Yhs

UNIVERSITE PARIS

DAUPHINE

CENTRE NATHINAL
DE LA RECHERCHE
SCIENTIFIQUE

Laboratoire d'Analyse et Modélisation de Systémes pour
I'Aide a la Décision
CNRS UMR 7024

CAHIER DU LAMSADE
272

Janvier 2008

An improved exact algorithm for maximum
independent set in sparse graphs

Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos



An improved exact algorithm for maximum
independent set in sparse graphs

N. Bourgeois, B. Escoffier, V. Th. Paschos
LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine, France
{bourgeois,escoffier,paschos}@lamsade.dauphine.fr

January 1, 2008

Abstract

We present an O*(1.0977") tree-search based exact algorithm for MAX INDEPENDENT SET
in graphs with maximum degree 3. It can be easily seen that this algorithm also works in
graphs with average degree 3.

1 Introduction

Very active research has been recently conducted around the development of optimal algorithms
for NP-hard problems with non-trivial worst-case complexity. In this paper we handle MAX
INDEPENDENT SET3, that is the MAX INDEPENDENT SET problem in graphs with maximum
degree 3.

Given a graph G(V, E), MAX INDEPENDENT SET consist of finding a maximum-size subset
V' C V such that for any (v;,v;) € V' x V', (v;,v;) ¢ E. MAX INDEPENDENT SET is a
paradigmatic problem in theoretical computer science and numerous studies carry either on its
approximation or on its solution by exact algorithms with non-trivial worst-case complexity. The
best such complexity is, to our knowledge, the O*(1.18") algorithm by |[7].

One of the most studied versions of MAX INDEPENDENT SET is its restriction in graphs with
maximum degree 3, denoted by MAX INDEPENDENT SET3 in what follows. Dealing with exact
computation of MAX INDEPENDENT SET3, several algorithms have been devised successively im-
proving worst case complexity of its solution. Let us quote here the O*(1.1259™) algorithm by [1],
the O*(1.1254) algorithm by 2], the O*(1.1225™) algorithm by [4], the O*(1.1120) algorithm |5]
and the O*(1.1034™) algorithm by [6]. In this paper, based upon a refined branching with respect
to [5], we devise an exact algorithm for MAX INDEPENDENT SET-3 with worst-case running time
of O*(1.0977™). As it hopefully will be understood from the analysis, our result remains valid
also for graphs where the maximum degree is higher but the average degree is bounded by 3.

Let T'(-) be a super-polynomial and p(-) be a polynomial, both on integers. In what follows,
using notations in [8], for an integer n, we express running-time bounds of the form p(n) - T'(n)
as O*(T'(n)), the asterisk meaning that we ignore polynomial factors. We denote by T'(n) the
worst-case time required to exactly solve the considered combinatorial optimization problem
with n variables. We recall (see, for instance, [3]) that, if it is possible to bound above T'(n) by a
recurrence expression of the type T'(n) < > T(n—r;)+O(p(n)), we have Y T'(n—r;)+O0(p(n)) =
O*(a(ry,m2,...)") where a(ry,ra,...) is the largest zero of the function f(x) =1—) z7".

Consider a graph G(V, E). Denote by a(G) the size of an optimal solution for MAX INDE-
PENDENT SET on (. For convenience, if H C V', we will denote by «(H) the cardinality of an
optimal solution on the subgraph of G induced by H. For any vertex v, we denote by I'(v) the



set of its neighbors and by deg(v) = |I'(v)| its degree. We denote by a(G|v) (resp., a(G|v)) the
size of the optimal solution if we include v (resp. if we do not include v).

2 Preprocessing

The MAX INDEPENDENT SET-3-instance tackled is parameterized by d = m — n, where n = |V/|
and m = |E|; T(d) will denote the maximum running time of our algorithm on a graph whose
parameter is smaller than or equal to d.

Before running the algorithm, we perform a preprocessing of the graph, in order to first
remove vertices of degree 1 and 2 as well as dominated vertices. Some of the properties this
preprocessing is based upon are easy and already known, mainly from [5]. We keep them for
legibility.

Lemma 1. Assume that there exists v € V' such that deg(v) = 1. Then, there exists a mazimal

independent set S* such that v € S*

Proof. Let w be the only neighbor of v. If v is not selected, then w must be selected (else the
solution would not even be maximal for inclusion). Then:

a(Glo) = a(V —{v,w}) + 1> a(V = {v,w} = T(w)) + 1 = o(G[v)
Lemma 2. Let v,w € V, such that v € I'(w) and I'(w) — {v} CT'(v) —{w}. Then, there ezists

a mazimal independent set S* such that v ¢ S*.

Proof. Since V —{v} —T'(v) CV —{w} —T'(w), a(Gv) < a(G|w). We say that v is dominated
by w and we can remove it from our graph. If v both dominates and is dominated by w, we
choose at random the only one we keep. I
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Figure 1: Vertex folding

Lemma 3. Let v,wy,wy € V, such that deg(v) = 2, T'(v) = {wy, w2} and wy is not a neighbor
of we. Then MAX INDEPENDENT SET on G(V, E) is equivalent to the following problem:

1. form the subgraph G'(V', E') induced by V —{v,wa}. For any x # v such that {x,wy} € E,
add {x, w1} to E' (see Figure 1);

2. compute a solution, say S, for MAX INDEPENDENT SET on G'(V', E');
3. ifwy €8, S*=8SU{wse}. Else S* =S U{v}.
Proof. Notice at first that, according to lemma 1:
(G|
(G|

From what it holds o(G) = a(G’) + 1.1

This reduction is called vertex folding in |2].

Summing up the previous properties, we are now able to operate a reduction as soon as the
graph has a vertex of degree 1 or 2.

]

) = a(Glwy,ws) = a(G'|wy) + 1

«
a(Glv) = oGy, we) = a(G'|wy) + 1



Proposition 1. Assume that there exists some vertex v such that 1 < deg(v) < 2. Then, there
exists a graph G'(V',E") with |V'| < |V| and d' = |E'| — |V'| < d such that it is equivalent to
compute MAX INDEPENDENT SET on G or on G'.

Proof. The following holds:

e if deg(v) = 1, according to lemma 1 we may add it to the solution and remove its neighbor
w from the graph. d' = d — deg(w) + 2 < d;

e if deg(v) = 2 and its neighbors wy, wy are adjacent to each other, then v dominates them.
According to lemma 2 we may remove w; from the graph; then lemma 1 allows us to add
v to the solution and remove wq. d' = d — deg(w;) — deg(ws) + 4 < d;

e finally, if deg(v) = 2 and its neighbors wy, wy are not adjacent to each other, the equivalent
graph we built in lemma 3 verifies d’ < d. I

In other terms, we can always consider any vertex from our graph has at least degree 3.
We conclude this section by a remark that will be helpful later in the branching analysis.

Remark 1. Note that in the last case of Proposition 1 (deg(v) = 2 and its neighbors wy, wy are
not adjacent to each other) then (at least) one of the two following cases occurs when reducing
the graph: either (i) d < d—1 (if wy and wy are both adjacent to a third vertex x # v), or (ii) a
vertex of degree at least 4 is created in G'. Il

3 Branching

In this section, we consider that the whole preprocessing described in Section 2 has been com-
puted as long as possible. That means no vertex has degree 2 or less, and no vertex is dominated.

Lemma 4. Fiz some vertex v. The number N of edges that are adjacent to at least one of its
netghbors is bounded below by:

deg(v) —i—% Z deg(w)

Proof. Let I (resp. ) the inner (resp. outer) edges of I'(v), that means edges linking two
vertices from I'(v) (resp. one vertex from I'(v) and one vertex from V' —I'(v)). Then:

N =19 + 1]
S degw) = 9] +2/1
wel(v)

From what we get:

N=Y degw)/2+ 02 1)

wel'(v)
Notice that any w € T'(v) has at least one neighbor in V' — {v} — I'(v); else w would dominate v.
Moreover, w is adjacent to v. Thus, || > 2deg(v). I

Proposition 2. Assume that there exists some vertexr v whose degree is at least 5. Then,
Td)<T(d—-4)+T(d-T7).



Proof. We branch on v. If we choose not to add v to the solution, then we can remove v and
any vertex incident to him, that means d’ = d — deg(v) + 1 < d — 4. On the other hand, if v
belongs to optimal, we remove from our graph v and all its neighbors, that means (according to
lemma 4):

n = n—1-deg(v)
1
m' < m—deg(v) — 3 Z deg(w)
wel'(v)
1
!
d < d+1—§ Z deg(w)
wel'(v)

And 37, er(,) deg(w) > 15. Since d’ has to be an integer, this leads to the expected result. i

Proposition 3. Assume that there exists some vertex v whose degree is 4. Then, T(d) <
T(d—3)+T(d—5). Moreover, assume that one of the following cases holds:

1. one neighbor of v has degree 4;

2. any neighbor has degree 3 but the subgraph induced by I'(v) contains at most one edge.
Then, T'(d) <T(d—3)+T(d—6).

Proof. We branch on v. If we choose not to add v to the solution, then we can remove v and
any vertex incident to him, that means d’ = d — deg(v) + 1 < d — 3. On the other hand, if v
belongs to optimal, we remove from our graph v and all its neighbors:

1
d’Sd—i—l—i Z deg(w)
wel(v)

Dealing with the general case, 3, cp(,) deg(w) > 12. If 1. holds, >~ cp(,) deg(w) = 13. On case
2., we just have to notice that |I| < 1 means |Q2| > 10; replacing this inequality in (1) we get
d<d-6.1

Proposition 4. Assume now that the degree of any vertex in our graph is exactly 3. Assume
also that G contains some 3-clique {a,b,c}. Then, T(d) < 2T(d —4).

Proof. Let v the third neighbor of a and u, w the two other neighbors of v. Note that u (and w)
differs from b and ¢, otherwise a would dominate b or ¢. We branch on v. If v does not belong to
the optimal, it is removed, and so are its incident edges. In the remaining graph, a is dominated
by b and ¢ (see Figure 2). According to lemma 2 we may add it to the optimal and remove the
whole clique. Eventually,

d=(m-8)—(n—4)=d—4

On the other hand, if v has to be added to the solution, we may remove it and its neighbors
from the graph. That means, according to lemma 4,

d<(m-3-9/2)—(n—4)=d-17/2
Since d’' has to be an integer, that leads to the expected inequality. I

Proposition 5. Assume now that G is a 3-clique-free graph where any vertex has degree exactly
3. Assume also that G contains the subgraph described in Figure 3 (two pentagons sharing two

adjacent edges). Then, T'(d) <T(d—3)+T(d—5).



Figure 3: Pentagons sharing two adjacent edges

Proof. Notice at first that in a 3-clique-free graph where any vertex has degree exactly 3, each
time we add a vertex to the solution and remove its neighbors, we decrease d by 5. Indeed, the
set of neighbors of a vertex contains no inner edge, else it would form a clique. From what we
get N'= 3" er() deg(w) = 9 and finally

d=m-9)—-(n-4)=d-5

We branch on ¢, and consider now the case it does not belong to our solution. Once ¢ and its
incident edges have been removed, deg(ag) = deg(b2) = 2. We reduce them in any order. In the
remaining graph,

d=m-8—-(n-5=d-31

Proposition 6. Assume now that G is a 3-clique-free graph where any vertex has degree exactly
3. Assume also that G does not contain the subgraph described in Figure 3. Then, T(d) <
T(d—5)+2T(d—8)+T(d— 10).

Proof. In this proposition, instead of branching on a single vertex as previously, we successively
branch on several vertices. First of all, consider any v € V. As we saw previously, since there is
no 3-clique, if we add v to the solution, we decrease d by 5, else we decrease d by 2. Thus, we
can write T'(d) < T(d—5)+ Q(d—2), for some function @ < T. If we had no further information
about the remaining graph, we would have no choice but to write 7'(d) < T'(d — 5) + T'(d — 2).
But our graph is not any graph; in particular some higher than 3 degree vertices may have been
created during our first branching. From now on, the proof will focus on refining analysis of @
thanks to our graph properties.

Let wy, we, w3 the neighbors of v. Once v and its incident edges have been removed, they all
have degree 2. Moreover, no couple of them can be adjacent, else they would form a clique with
v. According to lemma 3, we now reduce our graph. We distinguish some different cases.

Consider at first an easy case, where there exists a couple of vertices uy,us both adjacent to,
say, w; and wg (see Figure 4). We can easily see that taking u; and/or ug is never interesting,
it is never worse to take w; and wy. So, we can add {w;,ws} to optimal and delete {ui,us}.
This operation decreases d by 2: 4 vertices and 6 edges are removed. Indeed, u; and wy cannot



be adjacent otherwise u; would dominate ug (and vice-versa) before branching on v. In other
words, Q(d) < T(d — 2). Eventually,

T(d) < T(d—5)+T(d—4)

Figure 4: uq1,us both adjacent to wy and wo

Assume now that there exists one single vertex u that is adjacent to, say, wy; and ws. Let
us denote s and t the third neighbor of respectively w; and wsy (see Figure 5). Notice that in
this case u cannot be adjacent to ws, else it would dominate v. When operating reductions
of w; and we, s, u and t are merged together in a single vertex. Two cases may occur (see
Remark 1): either 2 of them have another common neighbor and d decreases by at least one, or
our graph contains a vertex of degree 5. In the first case, we get Q(d) < T'(d — 1) and finally
T(d) <T(d—5)+T(d—3). In the latter case, we now branch on the degree 5 vertex; according
to proposition 2, Q(d) < T(d —4) + T(d — 7), that means:

T(d) < T(d—5)+T(d—6)+T(d—9)

Figure 5: u adjacent to w; and wo

Let us now focus on the main case, where I'(w;)’s are disjoint. Let us denote u} and u? the
two other neighbors of w;. When reducing vertex w;, going back to Remark 1, either d decreases
by at least one, or a vertex - say u; - of degree 4 is created. If for at least one w; d decreases,
then Q(d) < T(d—1) and eventually T'(d) < T'(d—5)+T(d—3). Otherwise, when reductions of
degree 2 vertices w;’s have been proceeded, the remaining graph contains exactly three vertices
whose degree is 4, namely u,ug, us. Since our graph is not fully reduced (branching may have
disturbed 1it), it is possible that some neighbor of some w; dominates it. In this case we can
remove it and its incident edges without branching; Q(d) < T'(d — 3), that means

T(d) < 2T(d — 5)

Thus, we may now assume that no wu; is dominated. We have to consider wether they are adjacent
or not.



If say u; and ug are adjacent, then we apply Proposition 3 (in the specific case the vertex we
branch has at least one neighbor of degree 4): if we add uy to the solution, we decrease d by at
least 6; on the other hand,if u; does not belong to optimal, we decrease it by 3. Hence, we could
write Q(d) < T(d — 6) + T(d — 3).

If no u; is adjacent to any other u;, this time if we try to use proposition 3 we cannot assert
that two degree 4 vertices are adjacent, that would mean decreasing d only by 5. Fortunately, it is
possible to prove that I'(u1) does not have more than one inner edge. Indeed, assume that it has
two inner edges; since, before branching on v, we assumed that the graph does not contain any
3-clique, then the unique possibility is described in Figure 6. It means that, before branching on
v, our graph contained two pentagons sharing two edges (edges (w1, u}l) and (wy,u?)). This is in
contradiction with hypothesis of proposition 6. Hence, in this case also Q(d) < T'(d—6)+T(d—3).

v
w1

1 2

Uy Uy

Figure 6: Two pentagons sharing two consecutive edges

At this step, we get T'(d) < T(d—5)+ Q(d—2) <2T(d —5) + T(d — 8). This sums up to
T(d) = O*(1.2076%).

We make a final remark that further improves the running time. Indeed, we will see that after
performing the branching on wup, then there exists another vertex of degree 4 in the remaining
graph (or an even better case occurs). By branching on it, we decrease d either by 3 or by 5
(Proposition 3). This leads to Q(d) < T'(d—6)+T(d—3—-3)+T(d—3—5) = 2T(d—6)+T(d—38),
and finally T'(d) < T'(d —5) +27'(d — 8) + T'(d — 10), as claimed in the proposition. To see this,
consider two cases. If say u; and ug are not adjacent, then when branching along the branch
“take u1”, ug will still have degree at least 4 (or would have been deleted by domination which is
even better).

The difficult case occurs when w1, us and ug form a clique. Let s and ¢ the two neighbors of
u; with degree 3 (see Figure 7).

e If s and ¢ are adjacent, then in I'(u1) there are only 2 edges (the other one being (ug,us3)),
otherwise s or ¢t would dominate u;. Hence, when taking u;, we delete 12 edges and 5
vertices, which means Q(d) <T(d—3)+T(d—7), i.e. T(d) <2T(d—5)+T(d—9).

e If s and ¢ are not adjacent, Q(d) < T'(d — 3) + T(d — 6) but when reducing s and ¢
(after taking u;), we are in one of the two cases of Remark 1, i.e. either d decreases and
Q(d) <T(d—3)+T(d—T7), or a degree 4 vertex is created.

The analysis of the solutions of the equations induced by the previous analysis shows that
the worst case running time corresponds to the case T'(d) < T'(d — 5) + 2T(d — 8) + T'(d — 10),
which sums up to T(d) = O*(1.2048%) i

4 Dealing with trees

As noticed in [5], we have to be careful with our previous analysis. Indeed, the adopted measure
d = m — n creates a somehow unexpected problematic situation, occurring when several con-
necting components are created when branching, one or several of them being tree(s). Indeed,
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Figure 7: w1, ug and ug is a clique

applying preprocessing rules immediately reduces a tree to a single vertex, which can be added to
the solution. However, when removing this vertex (i.e. when dealing with the tree), the measure
m — n increases. In other words, when creating a tree, if the measure globally decreases by say
x, it decreases only by x — 1 in the remaining graph, tree excepted.

To deal with this situation, we study the situations when one or several tree(s) are created
when branching. We show that in these particular cases the number of edges deleted is sufficient
to compensate the loss induced by the tree(s).

To obtain this, we use a property shown by Firer [5] that handles the case where there is a
separator of size one or two in the graph. More precisely, if there exists one vertex u or a couple of
vertex (u1,uz) the deletion of which disconnects the graph, creating one connecting component
of say constant size, then this connected component can be eliminated before branching. This
reduction, not increasing d, can be added for instance to the preprocessing step.

Let us consider that we branch on a vertex v. As pointed out by Fiirer [5], if we don’t take
v, then no tree can be created (since every vertex of the graph has degree at least 3).

Let us concentrate now on the case when taking v. Note that since each vertex in the graph
has degree 3, when a tree with r vertices is created, at least r + 2 edges link one vertex of the
tree to one vertex of I'(v). If v has degree 3 (the graph is three regular), if a tree is created, this
tree is a single vertex w linked to the 3 vertices in I'(v). Indeed, each vertex in I'(v) has at least
one edge linking it to the rest of the graph (else there would be a separator of size 2), hence at
most one edge linking it to the tree. In this case, the graph reduces (before branching on v):
we delete v and w and merge the vertices in I'(v) in a single vertex. We delete 6 edges and 4
vertices, hence d decreases.

Assume now that deg(v) > 4.

Let us note by:

e |I| (as previously) the number of edges linking two vertices in I'(v);

e [ the number of trees created when branching on v (taking v);

e ¢ the number of edges linking a vertex in I'(v) to a vertex in one of the trees created;
e ¢ the number of edges linking one vertex of I'(v) to the rest of the graph;

e D=> deg(w) for w € T'(v).

When branching on v, either we don’t take v and d' = d — deg(v) + 1 < d — 3, or we take v. In
this latter case: we delete 1+ deg(v) vertices v and I'(v), deg(v) + |I| + t + e edges adjacent to
vertices in I'(v), and we loose 1 for each tree created. Hence, after handling the tree(s), d has
globally decreased by: § = |I|+t+e—1—1.

Note that ¢t > 3 (or we have a separator of size 2 or less) and e > 3[ (at least 3 edges for each
tree). Hence: § > |I| +3+ 30l —1—1> 2+ 2[. In particular, if [ > 1 then 6 > 6.



Ifl=1,thend =|I|+t+e—2. D=2|I|+t+e+4. Then d =D/2+1t/2+¢€/2 —4. Since
e>3and t>3,if D > 13 then § > 13/2 — 1. Since it is an integer, 0 > 6.

The only remaining case is D = 12 (hence deg(v) = 4 and each vertex in I'(v) has degree 3),
t = 3 and e = 3 (see Figure 8). But in this case, the tree separated has only one vertex w. Then,
the only inner edge in I'(v) is incident to the vertex s in I'(v) non adjacent to w (otherwise there
would be a dominated vertex), as depicted in Figure 8. Hence, it is never interesting to take s
in the solution (take either v or ¢ instead), and we don’t need to branch.

Figure 8: Taking s is never interesting

We decrease d either by 3 (not taking v) or by 6 (taking v). This is in particular the recurrence
relation T'(d) < T'(d—3)+T(d—6) needed when operating branching in the analysis of Section 3.

5 The concluding theorem

The analysis provided in Sections 2,3 and 4 allows to state the following result.

Theorem 1. On any graph, it is possible to solve MAX INDEPENDENT SET with running

time O*(1.2048™~™). In particular, a solution to 3-MIS may be computed with running time
O*(1.0977™).
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