xz) < r implies
Ru(I,g(I,r,x)) < 14 «a(r — 1), where R is approximation ratio p for a minimization
problem and 1/p for a maximization problem. i

Let us note that AP-reduction preserves membership in APX and in PTAS. On the other hand,
it is much less restrictive than strict-reduction. In particular, the fact that functions f et g
depend on r allows that optimal solutions are not transformed into optimal solutions and so
the problem of the dissymmetry between maximization and minimization problems mentioned
before can be more easily overcome.

By means of this reduction, Crescenzi et al. prove in [27| the existence of complete problems
for NPO. More precisely, they first prove the following theorem.

Theorem 5. (/27]) MIN WSAT and MAX WSAT are equivalent under AP-reduction.

Let II be, say, a Max-NPO-complete problem under AP-reduction and let II' a minimiza-
tion problem of NPO. Then, II' <ap MIN WSAT <ap MAX WSAT <ap II. Transitivity of AP-
reduction derives then the following corollary.

Corollary 1. (/27]) Every problem Max-NPO-complete or Min-NPO-complete under AP-
reduction is NPO-complete (under the same reduction).

Now, it suffices to remark that strict-reduction is a particular case of AP-reduction (taking o = 1
and considering that f and g do not depend on ), and to use Theorems 3, 4 and Corollary 1, in
order to deduce the following corollary.

Corollary 2. (/27]) MAX WSAT, MIN WSAT, MIN W3SAT, MIN TSP and MIN LINEAR PROGRAM-
MING 0-1 are NPO-complete under AP-reduction.

The five problems of Corollary 2 are all weighted (variable-weights for the first three ones, edge-
weights for the fourth and weights on coefficients for the fifth one) and these weights can be
large. For instance, in the proof of Theorem 3 (|76]), weights on the variables are exponential.
The fact of using such large weights is not fortuitous, as it is shown in the following theorem
proved in [30].

Theorem 6. ([30]) A polynomially bounded NPO problem can never be NPO-complete (under
AP-reduction), unless the polynomial hierarchy'™ collapses.

In fact, Theorem 6 is proved in [30], under PTAS-reduction (introduced in Section 5.2) which is
more general than AP-reduction. Hence, this result still holds for this latter reduction.

The result of Theorem 6 shows the difficulty of establishing a generic reduction of the whole
class NPO to a polynomially bounded problem. So, another question arises: “do there exist com-
plete problems for NPO-PB, the subclass of polynomially bounded NPO problems?”. Consider
MIN LINEAR PROGRAMMING 0-1-PB and MAX LINEAR PROGRAMMING 0-1-PB, the restrictions
of MIN LINEAR PROGRAMMING 0-1 and MAX LINEAR PROGRAMMING (-1, respectively, to the
case where coefficients in the objective function are binary. Both of these problems are obviously
in NPO-PB. As it is shown in [27], MIN LINEAR PROGRAMMING 0-1-PB and MAX LINEAR
PROGRAMMING 0-1-PB are NPO-PB-complete under AP-reduction. Let us note that, as for
the case of NPO-completeness, this result is obtained by showing that these problems are AP-
equivalent (see Section 4.2) and by using former results of partial completeness by Berman and
Schnitger ([23]), and Kann ([60]).

Informally, the landscape of complexity classes beyond NP and co-NP.
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5.2 APX-completeness

We discuss in this section completeness for APX, the most notorious and intensively studied
approximation class of NPO. In a first time, we present completeness results for this class under
two reductions preserving membership in PTAS. Next, we present results tackling the existence
of intermediate problems for APX. Finally, we explore the limits of the approach consisting of
establishing completeness results exclusively based upon the notion of approximation preserving
reductions.

5.2.1 PTAS preserving reductions and completeness in APX

The first completeness result for APX has been established by Crescenzi and Panconesi in 28|
(the conference version of [29]). For doing this, they introduce the P-reduction that preserves
membership in PTAS.

Definition 7. (]|29]) Let II and II' be two maximization problems of NPO. Then, IT reduces
to II' under P-reduction if there exist two polynomially computable functions f et g and a
function ¢ such that:

e for every I € Iy, f(I) € Zyy;
e for every I € Iy and every x € Sol(f(1)), g(I,z) € Sol(Zn);
e c:]0,1[—]0,1];

e for every I € Iyy, every x € Sol(f(I)) and every ¢ €]0,1], pr(f(I),z) > 1 — ¢(e) implies
pn(l,g(1,z)) >1—¢. 1

P-reduction where at least one among II and II' is a minimization problems can be defined
analogously. Also, it can be immediately seen that P-reduction preserves membership in PTAS.

Via this reduction, it is proved in [28, 29] the APX-completeness of a restriction of MAX
WSAT, called MAX WSAT-B. This problem is defined as MAX WSAT modulo the fact that in every
of its instances W < Y1 w(x;) < 2W, for a given integer W. As for MAX WSAT, we assume
ad hoc that the assignment consisting of setting all variables to “false” is feasible and its value
is W. This problem is trivially in APX since this ad hoc solution has standard-approximation
ratio 2.

Theorem 7. ([29]) MAX WSAT-B is APX-complete under P-reduction.

As in the case of NPO-completeness in Section 5.1, the proof of Theorem 7 is based upon a
modification of Cook’s theorem. This result has a great importance since it constitutes the first
completeness result for the most famous approximation class. However, it presents two relative
drawbacks: (i) MAX WSAT-B seems to be somewhat artificial and constructed ad hoc and (ii) it
is obvious that this problem does not admit a polynomial time approximation schema, unless
P = NP (in any case, any approximation better than 2 in polynomial time, would allow to solve
SAT).

Also, it very soon appeared that it was extremely difficult to prove APX-completeness of
other problems, under P-reduction. Face to this situation, Crescenzi and Trevisan have shown
in [32] that this reduction is not well adapted for proving completeness about polynomially
bounded problems. This “inadequacy” resides into the fact that P-reduction transforms optimal
solutions into optimal solutions (as strict reduction, as we have already mentioned, but also
L-reduction in Section 6, E-reduction in Section 7.1, ...).

Denote by PSAT and PSATIOUg(m)] the classes of decision problems solvable by using, re-
spectively, a polynomial, or a logarithmic number of calls to an oracle solving SAT. The authors
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of [32] show that proving completeness in APX of a polynomially bounded problem under a re-
duction preserving optimality of solutions becomes to prove that PSAT = PSAT[OOog(m))] | that is
very unlikely ([32]). In order to get round this difficulty, they introduce the following reducibility,
called PTAS-reducibility.

Definition 8. ([32]) Let II and II' two maximization problems of NPO. Then II reduces to II'
under PTAS-reduction, if there exist three functions f, g and ¢ such that:

e for every I € Iy and every € €]0,1], f(I,e) € Zry; f is computable in time polynomial
with |I];

o for every I € Iy, every € €]0,1] and every = € Sol(f(I,¢)), g(I,e,z) € Sol(Zn); g is
computable in time polynomial with both |I| and |z|;

e ¢:|0,1[—]0,1[;

o for every I € Iy, every € €]0, 1] and every = € Sol(f(1,¢)), prv(f(I,€),z) > 1—c(e) implies
pn(l,g9(I,e,2)) =21 —¢. 1

This reduction can be analogously defined when at least one of the problems implied is a mini-
mization problem. Note also that PTAS-reduction is a generalization of P-reduction and that it
remains PTAS-preserving.

Indeed, the unique difference among these two reductions is that in PTAS-reduction func-
tions f and g depend on e. This difference is important since this reduction does not always
preserve optimality of solutions. This advantage allows to prove completeness for polynomially
bounded problems.

Really, in [32], it is shown that this is the case of MAX WSAT-PB. This problems is derived
from MAX WSAT-B: instances and feasible solutions are the same; only the objective function is
modified in order that the problem becomes polynomially bounded. If ¢ is an instance of MAX
WSAT-PB on n variables and 7 is a truth assignment, then:

n (m'(p,7) — W)J

m(tp,T):n-i-{ o

where m/ is the value of 7 on ¢ with respect to MAX WSAT-B. The value of every solution for
MAX WSAT-PB is now bounded above by 2n. Every feasible solution being of value at least n,
this problem is obviously in APX.

Theorem 8. (/32/) MAX WSAT-B PTAS-reduces to MAX WSAT-PB. So, MAX WSAT-PB is
A PX-complete under PTAS-reduction.

5.2.2 APX-intermediate problems

We now tackle existence of intermediate problems for APX. Crescenzi and Panconesi show the
existence of such problems in APX, with respect to PTAS, under P-reduction. This is proved
there via a diagonalisation principle inspired from the one of LADNER for proving existence of
intermediate problems in NP (|67]). Once more, the problem shown to be intermediate is build
ad hoc and is not so natural.

Crescenzi, Kann and Trevisan (|30]) have pursued these studies and have obtained very inter-
esting results. Under the assumption that polynomial hierarchy is not finite (assumption weaker
than P # NP) they have exhibited a very natural and very well-known APX-intermediate
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problem, the BIN PACKING'®. This problem is in APX; it admits a polynomial time asymptotic
approximation schema ([52]) but not a polynomial time approximation schema, if P # NP (see,
for example, [53]).

Let us note that since PTAS-reduction is a generalization of P-reduction, the existence of
intermediate problems under the former holds also for the latter. Note also that, even if the
existence of NP-intermediate problems under Karp-reduction is established by [67], no natural
problem is known to have this status. So, the fact that a problem as BIN PACKING is shown to
be intermediate for APX is interesting per se.

5.2.3 Limits of this approach

The main interest of the results presented until now is that they build a structure for approx-
imability classes. However, they do not make new contributions about inapproximability bounds
for the problems proved complete for one or for another class.

As we have already mentioned, the real breakthrough for inapproximability has been the PCP
theorem. Hence, an a posteriori question is if the advances made thanks to this theorem would
be possible via completeness issues. For example, would be possible to prove the non-existence
of a polynomial time approximation schema for MAX 3SAT (and for many other problems for
which we know now that they do not belong to PTAS) only by proving its APX-completeness
and without using PCP-theorem? Let us note that very recently a combinatorial proof of this
theorem has been devised by [40, 41|; hence inapproximability of, say, MAX 3SAT can be now
established by purely combinatorial arguments.

Crescenzi and Trevisan have studied relationship between the PCP theorem and complete-
ness in [31]. They tackle the question if the PCP theorem can be deduced from a proof of the
APX-completeness of MAX 3SAT (under PTAS-reduction). They so exhibit a strong link among
completeness and PCP theorem.

Let us briefly describe the result of [31] by revisiting for a while this theorem. It stipulates
that NP = PCP[O(log(n)),0(1)]. In other words, this reduces the question “P = NP?” to
“PCP[O(log(n)),0(1)] = P?”. They prove that completeness of MAX 3SAT would entail a
slightly weaker version of PCP theorem expressed by the following theorem.

Theorem 9. (/31]) If MAX 3SAT is APX-complete under PTAS-reduction, then:
PCP[O(log(n)),0(1)] = P = NP = co-NP

In other words, APX-completeness of MAX 3SAT implies the existence of non-polynomial prob-
lems in PCP[O(log(n)),O(1)] under the assumption NP # co-NP (instead of P # NP for
PCP theorem).

As explained in [31], this result means that any APX-completeness proof of MAX 3SAT
includes per se a proof (of a slightly weaker version) of the PCP theorem. This is also an
explanation of why such a completeness result has not been achieved independently.

Finally, let us note that the reciprocal question: “can we deduce completeness from PCP
theorem?” will be tackled later in Section 7.

5.3 PTAS-completeness

PTAS-completeness has been initially tackled by Crescenzi and Panconesi in [28, 29|. They
define the following reduction, called F-reduction.

8 An instance of this problem is a list of n numbers z1,...,z, in [0,1]; the objective is to put them in bins of
capacity 1 (in other words, the sum of numbers placed in a bin must be less than, or equal to 1) minimizing the
number of used bins.
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Definition 9. ([29]) Let IT and II' be two maximization NPO problems. We say that IT reduces
to II" under F-reduction, if there exist three functions f, g et ¢ such that:

e for every I € Iy, f(I) € Z1y; f is computable in polynomial time;

e for every I € Zyy and every = € Sol(f(I)), g(I,z) € Sol(Zr1); g is computable in polynomial
time;

e the complexity of computing ¢ is bounded by p(1/¢, |z|), where p is a polynomial;
e the value of c est 1/¢q(1/e,|z|), where ¢ is a polynomial;

e for every I € Iy and every = € Sol(f(I)), |1 — prv(f({),x)| < ¢(1/e,|x|) implies |1 —
pH(I,Q(I,JJ,T))’ g €. I

It is easy to see that F-reduction preserves membership in FPTAS.

Based upon this reduction, it is shown in [28, 29| that MAX LINEAR WSAT-B is PTAS-
complete. This problem is a further restricted version of MAX WSAT-B, defined in Section 5.2,
where the sum of variable-weights is between W and (1 + (1/n — 1))W, where n is the number
of variables.

MAX LINEAR WSAT-B is obviously in PTAS. Given a constant € > 0, in order to have an
(1 — e)-approximation algorithm, it suffices to return some solution, if n > 1/e, or to optimally
solve the problem (by exhaustive search) in the case where n < 1/e.

Theorem 10. (/29/) MAX LINEAR WSAT-B is PTAS-complete under F-reduction.

The proof of Theorem 10 is, once more, based upon a modification of Cook’s theorem, simulating
a particular Turing machine, as the one of Theorem 7. Let us note that MAX LINEAR WSAT-B is
the only problem shown to be PTAS-complete under F-reduction. As for APX-completeness, it
is shown in [28, 29| the existence of PTAS-intermediate problems, i.e., problems that are neither
PTAS-complete, nor in FPTAS, unless P # NP.

MAX LINEAR WSAT-B is a very artificial problem. On the other hand, F-reduction itself
is very restrictive for allowing existence of natural PTAS-complete problems. More generally,
one can wonder if the approach of devising approximation preserving reductions based upon the
model of Karp-reduction (as it is the case of the reductions seen until now in this paper) is not
intrinsically limited, mainly when dealing with classes “close” to P (as FPTAS). In this case,
we should need a model of basic reduction more powerful than the one of Karp.

The work by [16, 17] proposes a model of approximation preserving reduction based upon
the model of Turing-reduction (introduced in Section 2) rather than upon Karp-one. There, it
is assumed that an oracle exists approximately solving the range problem and then, the initial
problem is reduced to the range one by deriving an approximation algorithm using this oracle.
In other words, [16, 17| proposes a kind of adaptation of Turing-reduction to the approximation
framework. This is reduction FT.

Definition 10. ([17]) Let II and II' be two NPO problems. Let O be an oracle provid-
ing, for every instance I’ of II' (and every a > 0), a feasible solution z of I’, that is an
(1 — a)-approximation, if goal(Il') = max, an (1 + «)-approximation, otherwise. Then II re-
duces to II' under FT-reduction (denoted by II <p1 II'), if for every ¢ > 0, there exists an
algorithm 4.(I, OY') such that:

e for every instance I of II, 4. computes a feasible solution x, that is an (1—¢)-approximation,
if goal(Il) = max, an (1 + ¢)-approximation, otherwise;
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e if we assume that, for every instance I’ of II’, oracle Og/(I ") computes, in polynomial time
with |I’| and 1/«, a solution of I’, that is an (1 — a)-approximation (resp., an (1 + ¢)-
approximation), then the execution time of 4. is polynomial with the size of the instance
and with 1/e. 11

It is easy to see that FT-reduction preserves membership in FPTAS.

Theorem 11. ([16, 17]) Let a problem II € NPO having NP-complete decision counterpart.
If 11 is polynomially bounded, then, for any problem II' € NPO, II' < pr II. Consequently, if an
NPO-PB problem having NP-complete decision version belongs to PTAS, then it is PTAS-
complete under FT-reduction.

Two classical NPO problems, namely MAX PLANAR INDEPENDENT SET and MIN PLANAR VER-
TEX COVER fit conditions of Theorem 11 (see [15]| for their membership in PTAS). So, the
following theorem is an immediate corollary of Theorem 11.

Theorem 12. ([16, 17]) MAX PLANAR INDEPENDENT SET ef MIN PLANAR VERTEX COVER are
PTAS-complete under FT-reduction.

FT-reduction is less restrictive than F-reduction (in fact the latter is a particular case of the
former). This can be shown through Theorem 11 where it is shown, under relatively weak
hypotheses, that one can reduce an NPO problem to one belonging to PTAS. Such a result can

be also expressed, in terms of a closure property: PTAS ' = NPO.

A next question arising, dealing with FT, is the existence of intermediate problems (indeed,
the less restrictive a reduction, the more unlikely the existence of such problems). The principal
difficulty for studying this question, is the nature of FT-reduction itself. Recall that, as already
mentioned, it is closer to Turing-reducibility than to Karp-one. It comes out that it is difficult to
follow Ladner’s approach (|67]) and to use a carefully designed diagonalization technique. On the
other hand, to our knowledge, the existence of NP-intermediate problems (assuming P # NP)
under Turing-reduction still remains open.

Face to these difficulties, one can study the question of PTAS-intermediate problems (for
FT-reduction) under a hypothesis other (weaker) than P # NP. Let us observe that the
optimization-version of Turing-reduction preserves membership in PO. Then, as it is proved
in [16, 17|, the existence of NPO-intermediate problems (with respect to PO) under the op-
timization version of Turing reduction, is a sufficient condition for the existence of PTAS-
intermediate problems under FT-reduction. This is stated in the following theorem.

Theorem 13. ([16, 17]) If there exists an NPO-intermediate problem (with respect to PO)
under Turing-reduction, there exists a PTAS-intermediate problem under FT-reduction.

6 Max-SNP, Max-NP and L-reduction

We have already seen in Section 3.4 links between logic, complexity and approximation via
the definition of syntactic classes Max-SNP and Max-NP in |79, 80]. Both of them are
subclasses of APX and include many very natural and well-known problems. Indeed, with their
work, Papadimitriou and Yannakakis perform the first systematic approach for apprehending
completeness in approximation classes.

The first step in [79, 80] is to define a reduction preserving membership in PTAS; this is
the famous L-reduction already presented in Section 4.1. The great advantage of Max-SNP
and Max-INP is that their problems are defined in a much more structured way than problems
in NPO. Thanks to this way, authors in [79, 80] devise a generic L-reduction leading to the
following result.
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Theorem 14. ([79, 80]) MAX 3SAT is Max-SNP-complete under L-reduction.

This is a fundamental result. Indeed, it reduces the existence of polynomial time approximation
schema for MAX 3SAT to the existence of polynomial time approximation schema for the whole
of problems in Max-SNP. This class containing a large number of problems, the result of The-
orem 14, even if it does not constitute a proof of the absence of polynomial time approximation
schema for MAX 3SAT gives, nevertheless, a strong evidence about this fact.

Corollary 3. (/79, 80]) MAX 3SAT is in PTAS if and only if Maxz-SNP C PTAS.

Moreover, completeness claimed by Theorem 14 distances itself from the ones seen in Section 5 by
the way it is obtained. It is not based upon another adaptation of the proof of Cook’s theorem
but rather upon a transformation of logical formulee that has become possible thanks to the
careful definition of Max-SNP.

In [79, 80] a lot of other problems are shown Max-SNP-complete as MAX INDEPENDENT SET-
B, or MAX CUT. But if such results have been possible for Max-SNP things were different for
Max-NP for which no such results appear there. Indeed, the existence of complete problems for
Max-NP is mentioned as an open problem in [79, 80]. Such a result, for instance, would deepen
the knowledge on the relationship between Max-SNP and Max-INP. Obviously, Max-SNP C
Max-NP C APX. This last inclusion made researchers think that structure of Max-NP
problems is potentially richer than the one of Max-SNP problems and that it is not harder
to approximately solve a problem of Max-NP than a problem of Max-SNP. So the question
is “are all the problems of Max-INP reducible to a problem of Max-SNP?”. Let us note that
answering positively to this question would allow us to directly answer to the question of existence
Max-NP-complete problems.

The answers come from Crescenzi and Trevisan ([31]). Coming up against the somewhat
restrictive character of L-reduction, they study completeness of Max-INP under PTAS-reduction
(Definition 8, Section 5.2), reduction smoother than the L-one. They so prove that MAX 3SAT
18 Max-NP-complete under PTAS-reduction. Let us remark that, as we will see in details in
Section 7, this result was already known. Indeed, thanks to the PCP theorem, it can be shown
that MAX 3SAT is APX-complete under PTAS-reduction (see also Section 7.2). Max-NP being
included in APX, Max-NP-completeness of MAX 3SAT is a corollary of its APX-completeness.

In fact, the interest of the result of [31] lies in its proof that does not use the PCP theorem.
This proof uses a direct generic reduction structurally transforming problems of Max-NP into
problems of Max-SNP and this reduction has the advantage to be constructive. The instance
of MAX 3SAT is explicitly specified (in the opposite of the proof of the PCP theorem).

Finally, let us note that MAX SAT, as well as any Max-SNP complete problem under L-
reduction, is Max-NP-complete under PTAS-reduction.

7 Completeness using PCP theorem

Summarizing briefly the results presented in Sections 5 and 6, we could remark the following:

e using proofs inspired by the one of Cook’s theorem and approximation preserving reductions
based upon Karp-reduction, we can obtain complete problems for the main “combinatorial”
approximation classes (such as APX and PTAS) but these problems are not natural,

e defining syntactic classes, we get complete problems for a natural subclass of APX; how-
ever, the tools developed in this framework do not allow us to get completeness for the
whole class APX.

25



PCP theorem has provided (negative) answers to approximability of an important number of
natural and well-known problems. Among them, MAX 3SAT, a central problem for Max-SNP.
So, could we use the so powerful system of probabilistic checkable proofs in order to achieve new
completeness results? Can we, thanks to this system (or, rather, to these systems), establish
new generic reductions?

Khanna, Motwani, Sudan and Vazirani (|62, 63]) give very pertinent answers to these ques-
tions, exhibiting new links and providing new insights to links between completeness and inap-
proximability. They show how an inapproximability result obtained by PCP theorem can be
transformed into a completeness result.

Furthermore, the scope of the method developed by [62, 63] is quite general and applies also
to approximations classes beyond APX. Indeed, a completeness result for an approximation class
can be seen as an instantiation of this method to the class and the problem under consideration.
They so obtain completeness results for several classes and bring a definite (positive) answer to
the central question of completeness of MAX 3SAT for APX.

7.1 From PCP theorem to completeness

Face to the apparent impossibility to get completeness results for combinatorial classes using
L-reduction, [62, 63] introduce a slightly larger reduction, called E-reduction.

Definition 11. (|62, 63]) Let IT and II' be two minimization problems of NPO. We say that II
reduces to IT" under E-reduction, if there exist two polynomially computable functions f et g, a
constant § and a polynomial p such that:

1. for every I € Iy, f(I) € Z1y; furthermore, opt (f (1)) < p(|I|)opty(1);

2. for every I € Iy and every x € Sol(f(I)), g(I,x) € Sol(Zr); furthermore, prr(I,g(I,z)) —
1< Blpn(f(I),z) = 1) 1

E-reduction can be analogously defined if at least one of I and II' is a maximization problem.
Let us note also that condition 2 in Definition 11, dealing with transformation of approximation
ratios, is quite similar to the corresponding one of L-reduction (Definition 3). The main difference
between the two reductions is that E-reduction relaxes the linear dependance between optima,
imposed by L-reduction, to a polynomial one. Also, E-reduction preserves membership in PTAS.

Let us now tackle relationship between inapproximability and completeness. Let us first note
that inapproximability results achieved using PCP theorem can be rewritten in a particular
form called canonical hardness.

Let us recall some basic definitions of 62, 63]. Consider a family F of functions from N
to N. Then, F is said to be downward close if, for every function g € F and every constant c,
h(n) = O(g(n®)) implies h € F. A function g is said to be hard for F if, for every h € F,
there exists a constant ¢ such that h(n) = O(g(n¢)). If, furthermore g € F, then it is said to be
complete. Denote by F-APX (resp., F~APX-PB), the class of problems (resp., polynomially
bounded problems) approximable within standard-ratio g(n) for some g € F.

Remark that the class of functions bounded above by a constant, or by a logarithmic function,
or even, by a polynomial are downward close classes. These classes correspond to approximation
classes APX, Log-APX and Poly-APX, respectively. Note furthermore that constant, or
logarithmic, or polynomial functions are complete for the three corresponding classes.

A maximization NPO problem II is said to be canonically hard for the class F-APX, for
a family F of downward close functions, if there exist a function f, computable in polynomial
time, two constants ng and ¢ and a function G, hard for F, such that:
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1. for every instance o de 3SAT'® on n variables, and for every N > n®, f(p, N) is an instance
of II;

2. if ¢ is satisfiable, then opt(f(p, N)) = N;
3. if ¢ is not satisfiable, then opt(f(¢, N)) = N/G(N);

4. given a solution = of f(p,N) of value (strictly) greater N/G(N), we can compute in
polynomial time a truth assignment satisfying .

As mentioned in |62, 63|, one can analogously define canonically hard minimization problems by
replacing in item 2 above N/G(N) by NG(N) and by accordingly modifying items 3 et 4.

Since 3SAT is NP-complete, an equivalent definition of canonical hardness can be the fol-
lowing: a problem is canonically hard if every problem of NP can be reduced to it following
rules 1 to 4. Following this remark, the notion of canonical hardness appears to be very close
to GAP-reduction. In fact, a proof of canonical hardness is a kind of GAP-reduction working
for a family of functions, rather than for a particular ratio’s value, considering that we can find
a polynomial certificate proving that instance is positive (when this is the case). This slight
difference is crucial for the purposes of [62, 63].

The interest of the concept of canonical hardness is that it fits well results implied by the
PCP theorem. These results provide a family of reductions slightly more powerful (but of the
same spirit and type) than the GAP-reduction. However, to get the completeness results that
are of interest for us, reductions among optimization problems are needed. Henceforth, we must
use the power of reductions provided by the inapproximability corollaries of the PCP theorem
in order to devise reductions between optimization problems.

Khanna et al. have surrounded this difficulty by devising a reduction from an NPQO prob-
lem II to a canonically hard (for some approximation class) problem II', using for this purpose
reductions from a set of decision problems associated with II to IT'.

Before describing the idea of the method of [62, 63| we introduce a last notion, the one of an
additive problem. A problem IT € NPO is said to be additive if there exist two functions @ et f,
computable in polynomial time, such that:

e for any pair (I, I3) of instances of II, I; @ I, is an instance of II such that opt(l; @ I2) =
opt(I1) + opt(I2);

e for any solution x of I} @ I, f(x) is a pair (z1,z2) of solutions for I; and I, respectively,
such that mr, e, (z) = my, (x1) + mp,(x2).

The following theorem introduces a very narrow relation between canonical hardness and com-
pleteness in approximation classes. It constitutes the stepping stone of the link among inapprox-
imability via the PCP theorem and completeness.

Theorem 15. (/63]) If F is a downward close family, then any problem 11 additive and canon-
ically hard for F-APX, is F-APX-PB-hard under E-reduction.

7.2 APX-completeness

The first application of the PCP theorem to approximation provides, as we have already men-
tioned, an inapproximability result for MAX 3SAT. Starting from an instance I of a problem
IT € NP, one builds, via the PCP theorem, an instance ¢ of MAX 3SAT such that (|3, 4, 62, 63|):

e if I is positive, then ¢ is satisfiable;

19The restriction of SAT in formulse where every clause has at most three literals.
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e if I is negative, then at most a fraction (1 — ¢) of clauses of ¢ are satisfiable;

e if a truth assignment satisfies strictly more than a fraction (1 — ) of clauses of ¢, we can
recover in polynomial time a certificate proving that I is positive.

Theorem 16. (/3, 4/) MAX 3SAT is canonically hard for APX-PB.

Combining Theorems 15 and 16, we get the following fundamental result from [62, 63].
Theorem 17. ([63]) MAX 3SAT is APX-PB-complete under E-reduction.

This result is fundamental because, on the one hand, it is the first completeness result estab-
lished via the use of the PCP theorem and, on the other hand, it establishes the completeness
of a paradigmatic problem for a natural combinatorial approximation class. However, this com-
pleteness is not established for the whole class APX. For doing this it suffices to consider not
E-reduction, quite restrictive for such a result, but PTAS-reduction.

Theorem 18. (/63]) MAX 3SAT is APX-complete under PTAS-reduction.

Starting from Theorem 18 completeness of many other problems can be established. In [79, 80]
numerous problems have been shown Max-SNP-complete under L-reduction (as, for instance,
MAX INDEPENDENT SET-B, or MAX CUT). All these problems become APX-complete under
PTAS-reduction. Nowadays, a lot of problems are known to be APX-complete. For more about
them, the interested reader can refer to [§].

7.3 Completeness beyond APX

As underlined above, one of the major interests of |62, 63| is that the authors exhibit a generic
link between inapproximability and completeness, applying for many approximation classes. In
what follows we present completeness results concerning two other well-known approximation
classes corresponding to two natural families of downward close functions: the ones bounded by
a polynomial and the one bounded by a logarithmic function.

7.3.1 Completeness in Poly-APX-PB and Log-APX-PB

Using interactive proof systems, it is shown in [50] that there exists some ¢ > 0 such that MAX
INDEPENDENT SET is not approximable within approximation ratio n~¢, unless P = NP. This
result has been strengthened by using optimized PCP systems to get ¢ = 1/2 (]56]).

Following terminology and concepts from [62, 63|, the above results can be formulated as
follows.

Theorem 19. (/50, 56/) MAX INDEPENDENT SET is canonically hard for Poly-APX-PB.
Combining Theorems 15 and 19, the following theorem is directly derived.

Theorem 20. (/62, 63/]) MAX INDEPENDENT SET and MAX CLIQUE are Poly-APX-PB-
complete under E-reduction.

Later developments inspired from [62, 63| have provided a strong inapproximability result for
MIN SET COVER?’, known to be approximable within O(logn) (|59, 24, 86]). Raz and Safra ([83])
claim that it is hard to approximate MIN SET COVER within better than c¢In(n) for some constant
c>0.

Based upon what has been discussed just previously, the following result can be derived.

20Given a set-system S on a ground set C' on n elements, MIN SET COVER consists of determining a minimum-
size cover of C, i.e., a minimum-size subfamily S’ of S such that Ugs/{S} = C; obviously, it is assumed that S
already covers C.
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Theorem 21. ([/63, 83/) MIN SET COVER is canonically hard for Log-APX-PB. Consequently,
MIN SET COVER is Log-APX-PB-complete under E-reduction.

7.3.2 Completeness in Poly-APX

Unfortunately, if we try to generalize the result of Theorem 20 to the whole class Poly-APX
we are faced to a major difficulty. Revisit for a while the case of APX-completeness. We have
mentioned in Section 5.2 that it is very unlikely that one could prove APX-completeness of a
polynomially bounded problem under a reduction preserving optimality since this would imply
PSAT — pSAT[O(og(n)]  This fact has motivated introduction of reductions that did not preserve
optimality, as PTAS-reduction. Starting from this remark, it is also very unlikely to get a result
of Poly-APX-completeness for MAX INDEPENDENT SET under E-reduction.

In [16, 17] the possibility is studied to get Poly-APX-completeness not via E-reduction,
but rather via the less restrictive PTAS-reduction. The parallel between canonical hardness and
completeness is then expressed as follows.

Theorem 22. ([16, 17]) If1I' € NPO is a mazimization problem additive, and canonically hard
for Poly-APX, then any mazimisation problem in Poly-APX PTAS-reduces to IT'.

Let us note that if goal(IT) = min, one can PTAS-reduce it to a maximization problem of Poly-
APX, as indicated in (62, 63].

We so have a completeness result for the whole class Poly-APX. Using then canonical
hardness for Poly-APX of MAX INDEPENDENT SET and MAX CLIQUE, we immediately get the
following theorem.

Theorem 23. ([16, 17]/) MAX INDEPENDENT SET and MAX CLIQUE are Poly-APX-complete
under PTAS-reduction.

7.3.3 Completeness in Log-APX

The observation made for Poly-APX in the beginning of Section 7.3.2, remains valid for Log-
APX too. Hence, if one wishes to study completeness for the whole Log-APX she/he must do
it via reductions “larger” than E-reduction.

In [44] a slight modification of PTAS-reduction is introduced. This new reduction, called
MPTAS, is defined as follows.

Definition 12. ([44]) Let IT and II' be two maximization problems of NPO (case of minimization
is completely analogous). We say that II reduces to II' under MPTAS-reduction, if and only if
there exist two polynomially computable functions f et g, and a function ¢ such that:

e for every I € Iyy and every € €]0,1], f(I,e) = (I1,I},...,I},) is a family of instances of IT'
(where M is polynomially bounded with |I]);

e for every I € Iy, every ¢ €]0, 1] and every family x = (x1,z9,...,xr) of feasible solutions,
where z; is a feasible solution of I, g(I,z,¢) € Sol(I);

e ¢:]0,1[—]0,1];

o there exists some j such that, for all I € Iy and ¢ €]0,1[, pv (I}, ;) > 1 — c(e) implies
pH(I,g(I,x,e)) z1l—-el

It is easy to see that MPTAS-reduction preserves membership in PTAS. Also, the fact that
function f in Definition 12 is multivalued relaxes restriction to additive problems and applies
even to non-additive ones.
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Theorem 24. (/44]) Let F be a family of downward close functions and Q € NPO a maxi-
mization problem canonically hard for F — APX. Then, any maximization problem in NPO N
F — APX reduces to Q) under MPTAS-reduction.

On the other hand, it can be shown as in [62, 63|, that any minimization problem of F — APX
E-reduces (hence, MPTAS-reduces too) to a maximization problem of F — APX, getting so the
following generalization of Theorem 24.

Theorem 25. ([44]) Let F be a downward close family of functions and Q@ € NPO a canonically
hard problem for F — APX. Then, any problem in NPO N F — APX reduces to Q) under
MPTAS-reduction.

Consider now class Log-APX. MIN SET COVER is approximable within ratio O(logn) ([86]);
hence it belongs to Log-APX. Furthermore, as we have already mentioned in Section 7.3.1, it is
inapproximable within ratio smaller than clog n, for some constant ¢, unless P = NP (see [5, 83|
where this result is mentioned, as well as [44] for an informal proof). Applying Theorem 25, the
following result can be derived.

Theorem 26. ([{4]) MIN SET COVER is Log-A PX-complete under MPTAS-reduction.

8 Completeness in differential approximation

The study of approximation following the differential paradigm has been developed, as we have
mentioned, mainly at the beginnings of 90’s. After a first paper operationally and mathematically
justifying the use of the differential ratio (|38]), a systematic study of differential approximation
of NPO problems has started and still continues. Several results (positive or negative) for
classical combinatorial problems have appeared (MIN COLORING (34, 42, 55|, MIN TSP, MAX
TSP and vehicle routing problems [74, 73, 18, 54|, BIN PACKING |35, 36], MIN SET COVER [19],
optimal satisfiability problems |20, 45], etc.). Several structural and computational aspects are
also investigated in (33, 75, 72, 87|.

Naturally, in a second time, structure in differential approximation classes has also been
tackled. If notions of reducibility well-adapted to this paradigm have appeared quite early, in
particular the affine reduction (see Definition 4 in Section 4.1), completeness results have been
obtained recently ([6, 7, 16, 17]).

Obviously, study of NPO structure for differential paradigm is modeled on the standard one.
So, this study captures completeness for NPO, DAPX, DPTAS, Poly-DAPX (recall that no
natural problems are still known to be in Log-DAPX, or in Exp-DAPX), as well as for the
class 0-DAPX, a class proper to differential paradigm (see [20] and Section 3.2). These classes
are tackled in what follows.

8.1 Completeness in NPO

Following the work of Orponen and Manilla (|76]), the following reduction, called D-reduction
(the differential counterpart of strict-reduction) is defined in [6, 7].

Definition 13. ([7]) Let II and II' be two NPO problems. We say that II reduces to II' under
D-reduction, if there exist two functions f and g, computable in polynomial time, such that:

o for every I € Iyy, f(I) € Irr;
e for every I € Iy and every x € Sol(f(1)), g(I,z) € Sol(Zn);

e for every I € Iyy and every = € Sol(f(1)), on({,g9(I,x)) = éw(f(1),z). 1
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Obviously, D-reduction preserves membership in DAPX and DPTAS.

By an approach similar to the one in the standard-approximation paradigm, i.e., a combina-
tion of proofs of partial completeness (in Max-NPO and Min-NPO) and differential equiva-
lence (under D-reduction) between MIN WSAT and MAX WSAT, the following completeness result
can be obtained.

Theorem 27. ([7]) MIN WSAT, MAX WSAT, MIN LINEAR PROGRAMMING 0-1 and MAX LINEAR
PROGRAMMING 0-1 are NPO-complete under D-reduction.

8.2 NPO-completeness and 0-DAPX

As already mentioned in Section 3.2, 0-DAPX is the class of problems for which any polynomial
algorithm returns a worst solution on at least one instance of them. In other words, for the
problems in 0-DAPX, their differential approximation ratio is equal to 0. In some sense, this
class contains the hardest NP O problems to approximately solve under the differential paradigm.
On the other hand, the notion of completeness itself reflects the hardest problems for a class.
So, the following question arises: ‘“what is the relation between 0-DAPX and NPO-complete
problems under D-reduction?”. The following theorem brings a first answer to his question.

Theorem 28. (/6, 7]) Under D-reduction, NPO-complete C 0-DAPX. In other words, every
NPO-complete problem belongs to 0-DAPX.

Theorem 28 seems to confirm the idea that the preorder between problems induced by some
natural reduction models a notion of hardness that is real and computational and not only
structural and theoretical.

We also note that, if instead of D-reduction, a somewhat stronger reduction is used, for
instance, if f and ¢ in Definition 13 are multivalued, then, under such reduction, the class of
NPO-complete problems coincides with 0-DAPX ([6, 7]).

8.3 Completeness in DAPX

As we have seen in Sections 5, 6 and 7, APX is the most important standard-approximation
class and the one that has motivated and mobilized the most numerous of the studies about its
structure and the existence of complete or intermediate problems.

It appears quite natural that the same holds for its differential counterpart, the class DAPX.
Obviously, the first step consists of carefully defining some notion of reducibility, “smoother” than
AF-, or D-reducibility, that preserves membership in DPTAS. In [6, 7| the following reduction,
quite similar to PTAS-reduction is defined.

Definition 14. ([7]) Let II and II' be two NPO problems. We say that IT reduces to II' under
DPTAS-reduction, if there exist three functions f, g et ¢ such that:

1. for every I € Zp and every ¢ €]0,1[, f(I,e) € Zyy; f is computable in time polynomial
with |I];

2. for every I € Iy, every € €]0,1] and every = € Sol(f(1)), g(I,e,z) € Sol(Zn1); g is com-
putable in time polynomial with || and |z|;

3. ¢:]0,1[—]0,1];

4. for every I € Iyy, every x € Sol(f(I)) and every e €]0, 1], drr(f(I,€),2) = 1 — ¢(e) implies
6H(I’g(-[’5’x)) z1-g
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5. function f can be multivalued; in this case f = (fi,..., fi), where i is polynomial with |I|;
in this case item 4 becomes: there exits j < i such that (dr(fi(1,€),2) > 1 — ¢(e) implies
6H(I’g(-[’5’x)) >1- 6)' 1

Once more, DPTAS-reduction preserves membership in DPTAS.

In order to apprehend the existence of complete problems for DAPX, a first idea could be
to adapt (if possible) the proof of [29] in the differential context, with the risk (in the case that
it worked) to produce non-natural complete problems. A potentially more fruitful approach is to
use the PCP theorem. The problem is that this theorem is very closely connected to standard
approximation and it seems very difficult to adapt it in the differential framework in order to get
completeness.

The reasoning schema developed in [6, 7] tries to exploit completeness results in APX (using
so indirectly the PCP theorem). It can be summarized as follows. For proving that a (first)
problem II; is DAPX-complete:

e one first searches a problem Il which is APX-complete but that also reduces to II; under
an ad hoc reduction that transforms a polynomial time differential-approximation schema
into a polynomial time standard-approximation schema;

e next, starting from a problem II3 € DAPX, one reduces it to a problem I, € APX
under another ad hoc reduction that this time transforms a polynomial time standard-
approximation schema into a polynomial time differential-approximation schema;

e we finally obtain, by transitivity, a reduction of any problem II3 € DAPX to II;.

Putting all the above together, an eventual polynomial time differential-approximation schema
for Iy provides a polynomial time standard-approximation schema for Ils, hence a polynomial
time standard-approximation schema for Il4, hence a polynomial time differential-approximation
schema for II3. In other words, I3 < T4 < IIy < II; (the reductions appearing in this expression
being different the ones from the others). Using this reasoning schema, the following theorem
can be obtained.

Theorem 29. (/7/) MAX INDEPENDENT SET-B, MIN VERTEX COVER-B2!, MAX SET PACKING-
B?? and MIN SET COVER-B? are DAPX-complete under DPTAS-reduction.

For instance, MAX INDEPENDENT SET-B is APX-complete and, furthermore, for this problem,
standard- and differential-approximation ratios coincide. So, the main part of the work for the
proof of Theorem 29, consists of showing that every problem of DAPX can be reduced to a
problem of APX under a reduction transforming a polynomial time standard-approximation
schema into a polynomial time differential-approximation schema. This leads to a proof of
DAPX-completeness of MAX INDEPENDENT SET-B. Completeness of the other problems stated
in Theorem 29 is obtained in [7] by DPTAS-reductions from MAX INDEPENDENT SET-B.

So, many natural problems are now known to be DAPX-complete showing that complete-
ness in the differential paradigm is as pertinent and interesting as for the standard paradigm.
However, at the moment where [6, 7| was achieved, one could notice the following two dampers
for Theorem 29:

1. no intermediate problems are known for DAPX under DPTAS-reduction;

21The restriction of MIN VERTEX COVER to graphs with maximum degree bounded above by B.

22Given a set-system S on a ground set C, MAX SET PACKING consists of determining a maximum-size subfam-
ily S’ of S such that sets in S’ are pairwise disjoint; MAX SET PACKING-B is the restriction of MAX SET PACKING
to set-systems verifying maxses{|S|} < B.

23The restriction of MIN SET COVER to set-systems verifying maxses{|S|} < B.
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2. problems stated in Theorem 29 are all APX-complete; it would be interesting to find
problems that are DAPX-complete but not APX-complete.

Point 1 remains still open and deserves further research. For point 2, it is shown in [16, 17| that
MIN COLORING is DAPX-complete, under DPTAS-reduction, while it does not belong to APX.

8.4 Completeness in DPTAS

The existence of DPTAS-complete problems has been initially tackled in [7], using Karp-type
reductions, but with very partial results mainly concerning subclasses of DPTAS. In [16, 17,
the approach described in Section 5.3 has been also extended to the differential paradigm.

Indeed FT-reduction (Definition 10, Section 5.3) is quite large and can be re-expressed to fit
the differential approximation also. Let us denote by DFT the differential counterpart of FT-
reduction. It can be immediately seen that DFT-reduction preserves membership in DFPTAS.
So, the following theorem holds.

Theorem 30. (/16, 17]) Let I € NPO be a problem having NP-complete decision version.
If 11 is differentially polynomially bounded, then any problem II' € NPO reduces to II under
DFT-reduction. Consequently, if a differentially polynomially bounded NP O problem having NP-
complete decision version belongs to DPTAS, then it is DPTAS-complete under DF T-reduction.

It suffices now to remark that for MAX PLANAR INDEPENDENT SET standard and differential
ratios coincide and to recall that MAX PLANAR INDEPENDENT SET € PTAS ([15]). On the other
hand, MIN PLANAR VERTEX COVER belongs also to DPTAS, by AF-reduction to MAX PLANAR
INDEPENDENT SET. Finally, BIN PACKING belongs to DPTAS ([35]). All these problems being
differentially polynomially bounded NPO problems having NP-complete decision versions, the
following theorem is immediately derived.

Theorem 31. ([16, 17/) MAX PLANAR INDEPENDENT SET, MIN PLANAR VERTEX COVER and
BIN PACKING are DPTAS-complete under DFT-reduction.

We finally note that the same result dealing with conditions of existence of intermediate problems
(the differential counterpart of Theorem 13) holds also for DFT-reduction.

8.5 Completeness in Poly-DAPX

We conclude this state of the art on the intersection of complexity theory and polynomial approx-
imation theory by tackling completeness in Poly-DAPX. This question is studied in [16, 17|, by
using DPTAS-reduction. In any case, the problem of using reductions preserving optimality or
not, discussed in Section 7.3.2, is posed under the same terms in the differential paradigm also.
Let us also note that dealing with the differential paradigm, one can easily restrict her /himself
to maximization problems. Indeed, when dealing with a minimization problem II, one can define
a maximization problem II' having the same set of instances and of feasible solutions with IT
and with objective function myy (I,x) = M —m (I, x) (where M is an upper bound of the value
of the solutions of instance I). Problems IT and I’ are affine-equivalent (so, in particular, 1T
DPTAS-reduces to IT'). Furthermore, if IT € Poly-DAPX, then II' € Poly-DAPX.

Theorem 32. ([16, 17]) If 11 is canonically hard for Poly-DAPX, then any problem in Poly-
DAPX DPTAS-reduces to II.

One can notice that in the statement of Theorem 32, the additivity of II is omitted, contrary to
the case of Theorem 22 (Section 7.3.2) dealing with standard approximation and PTAS-reduction.

33



This is due to the fact that DPTAS-reduction can be multivalued. We could also relax additivity
in Theorem 22 if we allowed PTAS-reduction to be multivalued.

Given that for MAX INDEPENDENT SET and MAX CLIQUE standard- and differential-approx-
imation ratios coincide, that both of them belong to Poly-APX (Section 7.3.2), and that MIN
VERTEX COVER is affine-equivalent to MAX INDEPENDENT SET, the following result immediately
holds.

Theorem 33. MAX INDEPENDENT SET, MAX CLIQUE and MIN VERTEX COVER are Poly-
DAPX-complete under DPTAS-reduction.

9 Discussion

The research programme that aims at transposing notions of reduction and completeness, con-
cepts originally devised for decision problems, in optimization problems, is a very extensive
program, active for over thirty years. Numerous notions of reducibilities have been defined and
a lot of results have been achieved using them. Despite the scientific interest of all of them, an
exhaustive presentation was impossible. This state of the art has just presented the ones that
have played a key-role for creating a structure (providing completeness results) for NPO. For
instance, we have not mentioned the very interesting notion of continuous reducibility by [85].

We have seen that generic reductions that structure approximability classes have initially
been based upon tricky modifications of the proof of Cook’s theorem. They have derived very
interesting though somewhat partial results, not reaching answers to fundamental questions of
approximation theory. In particular they have not been able to prove completeness for APX of
paradigmatic problems as MAX 3SAT, that plays in approximation theory the role that SAT, or
3SAT, play in classical complexity theory.

The great tool that the PCP theorem has brought to approximation and the fantastic ad-
vances performed thanks to it and to its subsequent improvements and corollaries, has allowed to
strengthen the links between completeness and inapproximability, providing so a generic method
allowing to achieve completeness results starting from inapproximability ones. The role of the
work by Khanna et al. (|62, 63]) has been conclusive for this. Trevisan ([89]) has commented this
spectacular advance writing that Khanna et al. “have provided a definite answer to the question
of completeness in approximation classes”. Indeed, the research programme on approximability
preservation and completeness has been so successful that today natural problems are known to
be complete for all the standard-approximation classes and for the most of differential ones.

Results presented in this state of the art concern approximation classes where approximation
levels are constant or functions of the instance-size. However, one can consider completeness
notions for other approximation classes. For instance, Ausiello and Protasi define in [13] a
reduction preserving not only approximation but also local optimality (the same concept is also
marginally considered by [62, 63]). Under this reduction, they obtain completeness results for a
class of problems admitting “good (guaranteed)” local optima. It would be interesting that such
structural studies the beginnings of which are presented in [6, 7, 75, 87| are undertaken also in
differential paradigm.

Another issue deserving further research, is about the refinement and a better apprehension of
E-reducibility for determining if it allows existence of intermediate problems or not. In fact, the
only class for which we know such problems (under E-reducibility) is the class APX. In the same
spirit, F-reduction, has the merit to be the first that has introduced ([29]) PTAS-completeness.
However, as mentioned previously, no natural problem has been proved PTAS-complete under
it. Is it possible to show the existence of such problems using this reduction?

Also, and this is, to our opinion the sense of Trevisan’s comment, we remark that generic
reductions based upon either adaptations of Cook’s theorem, or PCP theorem, have not brought
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any additional information on inapproximability of the problems implied. They present a real
structural interest, they show strong links between optimization problems but the inapproxima-
bility implied by these completeness results were already known. This fact seems to be intrinsic
to reductions based upon PCP theorem but it is more “disappointing” for reductions based upon
Cook’s theorem.

In the same spirit, results around Max-SNP appear to be very singular. Indeed, L-reduction
has two very interesting specificities. First, it is “more constructive” than the other reductions
seen in this paper. Second, as we have already mentioned, Max-SNP-completeness of MAX
3SAT really follows the lines of NP-completeness proofs: even if it does not directly provide a
definite answer to the existence of a polynomial time approximation schema for this problem, it
gives, however, a strong evidence about its non-existence, linking existence of such schema to the
existence of polynomial time approximation schemata for any other Max-SNP problem. When
this result has been produced, it has represented spectacular advance about the approximability
of MAX 3SAT.

Starting from this assessment, we can wonder if an approach based upon logical definition of
NPO problems as the ones appearing, for instance, in |43, 64, 65] but not presented here, could
not enrich completeness issues and perspectives and bring new results and insights.
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