

Laboratoire d'Analyse et Modélisation de Systèmes pour
l'Aide à la Décision

CNRS UMR 7024

CAHIER DU LAMSADE

270
Octobre 2007

An overview on polynomial approximation of
NP-hard problems

Vangelis Th. Paschos

An overview on polynomial approximation of NP-hard

problems∗

Vangelis Th. Paschos

LAMSADE, CNRS UMR 7024 and University Paris-Dauphine

Place du Maréchal de Lattre de Tassigny, 75775, Paris Cedex 16, France

paschos@lamsade.dauphine.fr

October 29, 2007

Abstract

The fact that it is very unlikely that a polynomial time algorithm could ever be devised for

optimally solving NP-hard problems, strongly motivates both researchers and practitioners

in trying to heuristically solving such problems, by making a trade-off between computational

time and solution’s quality. In other words, heuristic computation consists of trying to find

in reasonable time, not the best solution but one solution which is “near” the optimal one.

Among classes of heuristic methods for NP-hard problems, the polynomial approximation

algorithms aim at solving a given NP-hard problem in polynomial time by computing feasible

solutions that are, under some predefined criterion, as near as possible to the optimal ones.

The polynomial approximation theory deals with the study of such algorithms. This survey

presents and analyzes in a first time approximation algorithms for some classical examples of

NP-hard problems. In a second time, it shows how classical notions and tools of complexity

theory, such as polynomial reductions, can be matched with polynomial approximation in

order to devise structural results for NP-hard optimization problems. Finally, it presents

a quick description of what it is commonly called inapproximability results. Such results

provide limits on the approximability of the problems tackled.

1 What is polynomial approximation and why we do it?

It is widely believed that no polynomial algorithm can be ever devised for optimally solving
NP-hard problems. So, several approaches, more or less satisfactory, can be followed when one
tries to solve them. Roughly these approaches belong to one of the following two families.

Exact (optimal) algorithms, that compute optimal solutions for the problems but they run
in exponential time; such algorithms are based upon either search tree-based methods (branch-
and-bound, branch-and-cut, branch-and-price, etc.), or upon dynamic programming, or . . .

Heuristic methods, that run faster than the exact algorithms and compute sub-optimal solu-
tions (that are, sometimes, unfeasible); the most notorious among these methods are:

• the polyhedral methods,

• the metaheuristics (simulated annealing, genetic algorithms, tabou, etc.),

• the polynomial approximation algorithms with (a priori) performance guarantees.

∗Full text of an invited talk at Balkan Conference on Operational Research, BALCOR’07, Serbia, 2007

1

The goal of this overview is to make a general presentation of this last category of heuristic
methods, that are the polynomial approximation algorithms.

What is polynomial approximation? Roughly speaking, this is the art to achieve, in polyno-
mial time, feasible solutions with objective value as close as possible (in some predefined sense)
to the optimal value. How can we do it? Hopefully, the reader will see it in what follows.

Why do we use polynomial approximation rather than other heuristic methods? There are
several reasons for that. The main such reasons are, to our opinion, both “operational” and
“structural”.

A central operational reason is that there exist problems, describing natural situations, either
requiring that feasible solutions must be obtained quickly (i.e., in polynomial time) and this fact
must be guaranteed a priori, or where optimum is misdefined, or senseless. Also, it is sometimes
necessary in the context these problems are handled, that a decision maker has an a priori
estimation of the performance of the algorithms used to solve them.

On the other hand, the main “structural” reason is that polynomial approximation is a natural
extension of complexity theory to combinatorial optimization and largely contributes to the
enrichment of both domains.

The aim of the study of polynomial approximation of combinatorial optimization problems
is to characterize the ability of a specific problem to be “well-solved” in polynomial time. This
is done by determining both upper and lower bounds of approximability, i.e., by exhibiting
specific approximation algorithms achieving a given level of approximation, on one side, and,
on the other side, showing that no algorithm can possibly provide a better approximation level,
until somewhat strange and unexpected happens, i.e., until a very highly improbable complexity
hypothesis (e.g., P = NP) holds.

Existence of polynomial approximation as scientific area has started from the seminal paper
by [46]. Since then, this research programme is one of the most active research programmes in
operational research, combinatorial optimization and theoretical computer science.

2 Preliminaries

The object of polynomial approximation is the class of the so-called NPO problems. Informally,
this is the class of optimization problems the “decision”-counterparts of which are in NP. Let us
recall that, given an optimization problem, it is immediate to produce its decision version in the
following way:

• if the optimization goal of the problem is “max”, then its decision version becomes: “does
there exist a solution with value greater than, or equal to, K?”, where K is some constant
that, for the decision version, is part of the instance;

• if the optimization goal of the problem is “min”, then its decision version becomes: “does
there exist a solution with value smaller than, or equal to, K?”, where K is as in the
previous item.

Solving a decision problem Π becomes to correctly answering by yes or no to the question
defining Π. For example, for the decision version of max independent set1: “given a graph G
and a constant K, does there exist an independent set of G of size at least K?”, solving it becomes
to correctly answering if G has an independent set of size at least K, or not.

Formally, an NPO problem Π is a four-tuple (I,Sol,m, goal) such that:

• I is the set of instances (recognizable in polynomial time);

1We properly define this problem in Section 4.1.

2

• for I ∈ I, Sol(I) is the set of feasible solutions of I; feasibility of any solution is decidable
in polynomial time;

• for any I ∈ I, at least one feasible solution can be computed in polynomial time;

• the objective value m(I, S) of any solution S, is computable in polynomial time;

• goal ∈ {min,max}.

We now briefly present some basic notions in polynomial approximation theory. More details
can be found in [5, 44, 66, 72].

Given an instance I of a combinatorial maximization (resp., minimization) problem Π =
(I,Sol,m, goal), ω(I), mA(I, S) and opt(I) will denote the values of the worst solution of I (in
the sense of the objective function), the approximated one, S (provided by some polynomial
time approximation algorithm A supposed to feasibly solve problem Π), and the optimal one,
respectively. The worst solution of I is the optimal solution for I with respect to the NPO

problem Π′ = (I,Sol,m, goal′) where:

goal′ =

{
max if goal = min
min if goal = max

There exist mainly two paradigms dealing with polynomial approximation.

Standard approximation. The quality of an approximation algorithm A is expressed by the ratio
ρA(I) = mA(I, S)/ opt(I). Note that approximation ratio for minimization problems is in
[1,∞), while for maximization ones this ratio is in (0, 1].

Differential approximation. The quality of an approximation algorithm A is expressed by the
ratio δA(I) = |ω(I) − mA(I, S)|/|ω(I) − β(I)|. The value of the differential ratio is always
in [0, 1], independently on the optimization goal of the problem.

For both paradigms, the closer the ratios to 1, the better the performance of the approximation
algorithm A. Let us note also that, as we will see, results obtained adopting the one or the other
of the two paradigms are very often different even for the same problem.

The rest of the paper is organized as follows. In Section 3 the main approximability classes
are defined. In Section 4 we analyze polynomial approximation algorithms for several well-known
hard optimization problems. In Section 5, we show how the main tool of complexity theory, that
are polynomial reductions, can be adapted to the framework of polynomial approximation, in
order to produce structural results. In Section 6 we say a few words for the limits of approx-
imability, i.e., for inapproximability of NP-hard problems. Providing inapproximability results
stating that a specific problem is not approximable within better than some approximation level,
is crucial (although somewhat far from the classical operational researchers concerns; for this
reason this part of the paper will be short) for characterizing approximability of NP-hard prob-
lems and for understanding structure of them. Finally, in Section 7 we present a quick overview
on completeness result in approximation classes.

For shortness, only the problems discussed in details in this paper will be defined. For the
other ones, the interested reader can be referred to [35]. Also, for notions and definitions from
graph theory, on can be refered to [16].

3 Approximation classes

According to the best approximation ratios known for them, NP-hard problems are classified
to approximability classes. These classes create a kind of hierarchy in the class of the NP-hard

3

problems. The most known among them (going from the pessimistic to the optimistic ones)
are the following classes (for any standard-approximation class C, DC denotes the respective
differential class).

Exp-APX and Exp-DAPX. Classes of problems for which the best ratio known is exponential
(or the inverse of an exponential) with the size of their instance. Notorious member of Exp-

APX is min tsp. On the other hand, no natural combinatorial optimization problem is
still known to be in Exp-DAPX.

Poly-APX and Poly-DAPX. Classes of problems for which the best ratio known is polynomial
(or the inverse of a polynomial) with the size of their instance. max independent set,
max clique, min coloring, etc., belong to Poly-APX, while max independent set,
max clique, min vertex cover, min set cover, etc., belong to Poly-DAPX.

Log-APX and Log-DAPX. Classes of problems for which the best ratio known is some loga-
rithm (or the inverse of some logarithm) of the size of their instance. min set cover and
min dominating set are the most notorious representatives of Log-APX. On the other
hand, no natural combinatorial problem is known to be in Log-DAPX.

APX and DAPX. Here start the “more optimistic” approximability classes. APX and DAPX

are the classes of problems approximable within ratios that are fixed constants. min ver-

tex cover, min metric tsp2, bin packing, max tsp, etc., belong to APX, while min

tsp, max tsp, min coloring, etc., belong to DAPX.

PTAS and DPTAS. Classes of problems admitting polynomial time approximation schemata.
A polynomial time approximation schema, is a sequence of algorithms Aǫ achieving ratio
1 + ǫ, for every ǫ > 0 (1 − ǫ for maximization problems, or for the differential paradigm),
in time which is polynomial with the size of the instance but exponential with 1/ǫ. max

planar independent set3, min planar vertex cover4, min euclidean tsp5, etc.,
are in PTAS. On the other hand, max independent set, min planar vertex cover,
bin packing, etc., are known to belong to DPTAS.

FPTAS and DFPTAS. Classes of problems admitting fully polynomial time approximation
schemata. A fully polynomial time approximation schema is a polynomial time approx-
imation schema that, furthermore, is polynomial with 1/ǫ also. knapsack is in both
FPTAS and DFPTAS.

Let us also mention the existence of another approximability class denoted by 0-DAPX (defined
in [13]) that is meaningful only for the differential approximation paradigm. 0-DAPX is the
class of problems for which any polynomial algorithm returns a worst solution on at least one of
their instances. In other words, for problems in 0-DAPX, their differential approximation ratio
is equal to 0. min independent dominating set is known to be in 0-DAPX.

Finally, let us note that, by the way approximability classes are defined (i.e., as functions of
the instance size), there exist indeed a continuum of such classes.

Figures 1 and 2 illustrate the approximability classes landscapes for standard and differential
approximability paradigms, respectively.

2
min tsp is complete graphs whose edge-weights verify the triangle-inequality.

3
max independent set in planar graphs.

4
min vertex cover is planar graphs.

5
min metric tsp in (0,1)-plane.

4

NP-hard

APX

PTAS

FPTAS

Poly-APX

Exp-APX

Log-APX

Figure 1: Standard approximability classes (under the assumption P 6= NP).

NP-hard

DAPX

DPTAS

DFPTAS

Poly-DAPX

Exp-DAPX

Log-DAPX

0-DAPX

Figure 2: Differential classes (under the assumption P 6= NP).

Dealing with the classes defined above, the following inclusions hold:

PO ⊂ FPTAS ⊂ PTAS ⊂ APX ⊂ Log-APX ⊂ Poly-APX ⊂ Exp-APX ⊂ NPO

PO ⊂ DFPTAS ⊂ DPTAS ⊂ DAPX ⊂ Log-DAPX ⊂ Poly-DAPX ⊂ Exp-DAPX

⊂ 0-DAPX ⊂ NPO

These inclusions are strict unless P = NP.
Indeed, for any of these classes, there exist natural problems that belong to each of them but

not to the immediately smaller one. For instance, for the standard paradigm:

knapsack ∈ FPTAS \ PO

max planar independent set ∈ PTAS \FPTAS

min vertex cover ∈ APX \ PTAS

min set cover ∈ Log-APX \APX

max independent set ∈ Poly-APX \ Log-APX

min tsp ∈ Exp-APX \ Poly-APX

5

4 Approximation algorithms for several NP-hard problems

4.1 max independent set

Given a graph G(V,E), max independent set consists of determining a maximum-size set
V ′ ⊆ V such that, for every (u, v) ∈ V ′ × V ′, (u, v) /∈ E.

Let us first consider the integer-linear formulation of max independent set and its linear
relaxation, denoted by max independent set-r, where given a graph G(V,E), A denotes its
incidence matrix:

max independent set =







max ~1 · ~x

A~x 6 ~1
~x ∈ {0, 1}n

(1)

max independent set-r =







max ~1 · ~x

A~x 6 ~1

~x ∈ (Qn)+
(2)

The following seminal theorem, due to [57] gives a very interesting characterization for the basic
optimal solution of (2).

Theorem 1. ([57]) The basic optimal solution of max independent set-r is semi-integral,
i.e., it assigns to the variables values from {0, 1, 1/2}. If V0, V1 and V1/2 are the subsets of V
associated with 0, 1 et 1/2, respectively, then there exists a maximum independent set S∗ such
that:

1. V1 ⊆ S∗

2. V0 ⊆ V \ S∗

A basic corollary of Theorem 1 is that in order to solve max independent set, one can first
solve its linear relaxation max independent set-r (this can be done in polynomial time [3,
37, 48, 69]) and store V1 and then solve max independent set in some way in G[V1/2], i.e.,
the subgraph of G induced by V1/2.

Indeed, solution of max independent set-r provides sets V0, V1 and V1/2 that form a
partition of V . Furthermore, by the constraint set of this program, edges can exist into V0

and V1/2 and between V1 and V0 and V0 and V1/2, but not between V1 and V1/2 (see also Figure 3
where thick lines indicate the possible existence of edges between vertex-sets). So, the union
of V1 (that is an independent set per se) and of an independent set of G[V1/2] is an independent
set for the whole of G.

Consider now the following algorithm, due to [43], denoted by IS:

1. solve max independent set-r in order to determine V0, V1 et V1/2;

2. color G[V1/2] with at most ∆(G[V1/2]) colors (where, for a graph G, ∆(G) denotes its

maximum degree) using the algorithm by [53]; let Ŝ be the largest color

3. output S = V1 ∪ Ŝ

Theorem 2. Algorithm IS achieves approximation ratio 2/∆(G) for max independent set.

Proof. Let us first recall, that the vertices of a graph G can be feasibly colored6 with at
most ∆(G) colors in polynomial time ([53]). This result, is, in fact, the constructive proof of an
existential theorem about such coloring originally stated by [18].

6 Given a graph G(V, E), a coloring of V consists of coloring the vertices of V in such a way that no two
adjacent vertices receive the same color; in other words, a color has to be an independent set and a coloring of V
is, indeed, a partition of V into independent sets.

6

V1 V0

V1/2

G

Figure 3: A graph G, input of max independent set, and the possibility of existence of edges
between sets V0, V1 and V1/2 computed by the solution of max independent set-r.

Fix a maximum independent set S∗ of G that contains V1 (by item 1 in Theorem 1 this
is always possible). Since Ŝ is the largest of the at most ∆(G[V1/2]) colors (independent sets)
produced in step 2 of Algorithm IS, its size satisfies:

∣
∣
∣Ŝ
∣
∣
∣ >

∣
∣V1/2

∣
∣

∆
(
G
[
V1/2

]) (3)

The size of S returned by the algorithm at step 3 is given by:

m(S,G) = |S| = |V1| +
∣
∣
∣Ŝ
∣
∣
∣

(3)

> |V1| +

∣
∣V1/2

∣
∣

∆
(
G
[
V1/2

]) > |V1| +

∣
∣V1/2

∣
∣

∆(G)
(4)

Finally, denote by S∗
1/2 a maximum independent set in G[V1/2]. Observe that the value of the

optimal solution for max independent set-r in G[V1/2] is equal to V1/2/2. Since max inde-

pendent set is a maximization problem, the objective value of (integer) max independent

set is bounded above by the objective value of (continuous) max independent set-r. Hence:

∣
∣
∣S∗

1/2

∣
∣
∣ 6

∣
∣V1/2

∣
∣

2
(5)

Denote by α(G), the size of S∗. Then, obviously, the following holds:

opt(G) = |S∗| = |V1| +
∣
∣
∣S∗

1/2

∣
∣
∣

(5)

6 |V1| +

∣
∣V1/2

∣
∣

2
(6)

Putting together (4) and (6) we get:

m(S,G)

opt(G)
>

2

∆(G)

that completes the proof.
A slight improvement of the ratio claimed in Theorem 2 appears in [63].

7

An immediate corollary of Theorem 2 is that max independent set belongs to Poly-

APX. Also, since the value ω(G) of a worst solution of the problem is 0 (i.e., we can consider
the empty vertex-set as a feasible max independent set-solution), standard- and differential-
approximation ratios coincide. So, max independent set belongs to Poly-DAPX also. Fi-
nally, let us note that the strongest approximation results known for this problem are the fol-
lowing:

• max independent set is asymptotically approximable (i.e., for large ∆(G) within ra-
tio k/∆(G), for every fixed constant k ([28, 64]);

• max independent set is approximable within ratio O(log2 n/n) ([39]);

• max independent set is approximable within O(log n/∆(G) log log n) ([29]);

• max independent set is inapproximable within better than O(nǫ−1) for any ǫ > 0, unless
P = NP ([42]).

4.2 min set cover

Given a ground set C = {c1, . . . , cn} and a collection S = {S1, . . . , Sm} ⊂ 2C of subsets of C,
min set cover consists of determining a minimum-size sub-collection S ′ ⊆ S that covers C,
i.e., such that ∪S∈S′S = C.

Let us consider the following natural greedy algorithm for min set cover denoted by
GREEDYSC:

1. set: S ′ = S ′ ∪ {S}, where S ∈ argmaxSi∈S{|Si|} (S ′ is assumed to be empty at the
beginning of the algorithm);

2. update I(S, C) by setting: S = S \ {S}, C = C \ S and, for Sj ∈ S, Sj = Sj \ S;

3. repeat steps 2 and 2 until C = ∅;

4. output S ′.

This algorithm has been independently analyzed by [46, 52]. Its version for weighted min set

cover where we ask for determining a set cover of minimum total weight has been analyzed
by [20]. It is easy to see that Algorithm GREEDYSC runs in polynomial time.

Theorem 3. The standard-approximation ratio of Algorithm GREEDYSC is bounded above by
1 + ln∆, where ∆ = maxS∈|S|{|S|}.

Proof. Denote by Ii(Si, Ci) the surviving instance at the first moment residual cardinalities of
sets in S are at most i; denote by m(Ii,S

′) the number of sets of residual cardinality i placed
in S ′ and note that m(I∆,S ′) = m(I,S ′). Following these notations:

C∆ = C (7)

m
(
I,S ′

)
=

∆∑

i=1

m
(
Ii,S

′
)

(8)

For i = 1, . . . ,∆, we have the following ∆-line equation-system:

|Ci| =
i∑

k=1

k × m
(
Ik,S

′
)

(9)

where any of the above equations expresses the facts that:

8

• anytime a set S is chosen to be part of S ′, Algorithm GREEDYSC removes from C the elements
of S;

• for any i the remaining ground set Ci to be covered, is covered by sets of cardinality at
most equal to i chosen later by the algorithm.

Multiplying the ∆th line of (9) by 1/∆ and, for the other lines, line i by 1/(i(i + 1)) and taking
into account (7), (8) and the fact that:

1

i(i + 1)
=

1

i
−

1

i + 1

we finally obtain:
(

∆−1∑

i=1

|Ci|

i(i + 1)

)

+
|C|

∆
=

∆∑

i=1

m
(
Ii,S

′
)

= m
(
I,S ′

)
(10)

Consider now an optimal solution S∗ of I(S, C) and let S∗
i be an optimal solution for Ii(Si, Ci),

i = 1, . . . ,∆. Elements of S∗ covering Ci are always present and form a feasible solution for Ii.
Therefore:

opt (Ii) = |S∗
i | 6 |S∗| = opt(I) (11)

|Ci| 6 i × opt (Ii) (12)

where (12) expresses the fact that in order to cover |Ci| elements by sets covering at most i of
them, at least |Ci|/i such sets will be needed. Putting (10), (11) and (12) together, we get:

m
(
I,S ′

)
6 opt(I) ×

∆∑

i=1

1

i
6 opt(I)(1 + ln ∆)

that is the ratio claimed.

S1

S2

S3

S4S5S6

S7

S8

k = 4

Figure 4: On the tightness of GREEDYSC with k = 4.

Let us now show that ratio proved in Theorem 3 is asymptotically tight. Fix some k and
consider the instance of Figure 4, designed for k = 4. We are given a set C of 3 × 2k elements:
C = {1, 2, . . . , 3× 2k} and a family S = {S1, S2, . . . , Sk+4} of k + 4 subsets of C. For simplicity,
consider that elements of C are entries of a 3 × (k + 1) matrix. Then, sets in S are as follows:

9

• three disjoint sets: S1, S2 et S3, each one containing the 2k elements of each of the three
lines of the matrix; they form a partition on C, i.e., C = S1 ∪ S2 ∪ S3 et Si ∩ Sj = ∅,
i, j = 1, 2, 3 ;

• k + 1 sets S4, . . . , Sk+4, of respective sizes: 3 × 2k−1, 3 × 2k−2, . . . , 3 × 21, 3 × 20 and 3
contain, respectively, the points of the 2k−1, 2k−2, . . . , 21, 20 and 1 columns.

It is easy to see that Algorithm GREEDYSC will choose the k + 1 sets S4, . . . , Sk+4, in this order,
returning a set cover of size k + 1, while the optimal set cover is the family {S1, S2, S3} of size 3.
Note finally that, for the instance considered, ∆ = 3× 2k−1. Consequently, approximation ratio
achieved here is (k + 1)/3 = O(ln(3 × 2k−1)).

More recently, another analysis of Algorithm GREEDYSC has been presented by [71] providing
a tight ratio of O(log |C|). On the other hand, as stated in [67] (see [31] for an informal proof),
it is impossible to approximate min set cover within better than O(log |C|) − O(log log |C|),
unless a highly unlikely complexity classes relationship is true. Note finally that the result of
Theorem 3 has been slightly improved down to ln ∆ + (5/6) by [36].

A direct corollary of Theorem 3 (or alternatively of [71]) and of [67] is that min set cover

definitely belongs to Log-APX.
Dealing with the differential approximation paradigm, min set cover is approximable

within differential ratio bounded below by 1.365/∆ ([12]) and inapproximable as is ([27]). So, it
belongs to Poly-DAPX.

4.3 min vertex cover

Given a graph G(V,E), min vertex cover consists of determining a minimum-size set V ′ ⊆ V
such that, for every (u, v) ∈ E, at least one among u and v belongs to V ′.

Consider the following algorithm, denoted by MATCHING:

1. compute a maximal matching7 M in G;

2. return the set C of the endpoints of the edges in M .

Algorithm MATCHING is polynomial since a maximal matching can be easily computed by picking
an edge e, deleting it from G together with any edge sharing an endpoint with e and iterating
these operations until no edge survives in G.

Theorem 4 . Algorithm MATCHING is 2-standard-approximation algorithm for min vertex

cover.

Proof. Let us first prove that C is a vertex cover for G. The endpoints of any edge e of M
cover e itself and any other edge sharing a common endpoint with e. Denote by V (M) the set
of endpoints of the edges of M . Since M has been built to be maximal, the edges in M have
common endpoints with any edge in E \M , so, V (M) cover both M and E \ M , i.e., the whole
of E.

Set m = |M |; then:
|V (M)| = m(G,C) = 2m (13)

On the other hand, since edges in M do not pairwise share common endpoints, any solution (a
fortiori an optimal one) must use at least m vertices in order to cover them (one vertex per edge
of M). So, denoting by τ(G) the cardinality of a minimum vertex cover in G, we have:

τ(G) = opt(G) > m (14)

10

Figure 5: Tightness of the ratio achieved by Algorithm MATCHING.

Putting (13) and (14) together, we immediately get: m(G,C)/τ(G) 6 2 as claimed.
We now show that the ration claimed in Theorem 4 is tight. Consider the graph of Figure 5.

Thick edge is a maximal matching for this graph and, consequently, the solution taken by Al-
gorithm MATCHING will contain two vertices (the two endpoints of the thick edge). On the other
hand, the center of the star suffices to cover all its edges.

One of the most known open problems in polynomial approximation is the improvement
of ratio 2 for min vertex cover. A lot of unsuccessful effort has been provided for such
improvement until now. All this long effort has only produced ratios of the form:

• 2 − (log log n/ log n) ([10, 54]);

• 2 − (2 ln ln n/ ln n) ([40]);

• 2 − (log log ∆(G)/ log ∆(G)) ([40]).

Unfortunately, a more recent result by [50] gives strong evidence that this improvement should
be impossible.

In the differential approximation paradigm, min vertex cover is equiapproximable with
max independent set ([27]). So, it definitely belongs to Poly-DAPX.

4.4 min tsp

Given a complete graph on n vertices, denoted by Kn, with positive weights on its edges, min

tsp consists of determining a Hamiltonian tour8 of Kn of minimum total cost.
Let us note that, with respect to the differential paradigm, computing a worst solution for min

tsp is not trivial at all. On the opposite of the problems seen until now in the previous sections
that had “trivial” worst solutions (the empty set for max independent set, the whole family S
for min set cover, or the whole vertex-set V of the input-graph for min vertex cover) worst
solution of min tsp is an optimal solution of max tsp, where we wish to determine a maximum
total-cost Hamiltonian cycle. This problem is also NP-hard. So, determining a worst solution
of min tsp is as hard as to determine an optimal solution.

Consider the following very well-known algorithm for min tsp, denoted by 2_OPT, originally
devised by [25], where d(i, j) denotes the weight of edge (vi, vj):

1. construct some Hamiltonian tour T (this can be done, for example, by the nearest-neighbor
heuristic);

7Given a graph G(V, E), a matching is a subset M ⊆ E such that no two edges in M share a common endpoint;
a matching is maximal (for inclusion) if it cannot be augmented remaining a matching.

8 A simple cycle passing through all the vertices of Kn.

11

vi vj

vi′vj′

2_OPT

Figure 6: Algorithm 2_OPT

v1 v2

v3

v4v5

v6

(a) T ∗

v1 v2

v3

v4v5

v6

(b) T ′

Figure 7: Tours T ∗ and T ′ of the proof of Theorem 5 for a K6.

2. consider two edges (vi, vj) and (vi′ , vj′) of T ; if d(i, j) + d(i′, j′) > d(i, i′) + d(j, j′), then
replace (vi, vj) and (vi′ , vj′) in T by (vi, vi′) and (vj , vj′) (Figure 6) i.e., produce a new
Hamiltonian tour T \ {(vi, vj), (vi′ , vj′)} ∪ {(vi, vi′), (vj , vj′)};

3. repeat step 2 until no swap is possible;

4. output T the finally produced tour.

Algorithm 2_OPT is polynomial when, for instance, dmax the maximum edge-weight is bounded
above by a polynomial of n. For other cases where 2_OPT is polynomial, see [56].

Theorem 5. ([56]) Algorithm 2_OPT achieves differential-approximation ratio bounded below
by 1/2.

Proof. Assume that T is represented as the set of its edges, i.e.:

T = {(v1, v2) , . . . , (vi, vi+1) , . . . , (vn, v1)}

and denote by T ∗ an optimal tour. Let s∗(i) be the index of the successor of vi in T ∗. So,
s∗(i) + 1 is the index of the successor of vs∗(i) in T (modn) (in other words, if s∗(i) = j, then
s∗(i) + 1 = j + 1).

The tour T computed by 2_OPT is a local optimum for the 2-exchange of edges in the sense
that every interchange between two non-intersecting edges of T and two non-intersecting edges

12

of E \T will produce a tour of total distance at least equal to d(T), where d(T) denotes the total
weight of T . This implies in particular that, ∀i ∈ {1, . . . , n}:

d(i, i + 1) + d (s∗(i), s∗(i) + 1) 6 d (i, s∗(i)) + d (i + 1, s∗(i) + 1) (15)

Observe now that (see also Figure 7), denoting by Tw a worst tour in Kn the following hold:

⋃

i=1,...,n

{(vi, vi+1)} =
⋃

i=1,...,n

{(
vs∗(i), vs∗(i)+1

)}
= T (16)

⋃

i=1,...,n

{(
vi, vs∗(i)

)}
= T ∗ (17)

⋃

i=1,...,n

{(
vi+1, vs∗(i)+1

)}
= some feasible tour T ′ better than Tω (18)

Add inequalities in (15), for i = 1, . . . , n:

n∑

i=1

(d(i, i + 1) + d (s∗(i), s∗(i) + 1)) 6

n∑

i=1

(d (i, s∗(i)) + d (i + 1, s∗(i) + 1)) (19)

Putting (19) together with (16), (17) and (18) we get:

(16) =⇒
n∑

i=1

d(i, i + 1) +
n∑

i=1

d [s∗(i), s∗(i) + 1] = 2m (Kn, T)

(17) =⇒
n∑

i=1

d [i, s∗(i)] = opt (Kn)

(18) =⇒
n∑

i=1

d [i + 1, s∗(i) + 1] = d
(
T ′
)

6 ω(Kn)

Then, some easy algebra, and by taking into account that the differential ratio for a minimization
problem increases with ω, leads to:

ω (Kn) − m (Kn)

ω (Kn) − opt (Kn)
>

1

2

that completes the proof of the theorem.
We now show that ratio 1/2 is tight for Algorithm 2_OPT. Consider a K2n+8, n > 0, set

V = {i : i = 1, . . . , 2n + 8}, set:

d(2k + 1, 2k + 2) = 1 k = 0, 1, . . . , n + 3
d(2k + 1, 2k + 4) = 1 k = 0, 1, . . . , n + 2

d(2n + 7, 2) = 1

and set the distances of all the remaining edges to 2.
Consider the tour T = {(i, (i + 1)) : i = 1, . . . , 2n + 7} ∪ {((2n + 8), 1)} and observe that it is

a local optimum for the 2-exchange on K2n+8. Indeed, let (i, (i+1)) and (j, (j +1)) be two edges
of T . We can assume w.l.o.g. that 2 = d(i, i+1) > d(j, j +1), otherwise, the cost of T cannot be
improved. Therefore, i = 2k for some k. In fact, in order that the cost of T is improved, there
exist two possible configurations, namely d(j, j+1) = 2 and d(i, j) = d(j, j+1) = d(i+1, j+1) =
1. Then, the following assertions hold:

13

• if d(j, j + 1) = 2, then j = 2k′, for some k′, and, according to the construction of K2n+8,
d(i, j) = 2 (since i and j are even), and d(i + 1, j + 1) = 2 (since i + 1 and j + 1 are odd);
so the 2-exchange does not yield a better solution;

• if d(i, j) = d(j, j + 1) = d(i + 1, j + 1) = 1, then according to the construction of K2n+8 we
will have j = 2k′+1 and k′ = k+1; so, we lead a contradiction since 1 = d(i+1, j+1) = 2.

Furthermore, one can easily see that the tour:

T ∗ = {(2k + 1)(2k + 2) : k = 0, . . . , n + 3} ∪ {(2k + 1)(2k + 4) : k = 0, . . . , n + 2} {(2n + 7)2}

is an optimal tour of value β(K2n+8) = 2n + 8 (all its edges have distance 1) and that the tour:

Tω = {(2k + 2)(2k + 3) : k = 0, . . . , n + 2} ∪ {(2k + 2)(2k + 5) : k = 0, . . . , n + 1}

∪ {(2n + 8)1, (2n + 6)1, (2n + 8)3}

realizes a worst solution for K2n+8 with value ω(K2n+8) = 4n+16 (all its edges have distance 2).

1

2

3

4

5

6
7

8

9

10

11 12

(a) T ∗

1
2

3

4

5

6

7
8

9

10

11

12

(b) Tω

Figure 8: Tightness of the 2_OPT approximation ratio for n = 1.

Consider a K12 constructed as described just above (for n = 2). Here, d(1, 2) = d(3, 4) =
d(5, 6) = d(7, 8) = d(9, 10) = d(11, 12) = d(1, 4) = d(6, 3) = d(5, 8) = d(7, 10) = d(9, 12) =
d(11, 2) = 1, while all the other edges are of distance 2. In Figures 8(a) and 8(b), T ∗ and Tω,
respectively, are shown (T = {1, . . . , 11, 12, 1}). Hence, in K2n+8 considered, the differential-
approximation ratio of 2_OPT is equal to 1/2.

The best differential-approximation ratio for min tsp is 3/4 ([30]) but it does not admit a
polynomial time differential-approximation schema ([56, 55]. So, min tsp definitely belongs to
DAPX. Furthermore, it is proved in [56] that min tsp and min metric tsp are equiapprox-
imable for the differential approximation.

Dealing with the standard approximation paradigm min tsp is in Exp-APX (see Section 6).
On the other hand, min metric tsp is approximable within standard-approximation ratio 3/2
by the celebrated Christofides algorithm ([19]) while the most famous relaxation of min metric

tsp, that is when edge-weights are either 1 or 2 is approximable within 8/7 ([17]). Finally, min

euclidean tsp is in PTAS ([1]).

4.5 min coloring

Given a graph G(V,E), min coloring consists of determining the minimum number of colors
(i.e., of independent sets, see also footnote 6), that feasibly color the vertices of G.

14

The worst-solution value for min coloring is equal to n, since coloring any vertex of the
input graph with its own color produces a feasible coloring. Furthermore, this coloring cannot
be augmented without producing empty colors.

Consider the following algorithm for min coloring, denoted by COLOR and devised by [41]
(see also [65]):

1. find an independent set S of size 3 in G; color its vertices with a new color and remove it
from G;

2. repeat step 1 until no independent set of size 3 is found;

3. determine a maximum family of disjoint independent sets of size 2 in (the surviving)
graph G and color the vertices of each of them with a new color;

4. color the remaining vertices of G using as new colors as the vertices to be colored;

5. output C the union of colors used at steps 2, 3 and 4.

Observe first that Algorithm COLOR runs in polynomial time. Indeed, step 1 is greedy. For a
graph of order9 n, all the independent sets of size 3 can be found in time O(n3) by exhaustive
search. Step 2 can be performed in polynomial time since it amounts to a maximum matching
computation that is polynomial ([61]). Indeed, at step 3, the maximum independent set of
the surviving graph G has size at most 2. Consider Ḡ that is the complementary10 of G. Any
independent set of size 2 in G becomes an edge in Ḡ and maximum family of disjoint independent
sets of size 2 in G is exactly a maximum matching in Ḡ. So, computation in step 3 is nothing
else than computation of a maximum matching.

Lemma 1. Steps 3 and 4 of Algorithm COLOR optimally color a graph G with α(G) = 2.

Proof. Since α(G) = 2, colors in G are either independent sets of size 2, or singletons. Fix some
coloring C using x colors of size 2 and y colors that are single vertices. If n is the order of G, we
have:

|C| = x + y (20)

n = 2x + y (21)

By (20) and (21), |C| = n − x. Hence, the greater x, the better the coloring C and a minimum
coloring corresponds to a maximum x. This is exactly what Step 3 of Algorithm COLOR does.

We are ready now to prove the following theorem.

Theorem 6. ([41]) Algorithm COLOR is 2/3-differential-approximation algorithm for min col-

oring.

Proof. We prove the theorem by induction on n the size of the input graph.
If n = 1 then Algorithm COLOR optimally colors it with one color. Assume that theorem’s

statement remains true for n 6 k and consider a graph G of order n = k + 1. We distinguish
two cases.

If G does not contain an independent set of size greater than 2, then by Lemma 1, Algorithm
COLOR computes an optimal coloring for G.

9The order of a graph is the cardinality |V | of its vertices.
10Given a graph G(V, E), the complementary graph Ḡ(V, Ē) of G is the graph having the same set of vertices V

as G and Ē = {(vi, vj) : i 6= j and (vi, vj) /∈ E}.

15

a

b

c

d

e

Figure 9: The complement of a graph where differential ratio 2/3 is attained by Algorithm COLOR.

Assume now that G is such that α(G) > 3 and denote by χ(G) the chromatic number (i.e.,
the cardinality of a minimum coloring) of G. Then, obviously, at least an independent set S has
been found by COLOR at step 1 and:

χ(G[V \ S]) 6 χ(G) (22)

Consider the graph G[V \ S] of order n − 3 and its coloring C \ S. This graph is colored with
|C| − 1 colors and, by the induction hypothesis:

n − 3 − |C \ S| >
2

3
(n − 3 − χ(G[V \ S])) (23)

Combining (22) and (23) we get:

n − |C| = n − |C \ S| − 1 >
2

3
(n − 3 − χ(G[V \ S])) + 2 >

2

3
(n − χ(G)) (24)

Taking into account that ω(G) = n, (24) directly derives the differential ratio claimed.
We now prove that differential ratio 2/3 is tight for Algorithm COLOR. Consider a graph G the

complement of which is shown in Figure 9. It is easy to see that in G, Algorithm COLOR would
produce C = {{a}, {d}, {b, c, e}}, while the optimal coloring is C∗ = {{a, b}, {c, d, e}}. Taking
into account that ω(G) = 5, ratio 2/3 for this instance is immediately proved.

Dealing with standard paradigm, the best known approximation ratios for min coloring

are:

• O(n(log log n)2/ log3 n) ([38]);

• ∆ log log n/ log ∆ ([29]).

On the other hand, it is inapproximable within better than:

• n1−ǫ for any constant ǫ > 0, unless NP ⊆ coRP ([34]);

• n(1/5)−ǫ for any ǫ > 0, assuming that NP 6= coRP ([15]);

• n(1/7)−ǫ for any ǫ > 0 unless P 6= NP ([15]).

More about the complexity classes mentioned in the results above can be found in [59].

16

4.6 min weighted bipartite coloring

Consider a vertex-weighted graph G(V,E) and denote by wi the weight of vertex vi ∈ V . For
any subset V ′ ⊆ V define its weight w(V ′) by:

w
(
V ′
)

= max
{
wi : vi ∈ V ′

}
(25)

min weighted coloring consists of determining a coloring C = (S1, . . . , Sk) of G minimizing
the quantity:

m(G,C) =

k∑

i=1

w (Si) (26)

where, for i = 1, . . . , k, w(Si) is defined as in (25).
min weighted coloring is obviously NP-hard in general graphs since setting wi = 1,

vi ∈ V , it becomes the classical min coloring problem. However, it is proved in [26] that it
is NP-hard, even in bipartite graphs (min weighted bipartite coloring). Let us note that
min coloring is polynomial in these graphs since they are 2-colorable.

In what follows in this section, we present a polynomial time differential-approximation
schema originally developed by [26].

Consider a vertex-weighted bipartite graph B(U,D,E) and the following algorithm denoted
by BIC:

1. range the vertices of B in decreasing order with respect to their weights;

2. fix an ǫ > 0 and set η = ⌈1/ǫ⌉; set SU = {v4η+3, . . . , vn}∩U and SD = {v4η+3, . . . , vn}∩D;

3. compute an optimal weighted coloring C̃ in B′ = B[{v1, . . . , v4η+2}];

4. output C = SU ∪ SD ∪ C̃.

Since the graph B′ of step 3 has fixed size, computation of C̃ can be performed in polynomial
time by an exhaustive search. So, Algorithm BIC is polynomial.

Denote by C∗ = (S∗
1 , S∗

2 , . . . , S∗
p) an optimal min weighted bipartite coloring-solution

of B and let w1 = wi1 > wi2 > . . . > wip be the weights of its colors. Remark also that:

ω(B) =
∑

vi∈U∪D

w (vi)

opt(B) = wi1 + wi2 + . . . + wip

ω
(
B′
)

=

4η+2
∑

i=1

wi (27)

ω
(
B′
)

6 ω(B) (28)

The proof of the existence of a polynomial time differential-approximation schema for min

weighted bipartite coloring is based upon the following two lemmata.

Lemma 2. |C̃| 6 2η + 2.

Proof. Note first that it cannot exist more than 2 colors that are singletons in C̃. A contrario,
at least two of them are in U or in D. By concatenating them into a single color we reduce the
objective value (26) of C̃.

Denote by x the number of colors that are singletons and by y the number of the other colors
of C̃. Then, obviously, x + 2y 6 4η + 2 and, as mentioned just before, x 6 2; henceforth:

2x + 2y 6 4η + 4 =⇒
∣
∣
∣C̃
∣
∣
∣ = x + y 6 2η + 2

that proves the lemma.

17

Lemma 3. m(B′, C̃) = opt(B′) 6 opt(B).

Proof. Just remark that coloring (S∗
1 ∩V (B′), S∗

2 ∩V (B′), . . . , S∗
p ∩V (B′)) is feasible for B′ and

it is only a part of C∗.
We are ready now to prove the following theorem.

Theorem 7. ([26]) Algorithm BIC is polynomial time differential-approximation schema for min

weighted bipartite coloring.

Proof. Using (27) and Lemma 2 we have:

ω
(
B′
)
− opt

(
B′
)

=

4η+2
∑

i=1

wi −

|C̃|
∑

j=1

wij > 2ηw4η+2 >
2

ǫ
w4η+2 (29)

On the other hand:

w (SU) 6 w4η+2 (30)

w (SD) 6 w4η+2 (31)

From (29), (30) and (31), we get:

m (B,C) = w (SU) + w (SD) + opt
(
B′
)

= (1 − ǫ)opt
(
B′
)

+ ǫ

(

opt
(
B′
)

+
1

ǫ
w (SU) +

1

ǫ
w (SD)

)

6 (1 − ǫ)opt
(
B′
)

+ ǫ







opt
(
B′
)

+
2

ǫ
w4η+2

︸ ︷︷ ︸

6ω(B′)6ω(B)







6 (1 − ǫ)opt(B) + ǫω(B)

that gives the schema claimed.
As it is shown in [26], min weighted bipartite coloring cannot be solved by fully

polynomial time differential-approximation schema. On the other hand, it is approximable within
standard-ratio slightly better that 4/3 and inapproximable within standard ratio 8/7, unless
P = NP ([26]).

4.7 knapsack

We finish Section 4 by handling one of the most famous problems in combinatorial optimization,
that is knapsack. An instance I of knapsack is the specification of two vectors ~a and ~c and of
a constant b and can be defined in terms of an integer-linear program as follows:

I =

{
max ~a · ~x

~c · ~x 6 b

Consider the following algorithm for knapsack presented by [45]:

1. fix an ǫ > 0 and build the instance I ′ = ((a′i, ci)i=1,...,n, b) with a′i = ⌊ain/(amaxǫ)⌋;

2. output S := DYNAMICPROGRAMMING(I′).

18

This dynamic programming algorithm is a classical example of how polynomial time approxima-
tion schemata are constructed. In fact, the most common technique for them consists first of
scaling down data in such a way that the new instance becomes polynomial, then of solving it
and, finally, of proving that the solution obtained corresponds to a feasible solution of the initial
instance whose value is “very close” to the optimal value.

Step 2 above runs in O(n2a′max log cmax) = O((n3 log cmax)/ǫ) ([45]). So the whole running
time of the algorithm is polynomial.

Theorem 8. knapsack ∈ FPTAS.

Proof. Let S∗ be an optimal solution of I. Obviously, S∗ is feasible for I ′. Let:

t =
amaxǫ

n
(32)

Then, for every i = 1, . . . , n:

a′i =
⌊ai

t

⌋

(33)

and the following holds:

opt
(
I ′
)

>
∑

i∈S∗

a′i >
∑

i∈S∗

(ai

t
− 1
)

>
opt(I)

t
− |S∗| >

opt(I)

t
− n =⇒ t opt

(
I ′
)

> opt(I) − nt (34)

Note now that the largest ai, i.e., that whose index verify: i0 = argmax{amax} is feasible for I.
Hence,

opt(I) =
∑

i∈S∗

ai > amax (35)

Putting (32), (35) and (34) together, we get:

nt = amaxǫ 6 ǫ opt(I) (36)

Then the following hold for the value of the solution S returned by the algorithm:

m(I, S) =
∑

i∈S

ai

(33)

> t
∑

i∈S

a′i = t opt
(
I ′
) (34)

> opt(I) − nt
(36)

> (1 − ǫ) opt(I)

To conclude, it suffices to observe that the complexity of the algorithm is “fully” polynomial, since
it does not depend on ǫ. Moreover, since it depends on the logarithm of cmax, the algorithm
remains polynomial even if cmax is exponential with the size n of the instance. The proof of the
theorem is completed.

Let us note that, taking nothing is feasible for knapsack, producing a solution of value 0
that is the worst solution for any instance I. So, standard- and differential-approximation ratios
coincide for knapsack. Henceforth, knapsack belongs also to DFPTAS.

5 Approximability preserving reductions

The use to transform a problem into a different, but related, problem with the aim of ex-
ploiting the information we have on the latter in order to solve the former, has been always
present in mathematics. Consider, for example, how Greek mathematicians and, subsequently,
Al Khuwarizmi ([14]) made use of geometrical arguments in order to solve algebraic problems.

19

In recent times, a particular type of transformation, called reduction has been introduced
by logicians in computability theory ([51]). In this case, a reduction from a problem Π to a
problem Π′ not only specifies how the former can be solved starting from the solution of the
latter but, possibly more important in such context, it allows to show that if problem Π is
unsolvable (i.e., no algorithm for its solution may exist), so is problem Π′. Such development
of the notion of problem transformation is of great importance because it determines a twofold
application of mathematical transformations: on one side they allow to transfer positive results
(solution techniques) from one problem to another and on the other side they may also be used
for deriving negative (impossibility) results.

The first application of the concept of reduction in computer science and combinatorics arises
in the early seventies in the seminal paper by [21], soon followed by the equally fundamental
paper by [47]. Actually, both Cook’s and Karp’s reductions where conceived for relating decision
problems from a complexity theoretic point of view. So, if we want to use reductions in solving
optimization problems, we need other types of more “optimization-oriented” reductions.

Why do we need them? NPO hierarchy discussed in Section 2 (Figures 1 and 2) has been
built in a somewhat ad-hoc and “absolute” way in the sense that problems are (constructively)
classified following algorithms solving them. However, this classification does not allow compar-
isons between approximability properties of problems. For instance, we cannot answer or we can
only very partially answer, to questions as:

• how can one compare problems with respect to their approximability properties and inde-
pendently on their respective approximation levels?

• how one can compare approximability of different versions of the same problem (for exam-
ple, weighted version vs. unweighted one)?

• how one can link different types of approximation for a same problem (for instance, do there
exist transfers of approximability results between standard and differential approximation
for a given problem)?

• how to apprehend the role of parameters in the study of approximability (for example,
we have seen in Section 4.1 that the functions describing approximation ratios for max

independent set are different when dealing with n or when dealing with ∆(G))?

• can we transfer approximation results from a problem to another one?

• can we refine structure of the approximation classes given above by showing, for instance,
that some problems are harder than some other ones within the same approximability class
(completeness results)?

Researchers try to provide answers to these questions by using carefully defined reductions called
approximation preserving reductions. Any of the existing ones imposes particular conditions on
the way optimal solutions, or approximation ratios, or . . . , are transformed from one problem to
another. For more details, the interested reader can be referred to [5, 8, 9, 22, 32, 44, 66, 72].

In general, given two NPO problems Π = (I,Sol,m, opt) and Π′ = (I ′,Sol′,m′, opt′), an
approximation preserving reduction R from Π to Π′ (denoted Π ≤R Π′) is a triple (f, g, c) of
polynomially computable functions such that:

• f transforms an instance I ∈ I into an instance f(I) ∈ I ′;

• g transforms a solution S′ ∈ Sol′(f(I)) into a solution g(I, S′) ∈ Sol(I);

• c transforms ratio ρ′(f(I), S′) into ρ(I, g(I, S′)) = c(ρ′(f(I), S′)).

20

A basic property of an approximation preserving reduction Π ≤R Π′ is that:

• if Π′ is approximable within ratio ρ′, Π is approximable within ratio ρ = c(ρ′);

• on the other hand, if, under a likely complexity hypothesis, Π is not approximable within
ratio ρ, then (provided that c is invertible) Π′ is not approximable within ratio ρ′ = c−1(ρ).

Every reduction can be seen as a binary hardness-relation among problems.
Study and use of approximation preserving reductions is interesting and relevant for both

theoretical computer science and operational research communities for two main reasons.
The first reason is “structural”. By means of these reductions, one refines the class of NP-

hard problems by drawing a hierarchy of classes in the interior of NP-hard. This hierarchy can
be seen as a sequence of strata, each stratum containing problems of “comparable approxima-
bility hardness (or easiness)”. Indeed, any stratum C draws the capacity of its problems to be
approximable within the approximation level represented by C and, simultaneously, the limits
to the approximability of these problems. For instance let us refer to Figure 10. Assume two
strata C’ and C” representing two approximation levels and suppose, w.l.o.g. that C’ is the
class APX and C” is the class Log-APX. Suppose also that a new problem Π, for which no
approximation result was known, has been reduced to a problem Π′ ∈ Log-APX by a reduction
preserving logarithmic approximation ratios. An immediate corollary is then that also Π belongs
to Log-APX and, unless a stronger positive result is proved for it, does not belongs to APX.

NP-hard

Log-APX

APX

Figure 10: Designing an approximability hierarchy for NP-hard class.

The second reason is “operational”. Approximability preserving reductions represent a kind
of alternative in the achievement of new approximation results for particular hard problems.
When one tries to approximately solve a new problem Π (or to improve existing approximation
results for it) a possible way is to operate autonomously by undertaking a thorough and “from-
the-beginning” study of the approximability of Π. However, another way to apprehend Π is
to put in contribution not only the structural characteristics of this problem but also the whole
knowledge dealing with all the problems “similar” to Π. For instance, assume that there exist two
approximation preserving reductions R from Π to a problem Π′ and Q from a problem Π′′ to Π and
that we know a positive approximation result for Π′ (i.e., an algorithm achieving approximation
ratio r′ for it), and a negative result for Π′′ i.e, an assertion that Π′′ is not approximable within
some ratio r′′, unless an unlikely complexity-theoretical assumption (for example, P = NP)

21

holds. Then, according to the particular characteristics of R and Q, one derives that Π is
approximable within ratio, say c′(r′), but it is not approximable within ratio c′′(r′′), where c′

and c′′ are positive real functions depending on R and Q, respectively (see the definition of an
approximability preserving reduction given above).

There exist a lot of approximability preserving reductions devised today for several combi-
natorial optimization problems. Let us give two very simple examples.

Example 1. max independent set and max clique
11. It is very well-known from

graph theory that an independent set in a graph G becomes a clique of the same size in Ḡ and
vice-versa. Assume now that we know an approximation algorithm A for max independent

set achieving an approximation ratio expressed as function of n (the size of the input-graph).
Assume also that we want to approximately solve max clique in a graph G. Then, we can
build Ḡ and run A on it. Algorithm A will return an independent set of Ḡ that becomes a clique
seen in G. This clique has the same size as the independent set initially computed and since G
and Ḡ have the same size, the approximation ratio achieved for max independent set is also
achieved for max clique. The inverse is also true.

Example 2. min coloring and min partition into cliques
12. Using the relation

between a clique and an independent set in Example 1, it can be easily seen that a coloring in G
becomes a partition into cliques (of the same size) in Ḡ. So, an approximation algorithm A for
say min coloring achieving an approximation ratio expressed as function of n can be used in
the same way as previously to solve min partition into cliques (and vice-versa) with the
same approximation ratio in both standard and differential paradigms.

For a long time, approximability-preserving reductions have been considered as a kind of “uni-
versal” tools allowing us to produce any kind of results and for any kind of approximation ratios
(i.e., independently on their forms and parameters). But this is absolutely not true. In fact,
reductions are not universal. Most of them cannot preserve neither every value nor every form
of approximation ratio.

Let us revisit the reduction of Example 1. If, as we did there, we assume that the ratio is
function of n, then preservation works. The same would hold if the ratio assumed was a constant.
If, on the other hand, this ratio is a function of, say, ∆(G), then things become complicated,
since no general relation exists between ∆(G) and ∆(Ḡ). So, reduction of Example 1 does not
preserve ratios functions of the maximum degree of the input graph. The same observation can
be also made for Example 2.

Let us finally note that most of the reductions known are devised to preserve approximation
ratios that are “better than constants”.

As a last example, let us consider the following classical reduction between max weighted

independent set13 and max independent set ([70]).
Let us consider an instance (G(V,E), ~w) of max weighted independent set and suppose,

in order that the reduction that follows is polynomial, that weights are polynomial with the
order n of G. We transform it into an instance G′(V ′, E′) of max independent set as follows:

• we replace every vertex vi ∈ V by an independent set Wi of wi new vertices;

11Given a graph G(V, E), max clique consists of determining a maximum-size subset V ′ ⊆ V such that G[V ′]
is a complete graph.

12Given a graph G, min partition into cliques consists of determining a minimum partition of the vertex-set
of G into sets each of them inducing a complete subgraph of G, i.e., a clique.

13Given a vertex-weighted graph G, the objective is to determine an independent set maximizing the sum of
the weights of its vertices.

22

• we replace every edge (vi, vj) ∈ E by a complete bipartite graph among the vertices of
the independent sets Wi et Wj in G′ (see Figure 11 where the vertices vi and vj have
respectively weights 3 and 2).

This transformation is polynomial since the resulting graph G′ has
∑n

i=1 wi vertices and every wi

is polynomial with n.

vi vj

3 2
(a) An edge of G

Wi

Wj

(b) The same edge in G′

Figure 11: Transformation of an instance (G(V,E), ~w) of max weighted independent set

into an instance G′(V ′, E′) of max independent set.

Let us now consider an independent set S′ of G′ and w.l.o.g. let us assume it is maximal
with respect to inclusion (in case it is not, we can easily add vertices until we reach a maximal
independent). Then, S′ = ∪k

j=1Wij , i.e., there exists a k such that S′ consists of k independent
sets Wij , j = 1, . . . , k, corresponding to k independent vertices vi1 , . . . , vik ∈ V . So, |S′| =
∑k

j=1 wij .
Hence, consider an independent set S′ of G′. If Wi, i = 1, . . . , k, are the independent sets

that form S′ (|S′| =
∑k

i=1 wi), then an independent set S for G can be built that contains all
corresponding vertices v1, . . . , vk of V with weights w1, . . . , wk, respectively. The total weight
of S is then

∑k
i=1 wi = |S′|

Let us now suppose that we have a polynomial time approximation algorithm A with ratio r
for max independent set and consider an instance of (G(V,E), ~w) of max weighted inde-

pendent set. Then the following algorithm is a polynomial time approximation algorithm for
max weighted independent set, denoted by WA:

• construct G′ as previously;

• run A on G′; let S′ be the computed independent set;

• construct an independent set S of G as explained before.

From what has been discussed just above from any solution for S′ in G′ we can build a solution S
for G of value (total eight) |S′|. So, the same ratio achieved by A on G′ is also guaranteed by WA

on G.
It is easy to see that this reduction preserves constant approximation ratios. But, it is also

easy to see that a ratio f(∆(G)) (i.e., function of ∆(G)) for max independent set transforms
into a ratio O(f(∆(G)wmax)) (where wmax is the maximum weight-value) and not into f(∆(G))
for max weighted independent set. Hence, the reduction does not preserve ratios functions
of ∆. The same observation immediately holds for ratios functions of the order of the input-graph.

23

6 Some words on inapproximality

Study of approximability properties of a problem includes two complementary issues: the devel-
opment of approximation algorithms guaranteeing “good” approximation ratios and the achieve-
ment of inapproximability results. The goal of an inapproximability result is to provide answers
to a global question, addressed this time not to a single algorithm but to a combinatorial op-
timization problem Π itself. This stake does not only consist of answering if the analysis of a
specific approximation algorithm for Π is fine or not but, informally, if the algorithm devised is
the best possible (with respect to the approximation ratio it guarantees); in other words, it pro-
vides answers to questions as: “do there exist other better algorithms for Π?”. Or, more generally,
“what is the best approximation ratio that a polynomial algorithm could ever guarantee for Π?”.
Hence, the goal is to prove that Π is inapproximable within some ratio r unless a very unlikely
complexity hypothesis becomes true (the strongest such hypothesis is obviously P = NP).

This type of results is very interesting and adds new insights to computationally hard prob-
lems. An important characteristic of complexity theory is that very frequently knowledge is
enriched more by impossibility proofs than by possibility ones, even if the latter introduce some
pessimism.

“When we exclusively see things from a positive point of view, very frequently we
elude fine and efficient approaches, we ignore or we cannot see large avenues that
lead to new areas and open new possibilities. When we try to prove the impossible
we have to firstly apprehend the complete spectrum of the possible ([60], translation
from Greek by the author).

There exist three fundamental techniques to prove inapproximability results: the GAP-reductions,
the PCP theorem and the approximability preserving reductions. In what follows we shortly
explain the former of these techniques, that is the older technique for proving such results. For
the PCP theorem, the interested reader can be referred to [2] as well as to [5, 66, 72].

As we have already mentioned, an inapproximability result for an NPO problem Π consists
of showing that if we had an approximation algorithm achieving some approximation ratio r,
then this fact would contradict a commonly accepted complexity hypothesis (e.g., P 6= NP).
How can we do this? Let us consider the following example showing that min coloring is not
approximable within standard-ratio less than 4/3 − ǫ, for any ǫ > 0.

Example 3. Revisit the NP-completeness proof for the decision version of min coloring

given in [35]. The reduction proposed there constructs, starting from an instance ϕ of e3sat14,
a graph G such that if ϕ is satisfiable then G is 3-colorable (i.e., its vertices can be colored by 3
colors), otherwise G is at least 4-colorable.

Suppose now that there exists a polynomial algorithm for min coloring guaranteeing
standard-approximation ratio (4/3) − ǫ, with ǫ > 0. Run it on the graph G constructed from ϕ.
If ϕ is not satisfiable, then this algorithm computes a coloring for G using more than 4 colors. On
the other hand, if ϕ is satisfiable (hence G is 3-colorable), then the algorithm produces a coloring
using at most 3((4/3) − ǫ) < 4 colors, i.e., a 3-coloring. So, on the hypothesis that a polyno-
mial algorithm for min coloring guaranteeing approximation ratio (4/3) − ǫ exists, one can
in polynomial time decide if a formula ϕ, instance of e3sat, is satisfiable or not, contradicting
so the NP-completeness of this problem. Hence, min coloring is not ((4/3) − ǫ)-standard-
approximable, unless P = NP.

14Given a set of m clauses over a set of n variables, sat consists of finding a model for the conjunction of these
clauses, i.e., an assignment of truth values to the variables that simultaneously satisfies all the clauses; e3sat is
the restriction of sat to clauses with exactly three literals.

24

The reduction of Example 3 is a typical example of a GAP-reduction. Via such reductions,
one tries to create a gap separating yes-instances (i.e., the instances of the problem where answer
is yes) of a decision problem from no-instances (i.e., the instances of the problem where answer
is no).

More generally, denoting, for some decision problem Π, by OΠ the set of its yes-instances,
the basic idea of a GAP-reduction is the following.

Consider a decision problem Π that is NP-complete and an NPO problem Π′ (suppose that
goal(Π′) = min). If we devise a polynomial reduction from Π to Π′ such that, there exist c, r > 1
for which:

• if I is a yes-instance of Π, then opt(I ′) 6 c,

• if I is a no-instance of Π, then opt(I ′) > rc,

then, the reduction above is a GAP-reduction proving that Π′ is inapproximable within standard-
ratio r.

Indeed, if Π′ was approximable within r, then:

• ∀I ∈ OΠ (the set yes-instances), m(f(I), S′) 6 rc;

• ∀I ∈ IΠ \ OΠ (the set no-instances), m(f(I), S′) > opt(f(I)) > rc.

Consequently, we would have a separation criterion, i.e., a gap (see also Figure 12), checkable
in polynomial time, between the yes- and the no-instances of Π. Such a criterion is impossible
since Π is NP-complete.

rc

I ∈ OΠ
I ∈ IΠ \ OΠ

Figure 12: The gap.

How can we extend such results to other problems? Assume, for example, that a GAP-
reduction is devised between an NP-complete decision problem Π and an NPO problem Π′,
deriving that Π′ is not approximable within ratio better than r. Suppose also that an approx-
imability preserving reduction (f, g, c) (see Section 5) is devised from Π′ to some other NPO

problem Π′′. Then Π′′ is not approximable within better than c−1(r).
We conclude this short section with another example of GAP-reduction settling min tsp.

Example 4. ([35, 68]) Let us prove that (general) min tsp is not approximable within any
constant standard-approximation ratio, unless P = NP. Suppose a contrario, that min tsp is
polynomially approximable within standard-approximation ratio r for some constant r, denote
by A an approximation algorithm achieving this ratio and consider a graph G(V,E) of order n,
instance of the hamiltonian cycle15 problem. Starting from G construct an instance of min

tsp as follows:

• complete G in order to build a complete graph Kn;

15Given a graph G hamiltonian cycle consists of deciding is G contains a Hamiltonian tour (see footnote 8);
this problem in NP-complete ([35]).

25

• for every e ∈ E(Kn) (the edge-set of Kn) set:

d(e) =

{
1 if e ∈ E(G)
rn if e /∈ E(G)

Consider now the following two cases depending on the fact that G is Hamiltonian (i.e., it has a
Hamiltonian cycle) or not:

1. G is Hamiltonian; then, opt(Kn) = n, since the edges of the Hamiltonian cycle of G exist
in Kn and have all weights equal to 1; in this case, Algorithm A will produce a solution
(tour) T for min tsp of value m(Kn, T) 6 rn;

2. G is Hamiltonian; then, obviously, no tour in Kn can only use edges weighted by 1 (if such
tour existed, it would be a Hamiltonian cycle in G) so, any tour will use at least one edge
of weight rn; hence, opt(Kn) > rn + n− 1 > rn and, since A will produce something worse
than the optimum, mA(Kn, T) > opt(Kn) > rn.

We so have a gap between Hamiltonian graphs, deriving min tsp-solutions of value at most rn,
and non-Hamiltonian graphs implying min tsp-solutions of value greater than rn.

So, on the hypothesis that min tsp is approximable within standard-approximation ratio r,
one could polynomially solve hamiltonian cycle as follows:

• starting from an instance G of hamiltonian cycle, construct instance Kn of min tsp

as described;

• run A on Kn and if A returns a tour of value at most rn, answer yes to hamiltonian

cycle, otherwise answer no.

Since everything in the transformation of G into Kn is polynomial and, furthermore, Algorithm A

is assumed to be polynomial, the whole algorithm for hamiltonian cycle is also polynomial,
contradicting so the fact that this latter problem is NP-complete.

Inapproximability result of Example 4 can be importantly strengthened. Indeed, observe that
the only case where transformation of G into Kn is not polynomial, is when parameter r (the
approximation ratio of the polynomial algorithm assumed for min tsp) is doubly exponential.
Otherwise, even if r is exponential, say of the form 2p(n) for any polynomial p of n, the described
transformation remains polynomial since any number k can be represented using O(log k) bits.
So, the following result finally holds and concludes the section.

Theorem 9 . Unless P = NP, min tsp cannot be approximately solved within standard-
approximation ratios better than 2p(n) for any polynomial p.

7 A quick “tour d’horizon” about completeness in approximability classes

Given a set C of problems and a reduction R, it is natural to ask if there exist problems Π ∈ C

such that any problem Π′ ∈ C, R-reduces to Π. Such “maximal” problems are called in complexity
theory complete problems. Let C be a class of problems and R be a reduction. A problem Π ∈ C

is said to be C-complete (under R-reduction) if for any Π′ ∈ C, Π′ ≤R Π. A C-complete problem
(under reduction R) is then (in the sens of this reduction) a computationally hardest problem
for class C. For instance, in the case of NP-completeness, NP-complete problems (under Karp-
reduction ([35])) are the hardest problems of NP since if one could polynomially solve just one
of them, then one would be able to solve in polynomial time any other problem in NP. Let C

be a class of problems and R a reduction. A problem Π is said to be C-hard (under R-reduction)

26

if for any Π′ ∈ C, Π′ ≤R Π. In other words, a problem Π is C-complete if and only if Π ∈ C

and Π is C-hard.
The above general definitions can be immediately applied to approximability classes defined

in Section 3 in order to produce strong inaprroximability results but also in order to create a
structure for these classes. In fact, even if approximability preserving reductions mainly concern
transfer of results among pairs of problems, we can use them as mentioned, in order to complete
the structure of approximability classes.

Consider some approximability preserving reduction R and suppose that it preserves mem-
bership in, say, PTAS, in other words, if a problem Π R-reduces to Π′ and if Π′ ∈ PTAS, then
Π ∈ PTAS. Consider now an approximation class that contains PTAS, say APX and assume
that the existence of a problem Π that is APX-complete under R-reduction has been proved.
If Π admits a polynomial time approximation schema then, since R-reduction preserves mem-
bership in PTAS, one can deduce the existence of polynomial time approximation schemata for
any problem that is R-reducible to Π, hence, in particular, for any problem in APX. In other
words, by the assumptions just made, we have:

Π ∈ PTAS =⇒ APX = PTAS

Since, under the hypothesis P 6= NP, PTAS APX, one can conclude that, under the same
hypothesis, Π 6∈ PTAS.

The above schema of reasoning can be generalized for any approximation class. Let C be a
class of problems. We say that a reduction R preserves membership in C, if for every pair of
problems Π and Π′:

Π ∈ C and Π′ ≤R Π =⇒ Π′ ∈ C

We then have the following proposition.

Proposition 1. Let C and C
′ be two problem-classes with C

′ C. If a problem Π is C-complete
under some reduction preserving membership in C

′, then Π 6∈ C
′.

Obviously, if the strict inclusion of classes is subject to some complexity hypothesis, the conclu-
sion Π 6∈ C

′ is subject to the same hypothesis.
The analogy with NP-completeness is immediate. The fundamental property of Karp- (or

Turing-) reduction is that it preserves membership in P. Application of Proposition 1 to NP-
completeness framework simply says that NP-complete problems can never be in P, unless
P = NP.

When the problem of characterizing approximation algorithms for hard optimization problems
was tackled, soon the need arose for a suitable notion of reduction that could be applied to
optimization problems in order to study their approximability properties.

What is it that makes algorithms for different problems behave in the same way? Is
there some stronger kind of reducibility than the simple polynomial reducibility that
will explain these results, or are they due to some structural similarity between the
problems as we define them? ([46]).

The first answer to the above questions was given by [6, 7] where the notion of structure preserving
reduction is introduced and for the first time the completeness of max variable-wsat (a
weighted version of max sat) in the class of NPO problems is proved. Still it took a few more
years until suitable kinds of reductions among optimization problems were introduced by [58]. In
particular, this paper presented the so-called strict reduction and provided the first examples of
complete problems under approximation preserving reductions (min variable-wsat, min 0-1

linear programming and min tsp).

27

After [58] a large variety of approximation preserving reductions have appeared in the lit-
erature. The introduction of powerful approximation preserving reductions and the beginning
of the structural theory of approximability of optimization problems can be traced back to the
fundamental paper by [24] where the first PTAS preserving reductions (the PTAS-reduction) is
introduced and the first complete problems in APX under such types of reductions are presented.
Unfortunately the problem which is proved APX-complete in this paper is quite artificial, max

variable-wsat-B, a version of max variable-wsat in which, given a constant B, the sum of
weights of variables is contained between B and 2B.

Along a different line of research, during the same years, the study of logical properties of
optimization problems has led to the syntactic characterization of an important class of approx-
imable problems, the class Max-SNP (see [62]) strongly based upon characterization of NP

by [33]. Completeness in the class Max-SNP has been defined in terms of L-reductions and nat-
ural complete problems (e.g., max 3sat, max 2sat, min vertex cover etc.) have been found.
The relevance of such approach is related to the fact that it is possible to prove that Max-SNP-
complete problems do not allow polynomial time approximation schemata, unless P = NP ([2]).

The two approaches have been reconciled by [49], where the closure of syntactically de-
fined classes with respect to an approximation preserving reduction were proved equal to the
more familiar computationally defined classes. As a consequence of this result any Max-SNP-
completeness result appeared in the literature can be interpreted as an APX-completeness result.
In this paper a new type of reduction is introduced, the E-reduction. This reduction is fairly
powerful since it allows to prove that max 3sat is APX-complete. On the other side, it remains
somewhat restricted because it does not allow the transformation of PTAS problems (such as
max knapsack) into problems belonging to APX-PB (the class of problems in APX whose
solution-values are bounded by a polynomial in the size of the instance) such as max 3sat.
In [49], completeness in approximability classes beyond APX, as Log-APX and Poly-APX

has been also tackled and completeness results for subclasses of them (Log-APX-PB and Poly-

APX-PB, respectively, where problems have solution-values bounded by a polynomial in the
size of the instance) have been proved. Existence of natural complete problems for the whole
classes Log-APX and Poly-APX has been proved in [31, 11], respectively, under FT-reduction
and MPTAS-reduction.

The final answer to the problem of finding the suitable kind of reduction (powerful enough to
establish completeness results both in NPO and APX) is the AP-reduction, introduced by [23].

A large number of other reductions among optimization problems have been introduced
throughout the years. Overviews of the world of approximation preserving reductions and com-
pleteness is approximability classes can be found in [8, 9, 22, 23].

On the other hand, a structural development analogous to the one that has been carried on
for the standard paradigm has been elaborated also for the differential paradigm that is much
younger than the former since it has been defined at the beginning of the 90’s by [27]. In [4] and
in [11] the approximability classes DAPX and DPTAS are introduced, suitable approximation
preserving reductions are defined and complete problems in NPO, 0-DAPX, DAPX, DPTAS

and Poly-DAPX, under such kind of reductions, are shown.
Finally, in [31], together with the existence of complete problems for Log-APX and Poly-

APX, completeness in class Exp-APX is also proved and tools for proving completeness in
classes Log-DAPX and Exp-DAPX, where no natural problems are still proved to belong to,
are given.

We conclude this tour d’horizon, with a synthesis of the several completeness results briefly
presented just above for the combinatorially defined approximability classes seen given in Sec-
tion 3 (excluding so the synatctically defined class Max-SNP).

For the standard-approximation paradigm:

28

• NPO-complete: several versions of variable-weighted sat ([6, 7, 58]);

• Exp-APX-complete: min tsp ([31]);

• Poly-APX-complete: max independent set ([11]);

• Log-APX-complete: min set cover ([31]);

• APX-complete: max 3-sat, min vertex cover-B16, max independent set-B17, min

tsp with edge-weights 1 and 2 . . . ([24, 23, 49], etc.);

• PTAS-complete: min planar vertex cover, max planar independent set ([11]).

For the differential-approximation paradigm:

• 0-DAPX-complete: min independent dominating set, . . . ([4]);

• Exp-DAPX-complete: no natural problem is still known to be in Exp-DAPX;

• Poly-DAPX-complete: max independent set, min vertex cover, min set cover,
max clique, . . . ([31]);

• Log-DAPX-complete: the same as for class Exp-DAPX holds;

• DAPX-complete: min vertex cover-B, max independent set-B, . . . ([4]), min col-

oring ([11]);

• DPTAS-complete: min planar vertex cover, max planar independent set ([11]),
bin packing, . . . ([11]).

8 Further remarks

Polynomial approximation is a research area in the boundaries several research fields the main
among them being combinatorial optimization and theoretical computer science. For more than
thirty years, it constitutes a very active research programme that has rallied numerous researchers
all over the world. Furthermore, it has inspired several new approaches in both operational
research and computer science.

One of these new approaches is a dynamic computation model, called online approximation,
where the basic hypotheses are that instance to be solved is revealed step-by-step and the algo-
rithm supposed to solve it has to maintain a feasible solution for the part of the instance already
revealed. The quality of such an algorithm is measured by means of its competitive ratio defined
as the ratio of the value of the solution computed during instance’s revealing divided by the
value of the optimal solution of the whole instance (called offline solution). Extensions of online
computation can deal not only with data arrival but also with data elimination.

Another approach is the so-called reoptimization. Here we suppose that we have an optimal
solution for an instance (no matter how this solution is produced) and some new data arrive. Can
we operate a fast transformation of the solution at hand in order to fit the augmented instance?
Is the new solution optimal or not? If not, does it achieves some good approximation ratio?.

Notions and tools from polynomial approximation are also used in a relatively new research
field that is actually in full expansion: the algorithmic game theory. The so-called price of
anarchy is fully inspired from polynomial approximation.

16This is min vertex cover in graphs with maximum degrees bounded above by a fixed constant B.
17This is max independent set in graphs with maximum degrees bounded above by a fixed constant B.

29

What are the mid- and long-term perspectives of this area? Certainly, producing new op-
erational and structural results are such perspectives. For instance, syntactic classes, as class
Max-SNP is not yet fully studied in this paradigm. Also, optimal satisfiability problems, central
problems in the standard paradigm, deserve further research in differential approximation.

But, to our opinion, major long-term perspective is to match polynomial approximation with
exact computation. Indeed, another very active area of combinatorial optimization is the de-
velopment of exact algorithms for NP-hard problems with non-trivial worst-case running times.
For example, it is obvious that an exhaustive method for max independent set will run in
time at most 2n. But can we go faster? Such faster algorithms with improved worst-case com-
plexity have been recently devised for numerous NPO problems. Polynomial approximation
and exact computation (with worst case upper time-bounds) can be brought together in several
ways. For instance, are we able to produce approximation ratios “forbidden” for polynomial
algorithms (e.g., constant ratios for max independent set, or ratios smaller than 2 for min

vertex cover) by exponential or super-polynomial algorithms running in times much lower
than those for the exact computation for the corresponding problems? And, in a second time,
can we adapt the concept of approximability preserving reductions to fit this new issue?

References

[1] S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric
problems. In Proc. FOCS’96, pages 2–11, 1996.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and in-
tractability of approximation problems. J. Assoc. Comput. Mach., 45(3):501–555, 1998.

[3] B. Aspvall and R. E. Stone. Khachiyan’s linear programming algorithm. J. Algorithms,
1:1–13, 1980.

[4] G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos. Completeness in differential ap-
proximation classes. International Journal of Foundations of Computer Science, 16(6):1267–
1295, 2005.

[5] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and approximation. Combinatorial optimization problems and their approxima-
bility properties. Springer-Verlag, Berlin, 1999.

[6] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among convex
optimization problems. J. Comput. System Sci., 21:136–153, 1980.

[7] G. Ausiello, A. D’Atri, and M. Protasi. Lattice-theoretical ordering properties for NP-
complete optimization problems. Fundamenta Informaticæ, 4:83–94, 1981.

[8] G. Ausiello and V. Th. Paschos. Reductions, completeness and the hardness of approxima-
bility. European J. Oper. Res., 172:719–739, 2006. Invited review.

[9] G. Ausiello and V. Th. Paschos. Reductions that preserve approximability. In T. F. Gon-
zalez, editor, Handbook of approximation algorithms and metaheuristics, chapter 15, pages
15–1–15–16. Chapman & Hall, Boca Raton, 2007.

[10] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex
cover problem. Ann. Discrete Appl. Math., 25:27–46, 1985.

30

[11] C. Bazgan, B. Escoffier, and V. Th. Paschos. Completeness in standard and differential
approximation classes: Poly-(D)APX- and (D)PTAS-completeness. Theoret. Comput. Sci.,
339:272–292, 2005.

[12] C. Bazgan, J. Monnot, V. Th. Paschos, and F. Serrière. On the differential approximation
of min set cover. Theoret. Comput. Sci., 332:497–513, 2005.

[13] C. Bazgan and V. Th Paschos. Differential approximation for optimal satisfiability and
related problems. European J. Oper. Res., 147(2):397–404, 2003.

[14] E. T. Bell. The Development of Mathematics. Dover, 1992.

[15] M. Bellare, O. Goldreich, and M. Sudan. Free bits and non-approximability — towards
tight results. SIAM J. Comput., 27(3):804–915, 1998.

[16] C. Berge. Graphs and hypergraphs. North Holland, Amsterdam, 1973.

[17] P. Berman and M. Karpinski. 8/7-approximation algorithm for (1,2)-tsp. In Proc. Sympo-
sium on Discrete Algorithms, SODA’06, pages 641–648, 2006.

[18] R. L. Brooks. On coloring the nodes of a network. Math. Proc. Cambridge Philos. Soc.,
37:194–197, 1941.

[19] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem.
Technical Report 388, Grad. School of Industrial Administration, CMU, 1976.

[20] V. Chvátal. A greedy-heuristic for the set covering problem. Math. Oper. Res., 4:233–235,
1979.

[21] S. A. Cook. The complexity of theorem-proving procedures. In Proc. STOC’71, pages
151–158, 1971.

[22] P. Crescenzi. A short guide to approximation preserving reductions. In Proc. Conference
on Computational Complexity, pages 262–273, 1997.

[23] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation classes.
SIAM J. Comput., 28(5):1759–1782, 1999.

[24] P. Crescenzi and A. Panconesi. Completeness in approximation classes. Information and
Computation, 93(2):241–262, 1991.

[25] A. Croes. A method for solving traveling-salesman problems. Oper. Res., 5:791–812, 1958.

[26] M. Demange, D. de Werra, J. Monnot, and V. Th. Paschos. Time slot scheduling of com-
patible jobs. J. Scheduling, 10:111–127, 2007.

[27] M. Demange and V. Th. Paschos. On an approximation measure founded on the links be-
tween optimization and polynomial approximation theory. Theoret. Comput. Sci., 158:117–
141, 1996.

[28] M. Demange and V. Th. Paschos. Improved approximations for maximum independent set
via approximation chains. Appl. Math. Lett., 10(3):105–110, 1997.

[29] M. Demange and V. Th. Paschos. Improved approximations for weighted and unweighted
graph problems. Theory of Computing Systems, 38:763–787, 2005.

31

[30] B. Escoffier and J. Monnot. Better differential approximation for symmetric tsp. Cahier du
LAMSADE 261, LAMSADE, Université Paris-Dauphine, 2007.

[31] B. Escoffier and V. Th. Paschos. Completeness in approximation classes beyond apx. The-
oret. Comput. Sci., 359(1–3):369–377, 2006.

[32] B. Escoffier and V. Th. Paschos. A survey on the structure of approximation classes. Cahier
du LAMSADE 267, LAMSADE, Université Paris-Dauphine, 2007. Available at http://

www.lamsade.dauphine.fr.

[33] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. M.
Karp, editor, Complexity of computations, pages 43–73. American Mathematics Society,
1974.

[34] U. Feige and J. Kilian. Zero knowledge and the chromatic number. In Proc. Conference on
Computational Complexity, pages 278–287, 1996.

[35] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. W. H. Freeman, San Francisco, 1979.

[36] O. Goldsmidt, D. S. Hochbaum, and G. Yu. A modified greedy heuristic for the set covering
problem with improved worst case bound. Inform. Process. Lett., 48:305–310, 1993.

[37] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1:169–197, 1981.

[38] M. M. Halldórsson. A still better performance guarantee for approximate graph coloring.
Inform. Process. Lett., 45(1):19–23, 1993.

[39] M. M. Halldórsson. Approximations of weighted independent set and hereditary subset
problems. J. Graph Algorithms Appli., 4(1):1–16, 2000.

[40] E. Halperin. Improved approximation algorithms for the vertex cover problem in graphs
and hypergraphs. In Proc. Symposium on Discrete Algorithms, SODA’00, 2000.

[41] R. Hassin and S. Lahav. Maximizing the number of unused colors in the vertex coloring
problem. Inform. Process. Lett., 52:87–90, 1994.

[42] J. Håstad. Clique is hard to approximate within n1−ǫ. Acta Mathematica, 182:105–142,
1999.

[43] D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing problems.
Discrete Appl. Math., 6:243–254, 1983.

[44] D. S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS, Boston,
1997.

[45] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. J. Assoc. Comput. Mach., 22(4):463–468, 1975.

[46] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System
Sci., 9:256–278, 1974.

[47] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of computer computations, pages 85–103. Plenum Press, New York, 1972.

32

[48] L. G. Khachian. A polynomial algorithm for linear programming. Dokladi Akademiy Nauk
SSSR, 244:1093–1096, 1979.

[49] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational
views of approximability. SIAM J. Comput., 28:164–191, 1998.

[50] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2− ε. In Proc.
Annual Conference on Computational Complexity, CCC’03, pages 379–386, 2003.

[51] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, Princeton, NJ, 1952.

[52] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math., 13:383–390,
1975.

[53] L. Lovász. Three short proofs in graph theory. J. Combin. Theory Ser. B, 19:269–271, 1975.

[54] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm for the
vertex cover problem. Acta Informatica, 22:115–123, 1985.

[55] J. Monnot, V. Th. Paschos, and S. Toulouse. Differential approximation results for the
traveling salesman problem with distances 1 and 2. European J. Oper. Res., 145(3):557–
568, 2002.

[56] J. Monnot, V. Th. Paschos, and S. Toulouse. Approximation algorithms for the traveling
salesman problem. Mathematical Methods of Operations Research, 57(1):387–405, 2003.

[57] G. L. Nemhauser and L. E. Trotter. Vertex packings: structural properties and algorithms.
Math. Programming, 8:232–248, 1975.

[58] P. Orponen and H. Mannila. On approximation preserving reductions: complete problems
and robust measures. Technical Report C-1987-28, Dept. of Computer Science, University
of Helsinki, Finland, 1987.

[59] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[60] C. H. Papadimitriou. To χαµóγǫλo τoυ Turing (Turing’s smile). Nǫ́α Σύνoρα, Athens,
2000. In Greek. English title: Turing.

[61] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and complex-
ity. Prentice Hall, New Jersey, 1981.

[62] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity
classes. J. Comput. System Sci., 43:425–440, 1991.

[63] V. Th. Paschos. A note on the improvement of the maximum independent set’s approxima-
tion ratio. Yugoslav Journal of Operations Research, 5(1):21–26, 1995.

[64] V. Th. Paschos. A survey about how optimal solutions to some covering and packing
problems can be approximated. ACM Comput. Surveys, 29(2):171–209, 1997.

[65] V. Th. Paschos. Polynomial approximation and graph coloring. Computing, 70:41–86, 2003.

[66] V. Th. Paschos. Complexité et approximation polynomiale. Hermès, Paris, 2004.

[67] R. Raz and S. Safra. A sub-constant error probability low-degree test and a sub-constant
error probability PCP characterization of NP. In Proc. STOC’97, pages 475–484, 1997.

33

[68] S. Sahni and T. Gonzalez. P-complete approximation problems. J. Assoc. Comput. Mach.,
23:555–565, 1976.

[69] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, New York,
1986.

[70] H. U. Simon. On approximate solutions for combinatorial optimization problems. SIAM
J. Disc. Math., 3(2):294–310, 1990.

[71] P. Slavík. A tight analysis of the greedy algorithm for set cover. In Proc. STOC’96, pages
435–441, 1996.

[72] V. Vazirani. Approximation algorithms. Springer, Berlin, 2001.

34

