o

%s

UNIVERSITE PARIS

DAUPHINE

CENTRE NATHINA
DE LA RECHERCHE
SCIENTIFIOQUE

Laboratoire d'Analyse et Modélisation de Systémes pour
I'Aide a la Décision
CNRS UMR 7024

CAHIER DU LAMSADE
282

Décembre 2008

Multiple criteria sorting with a set of additive value
functions

S. Greco, V. Mousseau, R. Slowinski

Multiple criteria sorting
with a set of additive value functions

1 Vincent Mousseau?, Roman Stowiriski®

Abstract

Salvatore Greco

We present a new multiple criteria sorting method that aims at assigning actions eval-
uated on multiple criteria to p pre-defined ordered classes. The preference information
supplied by the decision maker (DM) is a set of assignment examples concerning reference
actions. Each assignment example specifies a desired assignment for a reference action
to one or several contiguous classes. The assignment examples used to build a preference
model based on a set of general additive compatible value functions. For each compatible
value function one can associate a set of p—1 thresholds on the value function separating
consecutive classes. For each action a, the method computes two kinds of assignments to
classes, concordant with the DM’s preference model. The necessary assignment specifies
the range of classes to which the action can be assigned considering all compatible value
functions simultaneously. The possible assignment specifies, in turn, the range of classes
to which the action can be assigned considering any compatible value functions individ-
ually. The compatible value functions and the necessary and possible assignments are
computed through the resolution of linear programs. Based on the concepts of necessary
and possible assignments, an interactive methodology is proposed, and illustrated on a
real world example

Keywords: Multiple criteria sorting, Additive value function, Disaggregation-aggregation
procedure.

'Faculty of Economics, University of Catania, Corso Italia, 55, 95129 Catania, Italy, e-mail: salgreco@mbox.unict.it

2LGI, Ecole Centrale Paris, Grande Voie des Vignes, 92 295 Chatenay Malabry France, e-mail: vin-
cent.mousseau@ecp.fr

3Institute of Computing Science, Poznani University of Technology, 60-965 Poznan, and Systems Research Institute,
Polish Academy of Sciences, 01-447 Warsaw, Poland, e-mail: roman.slowinski@cs.put.poznan.pl

Tri multicritére fondé sur un ensemble de fonctions de
valeurs additives

Résumé

Nous présentons une nouvelle méthode de tri multicritere visant a affecter des actions
évaluées sur différents criteres a p classes pre-définies et ordonnées. L’information préférentielle
fournie par le décideur (DM) est un ensemble d’exemple d’affectation correspondant &
un sous-ensemble d’actions (appelées actions de référence) relativement bien connues du
DM. Chaque exemple d’affectation spécifie I'affectation souhaitée (une classe ou un in-
tervalle de classes) pour 'action de référence. Les exemples d’affectations sont utilisés
pour batir un modele de préférence du DM. Dans notre cas, le modele de préférence
sous-jacent est ’ensemble de fonctions de valeur additives compatible avec les exemples
d’affectation. pour chaque fonction de valeur compatible, il est possible d’associer p — 1
seuils séparant les classes consécutives sur I’échelle de cette fonction de valeur. Pour
chaque action a, la méthode calcule une affectation possible et une affectation nécessaire.
L’affectation nécessaire spécifie 'intervalle de classes auxquelles 'action peut étre af-
fectée pour toute fonction de valeur compatible tandis que 'affectation possible spécifie
I'intervalle de classes auxquelles I'action peut étre affectée pour au moins une fonction de
valeur compatible. Le calcul de ces affections est effectué par résolution de programmes
linéaires.

Cette méthode est concue pour étre utilisées interactivement, c¢’est-a-dire que le décideur
peut fournir progressivement des exemple d’affectation. La méthode permet également
d’aider le DM lorsqu’il fournit un ensemble d’exemples d’affectation qu’il n’est pas pos-
sible de représenter par une fonction de valeur additive. De plus, le DM peut spécifier
des niveaux de confiance qualitatifs (“certain”, “sur”, “assez sur”) pour les exemples
d’affectation. Dans ce cas, les affectations possibles et nécessaires s’expriment comme des

intervalles de classes correspondant aux niveaux de confiance.

Mots-clés: Tri multicritere, Fonction de valeur additive value, Procédure d’agrégation
désagrégation.

il

1 Introduction

Real-world decision problems can be represented by multiple criteria models in which each point
of view from which actions under consideration should be analyzed, is formulated by a criterion
function. When using such multicriteria approach to decision modeling, several problematiques (or
problem formulations) can be considered. [Roy96] distinguishes three fundamental problematiques
for decision aiding: choice, ranking and sorting. Given a set A of actions, the choice problematique
consists in a choice of a subset (as small as possible) composed of actions being judged as the most
satisfying. The ranking problematic consists in establishing a preference pre-order (either partial
or complete) on the set of actions. These two problematiques are said to be comparative, as they
require to compare actions one to another to elaborate the choice set and the preference pre-order.
The sorting problematic consists in formulating the decision problem in terms of a classification so as
to assign each action to one of the predefined classes. The assignment of an action to the appropriate
class relies on the intrinsic value of a (and not on the comparison to others).

In this paper, we are interested in the multiple criteria sorting problematique and, more precisely,
in an multicriteria sorting methods based on value functions. Multiple attribute value theory (see
[KR93]) is a well established compensatory preference model to represent how a Decision Maker
(DM) account for tradeoffs among criteria. Several value based sorting methods have been proposed
in the literature, namely [DGJL80], [Jac95], [ZD00a], [ZD00b], [KU03] [KBO09] (see also [ZD02] for
a review).

However, a major difficulty when implementing value based sorting models comes from the fact
that the value function must be elicited from the DM. Therefore, several authors (see e.g. [DGJL80],
[ZD00b]) proposed methodologies that avoids direct elicitation of the value function, but elicit the
value function indirectly from assignment examples (typical actions that should be assign to classes)
supplied by the DM. The value function is then inferred through a certain form of regression on
assignment examples. Such indirect elicitation is usually called disaggregation. Namely, [KBOOQ9]
method involve indirect specification of preferences through assignment of reference actions and pro-
vide possible assignments for non-reference actions based on a piecewise linear additive value function.

In this paper, we present a new multiple criteria value based sorting method called UTADISSMS,

This method requires that the DM expresses his/her preferences providing a set of assignment ex-
amples on a subset of actions (s)he knows relatively well. Each assignment example specifies a
desired assignment of a corresponding reference action to one or several contiguous classes. The set
of assignment examples is a preference information used to build a preference model. Here, the un-
derlying preference model is a set of general additive value functions compatible with the assignment
examples. For each action a, the method computes two kinds of assignments to classes, concordant
with the DM’s preference model: necessary and possible. The necessary assignment specifies range of
classes to which the action can be assigned considering all compatible value functions simultaneously.
The possible assignment specifies, in turn, the range of classes to which the action can be assigned
considering any compatible value functions individually. The compatible value functions and the
necessary and possible assignments are computed through the resolution of linear programs.

The paper is organized as follows. Notation and definitions are introduced in the next Section.
Section 3 considers sorting procedures grounded on a single value function and studies the relation
between two particular procedures: “threshold based” and “example based” sorting procedures.
Considering simultaneously all value functions compatible with assignment examples requires to
study sorting procedures based on a set of value function. Such analysis is provided in section 4.
Section 5 is devoted to the presentation of the new sorting method called UTADIS®MS. In section
6, we study the case in which the DM provides assignment example that can not be represented by

a value function. Section 7 propose an extension of the method that makes it possible to account
for confidence judgments attached to the assignment examples. Section 8 presents an illustrative
example of the proposed method on a real world case study. The last section groups conclusions and
presents some proposals for future research.

2 Notation and definitions

We shall use the following notation:
o A={ay,ay,...,a;,...,a,} - a finite set of m actions to be assigned to classes,
® §1,092, -5 Giy- -, gn - 0 evaluation criteria, g; : A > R for alli € G={1,2,...,n},

o (1,Cy,...,C, - ppredefined preference ordered classes, where Cj11 > C), (> a complete order
on the set of classes), h =1,...,p — 1, moreover, H = {1,...,p},

o X;={z; e R:gj(a;) =xj,a; € A} - the set of all different evaluations on g;, j € G,

. x?,x},...,x;nj - the ordered values of X;, ¥ < ¥ k=0,1,...,m; — 1, m; <m (m; <m

when at least two actions have the same evaluation on criterion g;).

In order to represent DM’s preferences, we shall use a value function U such that:

U(@) = uy(g(@) @

where the marginal value functions u; are defined by u; (xf), k=0,1,...,m;, such that:

u](xf) guj(xfﬂ), k=0,1,...,m; —1,j €G. (2)

To normalize the value function so that U(a) € [0, 1],Va € A, we set:

uj(29) =0,vj € G }
Z?:l uy(x;n]) =1

In this paper, we are interested in sorting procedures that aim at assigning each action to one
class or to a set of contiguous classes. The procedures we consider are value driven sorting procedures,
that is, they use a single value function U (or a set of value functions) to decide the assignments in
such a way that if U(a) > U(b) then a is assigned to a class not worse than b.

(3)

3 Sorting with a single additive value function

Given a value function U defined as (1), two different sorting procedures can be considered:

e threshold-based value driven sorting procedure, in which the limits between consecutive classes
are defined by thresholds on the utility scale,

e crample-based value driven sorting procedure, in which classes are implicitly delimited by some
assignment examples.

Definition 3.1. A threshold-based value driven sorting procedure is driven by a value function U
and its associated thresholds by, h € H, in the following way:

a € A is assigned to class Cy, denoted as a — C, iff U(a) € [bY_,,b],

where b, is the minimum value for an action to be assigned to class Cy, and by is the supremum
value for an action to be assigned to class Cy,. Obviously, we set b = 0 and, moreover, we impose
v, <V, VheH.

Such a threshold-based value-driven sorting procedure has been used in the UTADIS method
[DGJL8&0], [ZD00b).

In order to define the example-based value driven sorting procedure, let us consider preference
information provided by the DM in terms of assignment examples on a subset of actions A* C A, as

defined bellow.

Definition 3.2. An assignment example consists of an action a* € A* for which the DM defined a
desired assignment a* — [Cpou ge), Croy (-], where [Cppu gy, Croumgn)] is an interval of contiguous
classes Cromgry, Cromgeyi, .., Croagy, LPM(a*) < RPM(a*). Each such action is called a
reference action. A* C A is called the set of reference actions. An assignment example is said to be
precise if LPM(a*) = RPM(a*), and imprecise, otherwise.

Given a value function U, a set of assignment examples is said to be consistent with U iff
Va*, b* € A* U(a*) > U(b*) = RPM(a*) > LPM(b") (4)

In this section, we suppose that the DM provides a set of assignment examples consistent with U.

Definition 3.3. An example-based value driven sorting procedure is driven by a value function U
and its associated assignment examples a € A*. It assigns an action a € A to an interval of classes
[CLv(a), Cru(w)), in the following way:

LY(a) = Mazg-ea {L°M(a*): U(a*)
RY(a) = Ming-ea- {R""(a*): U(a®)

(a)} ()
(a)} (6)

Let us remark that such example-based sorting procedure has been used in [KU03| along with a
linear value function. The following lemma states that the interval [Crv(,), Crv(q)] is not empty.

(AVARRVAN

U
U

Proposition 3.1. For any action a € A\ A*, the example-based sorting procedure provides an
assignment a — [Crv 4y, Cro (o), such that LY (a) < RY(a).

Proof. See Appendix A.1 O

Proposition 3.2. The ezample-based sorting procedure assigns each reference action a* € A* to an
interval of classes [Cru(q+), Cru o)), such that:

LY(a") = LPY(a") (7)
RY(a") < RPM(a") (8)
Proof. See Appendix A.2 O

Now, let us study the relationship between the threshold-based (Definition 3.1) and example-
based (Definition 3.3) sorting procedures.

Proposition 3.3. Consider the case where the DM provides precise assignment examples only, i.e.,
LPM(g*) = RPM(q*), for each a* € A*. Assuming the use of a single value function U in the
ezample-based sorting procedure, if we choose, for each h = 1,...,p—1, the threshold b in the interval
IMaza 0, {U(a*)}, Ming_c,,,{U(a*)}], we obtain a threshold-based sorting procedure that restores
the assignment examples and assigns each non-reference action a € A\ A* to a single class in the
interval [Crv), Crue)] stemming from the example-based sorting procedure.

Proof. See Appendix A.3 0

Figure 1 illustrates Proposition 3.3 in a sorting example involving 3 classes and 18 reference actions.
In this case, assignment examples are such that aj,aj, a3, aj, ai and af are assigned to class Cf;
as,ag, as, aiy, ajy and aj, are assigned to Cy, and the remaining actions are assigned to C5. Consider
a non-reference action a’ € A\ A*. According to the value of U(d’), the example-based sorting
procedure assigns a’ as follows:

o If U(d') < U(ag), then o — Cy

o If U(d) €]U(af),U(at)[, then o’ — [C1, Cy)
o IfU(d) € [U(a),U(a}y)], then o' — Cy

o If U(d) €]U(aty), U(ais)[, then o' — [Cy, Cs]

o IfU(d') > Ul(ajy), then o’ — Cs

Consistently with Proposition 3.3, it appears that if we fix the thresholds such that b, €|U(ag, U(a?)]
and by €]U(af,,U(ay)], the threshold-based sorting procedure will assign a new actions a’ consis-
tently with the example-based sorting procedure, i.e.:

/

o If U(d") <Uf(af), then o/ — C1,

o IfU(d) €]U(ay),U(at)], then ' — C; or Cy, depending whether U(a’) < ¥ or not,
o If U(d) € [U(a3),U(aty)], then a’ — Cb,

o If U(d) €]U(aly),U(ats)], then @’ — Cy or Cs, depending whether U(a’) < b5 or not,
o IfU(d') > Ulajy), then @’ — Cs.

reference actions reference actions reference actions

a551gned to C1 ass1gned to Co ass1gned to C3
7 N 7 N 7 N U
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A o x w . s o .
ap Gy x4 A5 Qg a7 ag ag a* 011 812 134+ 315 A16 417 Q18
3 10 : 1014
v by

Figure 1: Intervals for the thresholds separating classes (precise assignments)

Proposition 3.4. Consider the case where the DM provides possibly imprecise assignment examples,

e., LPM(a*) < RPM(a*) for each a* € A*. Assuming the use of a single value function U in the
ezample-based sorting procedure, if we choose, for each h = 1,...p — 1, the threshold b} in the
interval 1(bf)) = |Max . gosgey<n {U(a*)} , Mings.,osgysp, {U(a*)} [, with b < bj, we obtain a
threshold-based sorting procedure that assigns each reference action a* € A* to a single class in the
interval [Cpou ey, Crom gy, and assigns each non-reference action a € A\ A* to a single class in
the interval [Cruv 4y, Cru ()] stemming from the evample-based sorting procedure.

4

Proof. See Appendix A.4 O

Figure 2 illustrates Proposition 3.4 in an example involving 5 classes and 11 reference actions. In
this case, assignment examples are the following:

e aj and af — [C1, (Y]
o a; — [01,03]

e a; and af — [Cy, C3]
[} a; — [02,05]

e ar and a5 — [Cs, C4]
[} ag — [03, 05]

e aj, and a}; — [Cy, C5]

Consider a non-reference action a’ € A\ A*. According to the value of U(a’), the example-based
sorting procedure assigns a’ as follows:

o If U(d') < U(a}), then a’ — [C1, Cy)

o If U(d) € [U(a3),U(aj)[, then ¢’ — [C, C3]
o If U(d) € [U(a}),U(ag)[, then @’ — [Cs, C3]
o If U(d) € [U(ag), U(a%)[, then @’ — [Cy, C4]
o If U(d) € [U(az),U(ag)[, then @’ — [Cs, C4]
o IfU(d) € [U(ag),Ul(ajy)|, then a' — [Cs, Cs]
o If U(d) > Ul(aiy), then @’ — [Cy, Cs]

Let us study now the value of thresholds by, by, b3, and by (in the threshold-based sorting proce-
dure) which are compatible with the assignment examples.

e b is necessarily smaller or equal than U(aj}) as a is assigned to at least Cs.
e b is necessarily smaller or equal than U(a}) as a¥ is assigned to at least Cs.

e b3 is necessarily greater than U(ag) as af is assigned to at most Cs, and lower or equal than
Ulaj,) as aj, is assigned to at least Cl.

e b4 is necessarily greater than U(ag) as ag is assigned to at most Cy.

Obviously, in order to build a consistent thresholds-based sorting procedure, these thresholds
should also be such that b; < b;11, @ = 1,...,4. Consistently with Proposition 3.3, it appears that
if we fix the thresholds as above, the threshold-based sorting procedure will assign a new action a’
consistently with the example-based sorting procedure, i.e.:

o If U(d') < u(a}), then a’ — C; or Cy, depending whether U(a') < bY or not,

o IfU(d') € [u(a}),u(a})|, then @ — C, Cy or Cs, depending whether U(a’) < bY, U(d') € [by, bs],
or U(a') > b,

o If U(d) € [u(a}),u(a})[, then a’ — Cy or C3, depending whether U(a') < bY or not,

o IfU(d') € [u(af),u(at)|, then @’ — Csy, C3 or Cy, depending whether U(a') < b5, U(a') € [by, bs],
or U(a') > bs,

o If U(d) € [u(a),u(ay), then a’ — C3 or Cy, depending whether U(a’) < bY or not

o If U(d) € [u(ay),u(aly), then a’ — Cs, Cy or Cs, depending whether U(d') < by, U(d') €
[b3, by[, or U(a") > by,

o If U(d') > u(aly), then ’ — C, or Cs, depending whether U(a’) < by or not

5

Assignment{[ch@] (C1,Ca] [C1,Cal [C2,Ca] [Ca,Ca) [C2,C3] [Ca,CallCi, Cs] [Ca,Ca) [CaC] [Cw0s] U @)

examples L I I " N I, I, I I | [
ay ag a3 @y ag Gg G ag) ajo ajy

CLC) ICLGs] GGy [CaChl [CnCi] [Co,CHl [Cn G
% I/—’HI/—’%I/—/\I/—’%I/—’AI/—/E U(a’)

Assignment of

non-reference

action a’ U

U : U
bl : : : b3
Ranges of } :
thresholds

U U
b2 b4

Figure 2: Intervals for the thresholds separating classes (imprecise assignments)

Hence, Propositions 3.3 and 3.4 show that the example-based and the threshold-based sorting
procedures provide consistent results, the former being more general than the latter, as it implicitly
considers intervals of possible thresholds instead of single values for the thresholds. Therefore, in the
rest of the paper, we will consider the example-based sorting model only.

4 Sorting with a set of value functions

In this section we consider value driven sorting procedures based on a set U of value functions, and
we will restrict to the example-based sorting procedure.

Definition 4.1. Considering a set A* of assignment examples, the set Ua« of compatible value
functions is defined by all value functions U, satisfying U(a*) > U(b*) for all a*,b* € A* such
that RPM(b*) < LPM(a*).

Definition 4.2. Given a set A* of assignment ezamples and a corresponding set Ua+ of compatible
value functions, for each a € A, we define the possible assignment Cp(a) as the set of indices of
classes C, for which there exists at least one value function U € Ux- assigning a to Cy, and the
necessary assignment Cy(a) as set of indices of classes Cy, for which all value functions U € Ua-
assign a to Ch, that is:
Cp(a) = {h € H:3U € Uy~ for which h € [LY(a), RY(a)]} 9)
Cy(a) = {h€ H:VYU €Uy it holds h € [LY(a), RY(a)]} (10)

It is obvious to observe that it holds for each a € A:

Cp(a) = Uyey,. [LY (a), RV (a)],
Cn(a) = Nyey,.[LY (@), R (a)], Ya € A (11)
Cn(a) € Cp(a)

Proposition 4.1. For any a € A, there exists U € Ua~ and values of the thresholds by, h € H

such that for any h € Cp(a) the threshold-based sorting model assigns a to class Cy, for each h €
[LY(a), RV (a)].

Proof. Since Cp(a) = {h € H such that 3U € Ux- for which h € [LY(a), RY(a)]}, considering that
according to proposition 3.4 we have that for all U € Uy-, there exist values for the thresholds by,
h € H such that for any h € Cp(a) the threshold-based sorting model assigns a to class Cj, for each
h € [LY(a), RY(a)], we get the thesis. 0O

Definition 4.3. Given a set A* of assignment ezamples and a corresponding set Ux+ of compatible
value functions, for each a € A, we define the following indices of classes:

o Minimum possible class: L¥(a) = Mazoea- { LM (a*) : VU € U+, U(a*) < Ula)}
o Minimum necessary class:

L¥(a) = Maz,ea- {LPM(a*) : 3U € Up+ for which U(a*) < U(a)}
o Maximum necessary class:

R¥(a) = Mingea- {RPM(a*) : U € Un- for which U(a) < U(a*)}

o Mazimum possible class: R%(a) = Mingea- { RPM(a*) : VU € U+, U(a) < U(a*)}

An analysis of these indices is provided by the following Proposition, namely, in what concerns how
these indices relates to Cp(a) and Cy(a).

Proposition 4.2. Given a set A* of assignment examples and a corresponding set Uy of compatible
value functions, it holds, for each a € A,

Moreover, for any a € A, we have:
o Cp(a) € [LE(a), RE(a)],
o if L¥(a) < R%(a), then Cx(a)

(L5 (a), B (a)],
o if [(a) > R¥(a), then Cx(a) = 0.

0
Proof. See Appendix B.1 O

In this context, two important questions arise:
e under which condition on value functions U € U+ we have Cy(a) # 0 ?

e under which condition on value functions U € Uy- the following “no jump property property”
holds? If h,h' € Cp(a) with h < A/, then h" € Cp(a),Vh" € [h, 1] (12)

Let us observe that the first question is related to the robustness of the assignment, in the sense
that it concerns classes to which a is assigned by all compatible value functions U € U4+. The second
question instead regards the presence of a “jump” in the classes of the possible assignment. In fact,
the “no jump property” (12) is equivalent to Cp(a) = [LY, RY], which means that no class between
the worst, C’Lg, and the best, C' LY is absent in the possible assignment. These two questions are
studied in Propositions (4.3)-(4.6)

Proposition 4.3. Cx(a) # 0 if and only if the following strict continuity condition is satisfied:
for all a*,b* € A* such that LM (a*) > RPM(b*) there are no two compatible value functions U, U’ €
U~ for which U(a) > U(a*) and U'(b*) > U'(a).

Proof. See Appendix B.2 O

The following condition is important with respect to the absence of jumps in in the classes of the
possible assignment.

Definition 4.4. (Weak continuity) For all a*,b* € A* such that LPM(a*) > RPM(b*), if there
exist U',U" € Up+ for which U'(a) > U'(a*) and U"(b*) > U"(a), then there exists U" € U~ for
which U" (a*) > U" (a) > U" (b*).

Proposition 4.4. The no jump property (12) holds, and therefore Cp(a) = [L%, RY], if and only if
the weak continuity (4.4) holds.

Proof. See Appendix B.3 U

Corollary 4.1. If the set Ua~ of compatible value functions satisfies the weak continuity (4.4),
the example-based sorting procedure assigns each reference action a* € A* to an interval of classes
[Lp(a®), Rp(a®)] € [LPY(a*), RPM (a")].

Proof. See Appendix B.4 O

Definition 4.5. A set U of value functions is convex if for all U,U" € U and for all a € [0,1],
aU+(1—-a)U el.

Proposition 4.5. If the set U= of compatible value functions is convez, the Cp(a) = [L¥(a), R%(a)],
i.e. the no jump property (12) holds.

Proof. See Appendix B.5 0

Proposition 4.6. If Ua- is the set of all additive compatible value functions, then Cp(a) =
[L%(a), B%(a)], i.e. the no jump property (12) holds.

Proof. See Appendix B.6 C

5 A new sorting method using a set of additive value func-
tions

The new UTADIS®MS method (GMS stands for Greco Mousseau Slowinski) is an ordinal regres-
sion method for sorting problems using a set of additive value functions U(a) = >, u;(g:(a)) as a
preference model. One of its characteristic features is that it takes into account the set of all value
functions compatible with the preference information provided by the DM. Moreover, it considers

general non-decreasing marginal value functions instead of piecewise linear only.

The DM is supposed to provide preference information in form of possibly imprecise assign-
ment examples on a reference set A* i.e., for all a* € A* the DM defines a desired assignment
a* — [Cppum(gry, Ogpr(g)]. According to definition (4) a value function is compatible if Va*,b* €
A* U(a*) > U(b*) = RPM(a*) > LPM(b*). Definition (4) is equivalent to

Va*,b* € A*, LPM(a*) > RPM(b*) = U(a*) > U(b*) (13)

On the basis of (13), we can state that, formally, a general additive compatible value function is
an additive value function U(a) =)", u;(a) satisfying the following set of constraints:

8

Ula) > U(b) < LDM(a*) > RDM(b*), Ya*,b* € A*

ui(gi(aTz(]))) - ui(gi(aﬂ'(jfl))) > 07 1= 17 cey Ny .7 = 27 e, "
ui(gi(aTz(1)>> > Oaul(gl(aﬂ(m)» < ul(ﬁl)a 1= 17 cey Ny (E)
UZ(OZZ) = 07 1= 15 o n

where a; and 3; are the the minimum and maximum possible evaluation on the scale X; of criterion g;
and where 7; is the permutation on the set of indices of actions from A* that reorders them according
to the increasing evaluation on criterion g;, i.e.

gi(an(l)) < gi(an(2)) <...< gi(a"ri(m—l)) < gz(afn(m))

Let us observe that the set of constraints (E“") is equivalent to

Ula*) > Ub*) +¢ < LPM(a*) > RPM(b%), Va*,b* € A*

ui(gi(ar1))) > 0,ui(gi(armm))) < wi(Bi), i=1,...,n, (EY)

with € > 0. Thus, to check if the set of all compatible value functions U+ is not empty it is sufficient
to verify if e* > 0, where £* = max ¢, subject to set of constraints (E4")'.

Remark that, due to this formulation of the ordinal regression problem, no linear interpolation is
required to express the marginal value of any reference action. Thus, one cannot expect that increas-
ing the number of characteristic points will bring some “new” compatible additive value functions. In
consequence, UTADIS®MS considers all compatible additive value functions while classical UTADIS
deals with a subset of the whole set of compatible additive value functions, more precisely the subset
of piecewise linear additive value functions relative to the considered characteristic points.

Note that considering all criteria values as characteristics points in the modeling of the marginal
value functions gives the preference model a great descritive ability, but this has however a conter-
part with respect to an increased size of the mathematical program to be solved (all mathematical
programs corresponds however to linear programming, such issue is manageable from an operational
point of view). Note also that this increased description ability can require the DM to express addi-
tional preference information in order to obtain rich recommandation about the alternative outside
the reference set.

On the basis of the set of all compatible value functions U+, we can define two binary relations
on the set of all actions A:

e necessary weak preference relation =", in case U(a) > U(b) for all compatible value functions,

e possible weak preference relation =7, in case U(a) > U(b) for at least one compatible value
function.

Using necessary weak preference relation =V and possible weak preference relation =%, taking
into account definition 4.3 we can redefine indices LY%(a), L% (a), R% (a) and R¥%(a) as follows:

9

e minimum possible class: L%(a) = Max {LDM(a*) ca N at ot e A*}

e Minimum necessary class: ¥ (a) = Maz {LDM(a*) cartatat € A*}

e Maximum necessary class: R4 (a) = Min {RDM(G*) ca* =P aa € A*}

e maximum possible class: RY(a) = Min {RDM(G*) ca* =N a0 € A*}

(17)

Thus, using necessary weak preference relation =V and possible weak preference relation =% it
is possible to deal quite simply with the sorting problem.

Necessary weak preference relation =V and possible weak preference relation =% can be calculated
as follows [GMS08, FGS09]. For all actions a,b € A, let 7; be a permutation of the indices of actions

from set A* U {a, b} that reorders them according to increasing evaluation on criterion g;, i.e.

where

gi(ar,q)) < gi(an2) < oo < giar,w-1)) < gi(aryw))

o if A*N{a,b} =0, then w=m + 2

o if A*N{a,b} ={a} or A*N{a,b} = {b}, then w=m +1

o if A*N{a,b} = {a,b}, then w=m.

Then, we can fix the characteristic points of u;(g;), i = 1,...,n, in ¢) = «;, g{ = gi(an,j) for

w+1

j:]-)"'aw7 gz :Bl
Let us consider the following sets F(a,b) and E(b,a) of ordinal regression constraints, with

1=1,...n, j=1,..

Ula) > U(b))
U(a*) > Ub*) +e & LPM(a*) > RPM(b*), Va*,b* € A*
ul(gzj) - ui(ggfl) >0,i=1,...n, j=1,...,w+1
ui(g)=0,i=1,...,n
Z?:l Uz‘(ggﬂr) =1)
and

U(d) = Ul(a))
Ula*) >U*) +e & LPM(a*) > RPM(b*), Va*,b* € A*
ul(glj - ui(gf_l) >0,i=1,...n, j=1,..,w+1
ui(g) =0,i=1,...,n

?:1 ul(g;ﬂr)=1)

,w ~+ 1, as variables:

(E(a,b))

(E(b,a))

The above sets of constraints depend on the pair of actions a,b € A because their evaluations g;(a)
and ¢;(b) give coordinates for two of (w + 1) characteristic points of marginal value function u;(g;),
foreacht=1,...,n.

10

Let us suppose that the polyhedron defined by F(a,b) as well as the one defined by E(b,a) are
not empty. In this case we have that:

o N min e < 0
LSRR { s.t. set E(b,a) of constraints (18)
and
P max € > 0
LESEL AR { s.t. set E(a,b) of constraints (19)

Therefore, on the basis of the above results, the following example-based sorting procedure can
be proposed:

1. Ask the DM for sorting examples.
2. Verify that the set of compatible value functions U+ is not empty.

3. Calculate the necessary and the possible weak preference relations a =" a*, a =¥ a*, a* =V a
and a* =N a, for a* € A* and a € A.

4. Calculate for each a € A the indices L%(a), L% (a), R (a) and RY(a) using (14), (15),(16) and
(17).

5. Specify for each a € A its possible assignment Cp(a) = [L%(a), R%(a)].

6. Specify for each a € A its necessary assignment which is Cy(a) = [L¥(a), R¥(a)] in case
L¥%(a) < R¥%(a), and Cx(a) = (), otherwise.

Observe that the above procedure is an example based sorting procedure rather than a threshold
based procedure. It is also possible to define a threshold based sorting procedure as follows. In a
threshold based sorting procedure, a pair (U, b), where U is a value function and b = [by, ..., b,_1],
is a vector of thresholds by, h =1,...,p — 1 such that 0 < b; < by < ... < b,_1 < 1, is consistent, if
for all a* € A*

bRD]M(a*) —1> U(a*) > bLDIw(a*). (20)

On the basis of (20), we can state that, formally, a pair (U, b), where U is an additive value function
Ua) = > i ui(a) and b = [by,...,b,1] is a vector of thresholds, is compatible, if it satisfies the
following set of constraints:

U(a*) > bLD]M(a*)il
U(a*) < bRDJ\l(a*)
u’l(gZ(aTz(]))) - u’l(gl(a’ﬂ(Jfl))) Z Oa Z = 15 ey 1, .] = 27 ey T
ui(gi(ar))) = 0, uilgi(armm)) < w(B), i=1,....n, .
UZ(OQ) = O, 1= 1, ., n

> i wilBi) = 1,

bl > O,bp_l < 1,

bh >bh_1, h:2,...,p—1,

}Va* c A*

11

where 7; is the permutation on the set of indices of actions from A* that reorders them according to
the increasing evaluation on criterion g;, i.e.

gi(an(l)) < gi(an(2)) <...< gi(a"ri(m—l)) < gz(afn(m))

Let us also consider the following set of constraints (E4")":

U(a*) Z bLDM(a*)fl " %

bRDJ\l(a*) - U(a*) > € var €A

u’l(gl(a’ﬂ(]))) - ul(gl(a’ﬂ(Jfl))) Z Oa Z =]-7 w1, .] = 27 ey T
ui(gi(ar))) = 0, ui(gi(arnmm)) < w(B), i=1,....n, .
UZ(OJZ> = O, 1= 1, ., n

Z?:l uz(ﬁz) = 17

bl > €,bp_1 < 1,

bh_bh—l 26, h:2,...,p—1,

Set of constraint (E7") is equivalent to set (E4")" if € > 0. Thus, to check if the set of all compatible
pairs (U,b) is not empty it is sufficient to verify if ¢* > 0, where €* = max ¢, subject to set of
constraints (E4")’.

A compatible pair (U, b) assigns action a € A to a class Cy, with &k > h, h € H, if it satisfies
set of constraints (E4 (a — Csp,)) obtained by adding to set of constraints (E4) the constraint
U(a) > bp—1. Analogously, a compatible pair (U, b) assigns action a € A to a class Cy with k < h,
h € H, if it satisfies set of constraints (Es (a — C<p,)) obtained by adding to set of constraints
(E4") the constraint U(a) < by,.

From a computational point of view, it is more convenient to express set of constraints E7 (a —
C5p) as the set of constraints obtained by adding to (E#")" the two further constraints, € > 0 and
U(a) > bp_1. Consequently, to verify if there is a compatible pair (U, b) assigning action a € A to a
class C with k > h, h € H, it is enough to verify if *(C>j, a) > 0, where €*(C>y, a) = mazx ¢, sub-
ject to set of constraints (E;)’ plus the constraint U(a) > by,_;. Instead, all compatible pairs (U, b)
assign action a € A to a class Cy, with k > h, h € H, if £,(Csp,a) > 0 where €,(Csp,a) = min ¢
subject to set of constraints (E4)’ plus the constraint U(a) > by,_;.

Analogously, from a computational point of view, it is more convenient to express set of con-
straints (B4 (a — C<p,)) as the set of constraints obtained by adding to (E7") the two further
constraints ¢ > 0 and b, — U(a) > . Consequently, to verify if there is a compatible pair (U, b)
assigning action a € A to some class C, with k < h, h € H, it is enough to verify that e*(C<p,a) > 0,
where ¢*(C<y,a) = maz € subject to set of constraints (E# ") plus the constraint b, — U(a) > .
Instead, all compatible pairs (U, b) assign action a € A to some class Cy with & < h, h € H, if
£.(C<p,a) > 0 where ¢,(C<p,,a) = min ¢, subject to set of constraints (E4)" plus the constraint
b, — Ula) > e.

On the basis of the above considerations, indices L% (a), LY, (a), R%(a) and R%(a) can be redefined
as follows:

e minimum possible class: L%(a) = Max {h € H : £,(Csp,a) > 0}, (21)

e Minimum necessary class: L% (a) = Max {h € H : €*(Csp,a) > 0}, (22)

12

e Maximum necessary class: RY (a) = Min{h € H : *(C<y,a) > 0}, (23)

e maximum possible class: R%(a) = Min{h € H : £,(C<p,a) > 0}. (24)

Therefore, on the basis of the above observations, the following threshold-based sorting procedure
can be proposed:

1. Ask the DM for sorting examples.
2. Verify if the set of compatible pairs (U, b) is not empty.

3. Calculate for each a € A the indices L%(a), L% (a), R¥ (a) and RY(a) using (21), (22),(23) and
(24).

4. Specify for each a € A its possible assignment Cp(a) = [L¥%(a), R%(a)].

5. Specify for each a € A its necessary assignment, which is Cy(a) = [L%(a), R%(a)] in case
L¥%(a) < R¥%(a), and Cx(a) = (), otherwise.

6 Management of inconsistencies

6.1 Analysis of incompatibility

Let us consider now the case where there is no value function U in an example-based sorting pro-
cedure, or equivalently, no pair (U,b) in a threshold-based sorting procedure, compatible with the
assignment examples . We say, this is the case of incompatibility. In such a case, the polyhedron
generated by constraints E4” is empty or, equivalently, the maximal value of ¢ satisfying set of
constraints (E4")’ is not positive. Such a case may occur in one of the following situations:

e the exemplary assignments of the DM do not match the additive model,

e the DM may have made an error in his/her statements; for example stating that L”"(a) >
RPM(p) while b dominates a (that is g;(b) > gi(a)),

e the statements provided by the DM are contradictory because his/her exemplary assignments
are unstable, some hidden criteria are taken into account, ...

In such a case, the DM may want either to pursue the analysis with such an incompatibility or to
identify its reasons in order to remove it and, therefore, to define a new set of exemplary assignments
whose corresponding constraints EF4 ¢** generate a non empty polyhedron. Let us consider below the
two possible solutions.

6.1.1 Situation where incompatibility is accepted

If the DM wants to pursue the analysis with the incompatibility, he/she has to accept that some
of his/her exemplary assignments of reference actions will not be reproduced by any value function.
Note that, from a formal viewpoint, if the polyhedron generated by E4” is empty, then possible and
necessary assignment C'p(a) and Cy(a) are meaningless for all a € A. Thus, the acceptance of the
inconsistency means that the DM does not change the exemplary assignments and computes Cp(a)
and Cy(a) on a new set of constraints (E4")’_, differing from the original set (E")" by an additional
constraint on the acceptable total error:

13

Ua®) > U(b*) + 2 o LPM(a*) > RPM(b), Va*,b* € A*)

ui(gi(ar())) — wi(gi(an-1))) =0, i = L.,n, j=2.,m

ul(gl(aﬁ(l))) > Oaul(gl(aﬁ(m))) < ul(ﬁl>7 1= 17 - N, (EA*)/

uz(az) == 0, 1=]., ., n ext
?:1 uz(ﬁz) - 17

€ Z 661‘t

/

/

where £ < £* such that, remembering that ¢* = max € subject to set of constraints (E4").,,

have that the resulting new set of constraints (E4")! , is not empty.

we

On the basis of (EA")_,, for any pair (a,b) € A, the set of constraints E(a,b)ey can be built
as the union of the constraints (EAR);H and the constraints relative to the breakpoints introduced
by those actions a, b that possibly do not belong to A%. Then preference relations ="V and ='* can

be computed by minimizing and maximizing ¢ subject to £’(a, b), rather than to E(a, b), respectively.

Obviously, the necessary and possible rankings resulting from these computations will not fully
respect the exemplary assignment provided by the DM, i.e. there is at least one couple a*,b* € A*
such that LPM(a*) > RPM(b*) and nevertheless U(a) < U(b).

Of course, also in this context indices L% (a*), L¥ (a*), R¥ (a*) and RY%(a*) maintain all their main
properties stated in proposition 4.2.

6.1.2 Situation where incompatibility is not accepted

If the DM does not want to pursue the analysis with the incompatibility, it is necessary to identify
the troublesome exemplary assignments responsible for this incompatibility, so as to remove some
of them. Remark that there may exist several sets of pairwise comparisons which, once removed,
make set (E4") of constraints non-empty. Hereafter, we outline the main steps of a procedure which
identifies these sets.

Recall that the exemplary assignments of reference actions are represented in the ordinal regres-
sion constraints £ by linear constraints. Hence, identifying the troublesome pairwise comparisons
of reference actions amounts at finding a minimal subset of constraints that, once removed from E4",
leads to a set of constraints generating a non-empty polyhedron of compatible value functions. The
identification procedure is to be performed iteratively since there may exist several minimal subsets
of this kind.

Let associate with each couple of actions a,b € A* such that LP(a) > RPM(b) a new binary
variable vy, i.e. Vg, = 0 or v, = 1. Using these binary variables, we rewrite the first constraint of
set B4 as follows:

LPM(q) > RPM(b) < U(a) — U(b) + Mugy > 0 (25)

where M > 1. Remark that if v,;, = 1, then the corresponding constraint is satisfied whatever
the value function is, which is equivalent to elimination of this constraint. Therefore, identifying
a minimal subset of troublesome pairwise comparisons can be performed by solving the following
mixed 0-1 linear program:

14

Min — [= Za,bGA*:LDM(a)>RDM(b) Vab
s. t.
([LPM(a) > RPM(b) & U(a) — U(b) + Muv,y > ¢, Va,b € A*
(aﬁ(]))) - uz(gz(a”r (- 1))) > 07 1= 17""7”7 .7 = 27 —e, (26)
)) >0 uz(gz(afn(m))) < uz(ﬂz)a 1=1,...,n,

where ¢’ is a small positive value.

The optimal solution of (26) indicates one of the subsets of smallest cardinality being the cause
of incompatibility. Alternative subsets of this kind can be found by solving (26) with additional
constraint that forbids finding again the same solution. Let f* be the optimal value of the objective
function of (26) and va 0 ¢ the values of the binary variables at the optimum. Let also S; = {(a,b) €
A* x A*: LPM(q) > RD M(b) and v}, = 1}. The additional constraint has then the form

d v fr-1 (27)

(a,b)€S1

Continuing in this way, we can identify other subsets, possibly all of them. These subsets of
pairwise comparisons are to be presented to the DM as alternative solutions for removing incompat-
ibility. Such procedure has been described in [MDF*03]. Note however that when the number of
alternatives in the reference set increases, solving 26 can become computationally difficult.

7 Specifying assignments with gradual confidence levels

The UTADISSM™S method presented in the previous section is intended to support the DM in an
interactive process. Indeed, defining a large set of exemplary assignments of reference actions can be
difficult for the DM. Therefore, one way to reduce the difficulty of this task would be to permit the
DM an incremental specification of exemplary assignments. This way of proceeding allows the DM
to control the evolution of the necessary and possible assignments.

Another way of reducing the difficulty of the task is to extend the UTADIS®™S method so as to
account for different confidence levels given to exemplary assignments. Let [LPM (a*), RPM(a*)] D
[LPM(a*), RPM(a*)] D ... D [LPM(a*), RPM(a*)] be embedded sets of DM’s exemplary a551gnments
of reference action a € A*. To each set of exemplary assignments [LPY (a*), RPM (a*)], t = 1,.

a* € A*, corresponds a set of constraints E'" generating a polyhedron of compatible value func—

tions P/*". Polyhedrons PtA* t =1,...s, are embedded in the order of the exemplary assignments
[LPM(q*), RPM(a*)], t = 1,...5, a* € A%, ie. PA" D P D ... D PA.

We suppose that PA" # () and, therefore, as P D P D ... D P2, we have PA" # (), for all
t=1,...,s. If PA" = we consider only exemplary assignments until [LDM(a*), RPM (a*)], a* € A*
with p = max {t : P #0}.

Definition 7.1. Given a set of exemplary assignments [LPM (a*), RPM (a*)],t = 1,...s,a* € A*, and

corresponding sets U'. of compatible value functions of level t, for each a € A, the following indices
have to be considered:

o minimum possible class: Li’au() = Max {LDM ") VU € Uy, Ula®) < Ula), a* € A*}a (28)

15

o Mminimum necessary class:

L'H(a) = Maz {L"M(a*) : 3U € Uy for which U(a*) < U(a), a* € A*}, (29)
e mazrimum necessary ClCLSS

R (a) = Min {RP(a*) : 3U € U} for which U(a) < U(a"), a* € A*}, (30)
Ri¥(a) = Min {R"M(a*) : VU € U'\., Ula) < U(a"), a* € A"} (31)

e maximum possible class:

Definition 7.2. Given a set of exemplary assignments [LPM (a*), RPM (a*)],t = 1,...s,a* € A*, and
corresponding sets U'. of compatible value functions of level t, for each a € A, we deﬁne the possible
assignment of level t,t =1, ..., s, Ch(a) as the set of indices of class Cy, for which there exist at least
one value function U € UY. assigning a to C}, and the necessary assignment C%(a) as set of indices
of class Cy, for which all value functions U € UYy. assign a to Cy, that is:

Ch(a) = {h € H such that 3U € U}. for which h € [LY(a), RY(
Ch(a) = {h € H such that YU € U,. it holds h € [LY(a), RY(a)
t =

In order to compute possible and necessary assignments C%(a) and C% (a),
use an example based assignment sorting as well as a threshold based sorting.

a)l} (32)
I} (33)

1,...,s we can

Using example based assignment sorting we can proceed as follows. For all a,b € A, we say that
there is a necessary weak preference relation of level ¢, denoted by a =N b (t = 1, ..., s), if for all
value functions U € UJ., we have U(a) > U(b). Analogously, for all a,b € A, we say that there is a
possible weak preference relation of level ¢, denoted by x = y (t = 1, ..., s), if for at least one value
function U € U f., we have U(z) > U(y).

In order to compute possible and necessary weak preference relations = and =Y, we can proceed

as follows. For all x,y € A, set of constraints E;(z,y) can be obtained from set EA” by adjoining the
constraints relative to the breakpoints introduced by those actions a, b that possibly do not belong

to A*. For each t = 1,...,s, and binary preference relations = and itp, we have
o N min dy(z,y) = Min{U(x) —U(y)} >0
Tt Y= { s.t. set Ey(x,y) of constraints (34)

and
2Py o { maz Dy(z,y) = Min{U(z) = U(y)} = 0 (35)

s.t. set Ei(x,y) of constraints

Each time we pass from =; ; to 7=, t = 1,...,5 — 1, we add to E', and, consequently, to

E; 1(a,b), new constraints concerning pairs (a*,b*) € A* x A* such that LPM(a) > RPM(b) but
not LPA (a) > RPAY (D), thus the computations of di(z,y) and Di(z,y), for all x,y € A x A proceed
iteratively.

Binary preference relations = and = ¢t = 1,..., s satisfies the following properties [GMSO08]:
Proposition 7.1. It holds:

o ~NC>F

~t =n~ut

o =N is a complete preorder (i.e. transitive and strongly complete),

= is strongly complete and negatively transitive.

[

b itj\il gii\f andtp D >fh t:27"'78

On the basis of binary preference relations =~ and =7, ¢t = 1,...,s it is possible to calculate
iteratively the indices (28)-(31) in the same way as in Section 5.

16

8 Illustrative example

In this section, a real world multiple criteria sorting problem will be presented followed by the
application of the UTADIS®MS software.

A transport company is about to classify 76 buses into 4 pre-defined and preference ordered
classes C1-CYy, such that C will group the buses being in the worst technical state, needing a vary
major revision, Cy will group the buses being in the lower-intermediate technical state, needing a ma-
jor revision, C'3 will group the buses being in the upper-intermediate technical state, needing a minor
revision, and Cy will group the buses being in the best technical state, needing no revision. The buses
were evaluated according to a total of 8 quantitative criteria reflecting their performance and tech-
nical parameters. The names and types of the criteria are given in Table 1, and the performance
matrix for a subset of buses is presented in Table 2 (see [ZS95]).

Table 1: Table of criteria

Code Name Type
g1 Maximum speed gain
g2 Compression pressure gain
gs Blacking cost
ga Torque gain
Js Summer fuel consumption cost
ge Winter fuel consumption cost
g7 Oil consumption cost
gs Horse power gain

Table 2: Performance matrix

Bus a1 g2 g3 94 g5 g6 ar g8

ai 90 2.52 38 481 21.8 26.4 0.7 145
as 76 2.11 70 420 22.0 25.5 2.7 110
as 63 1.98 82 400 22.0 24.8 3.7 101
a4 90 2.48 49 477 21.9 25.1 1.0 138
as 85 2.45 52 460 21.8 25.2 14 130
ae 72 2.20 73 425 23.1 274 2.8 112
a7 88 2.50 50 480 21.6 24.7 1.1 140
as 87 2.48 56 465 22.8 27.6 14 135
agy 90 2.56 16 486 26.5 27.3 0.2 150
aio 60 1.95 95 400 23.3 24.8 44 96

arq 87 2.48 52 465 21.9 24.6 14 135
ars 86 2.50 55 456 22.0 25.1 1.5 130
are 88 2.52 46 472 21.8 23.8 1.1 141

The diagnostic expert, assisted by a decision analyst, is able to make a more or less precise
assignment of few buses to the classes of technical state. The state of these buses, called reference
buses, is relatively well known to the expert, so they will serve to provide assignment examples in
successive iterations. In the first iteration, the expert provides a typical example for each one of
the four classes, and makes, moreover, an imprecise assignment of two other reference buses to the
two intermediate classes. This preference information is given in Table 3. For this initial preference
information, the possible and necessary assignments have been computed using the UTADISCMS

17

method implemented on the DecisionDeck Platform (http://decision-deck.sourceforge.net/)
as an open source software.

Table 3: Exemplary assignments of some reference buses in the first iteration

Reference bus Lower class (LP*) Upper class (RPM)

ai Cy Cs
as C3 Cs3
a7 Cy Cy
a28 Ca C3
a40 1 Ch
42 Ca C3

The resulting possible assignments review all possible consequences of the preference information
on sorting of the whole set of buses (see Table 4). One can see that the inferred model has assigned
all reference buses to their respective desired classes: a; is assigned to Cy, a5 to C3, etc. For most
of non-reference buses the possible assignment is non-univocal. Precisely, we have 9 non-reference
buses assigned to single class C; or (), 12 and 38 buses assigned, respectively, to the range of two
and three contiguous classes, and 11 busses which can be possibly assigned to all four classes.

Table 4: Possible assignments in the first iteration

1 1 .

Y RY Assigned buses

Ch Ch ag, (23, 440, 460, 462, 169

Ch) ag, ai4, a17, a19

4 Cs a2, aio, ai2, @21, a4, a6, 27, A30, 34, A36, A38,
a39, A45, A46, G47, A48, A50, A53, 463, 466, A6T

C Cy as, ag, aii, ais, @16, a20, a431, A52, A58, A8, A70

Cg Cg al

) C3 a2s, G28, 042

Cy Cy a4, A13, A22, @33, 37, A41, A43, (44, A55, A56, A59,
64, Aes, A71, 73, A74, A75

Cs Cs as

C3 Cy a32, a3s, as1, G54, A57, A61, 76

Cy Cy az, aig, 29, a49, ar2

In the first iteration, when the preference information is yet rather poor, the possible weak
preference relation used to assess the necessary assignments is very rich, i.e., for most of pairs of buses
(a;, a;) it is true a; = a;, as well as a; = a;. Therefore, in most cases, one can observe that RY, (a) <
szvl(a) and, consequently, C\(a) = (). Table 5 summarizes the non-empty necessary assignments in
the first iteration. The necessary assignment is non-empty for the 4 reference buses and for 9 non-
reference ones assigned to the extreme classes. Remember that the method does not guarantee
that all imprecise assignments of reference actions are repeated in the necessary assignments. For
example, the range of necessary assignment for bus asg is empty because for some compatible value
functions it is assigned to Cs and for some others to C'3, but there is no compatible value function for
which the assignment of ass to both classes would be feasible). Obviously, for every bus a; it holds
Cx(a) € Cp(a).

The UTADIS®M® method is intended to be used interactively, so that the DM and the analyst
could provide assignment examples incrementally, looking at consequences of the introduced pref-

18

Table 5: Necessary assignments in the first iteration

sz’vl R%l Assigned buses

Cy C ae, A23, A40, G460, 462, A69
Cs) a1

C3 C3 as

Cy Cy a7, aig, a9, a49, Ar2

erence information on the possible assignments of all actions. Let us suppose that considering the
results of the first iteration, our diagnostic expert feels confident that asg, a9, and ags should be
assigned to class C, Cy and Cj, respectively. It appears, however, that the introduced preference
information is inconsistent, and no additive value function is compatible with the reference assign-
ments. The method states that the newly introduced assignments (azg — C1) and (a19 — C3) cannot
be represented together by any additive value function. Then, the DM may want either to pursue
the analysis with this incompatibility, or to remove it. Suppose that our DM will remove one of
the two inconsistent exemplary assignments, precisely the one concerning a;9. In consequence, the
system becomes consistent, and the corresponding results are presented in Table 7.

Table 6: Additional exemplary assignments in the second iteration

Reference bus Lower class (LP*) Upper class (RPM)

a30 C Cy
ass C3 Cs

One can observe that the assignments are more tight with the growth of the preference infor-
mation. There are 10 non-reference buses, for which the possible assignments have changed with
respect to the first iteration (those buses are marked in bold in the table). For example, a;; and a4
are possibly assigned to classes C7, Cy, and Cj3, but not to Cy, as previously. As far as necessary
assignments are concerned, there are 5 additional buses assigned to the same class by all compatible
value functions: reference bus ass and 4 non-reference buses have been assigned to class Cf].

In the third iteration, the diagnostic expert provides two additional exemplary assignments (see
Table 8). As a consequence, 4 non-reference buses got a tighter range of possible assignments (those
buses are marked in bold in the table). Moreover, two of them are necessarily assigned to a non-empty
range of classes which they were not in the previous iteration.

The illustration of the use of the UTADIS®™® method will be stopped at this stage. The DM
may be satisfied with the results, or may want to pursue the iterative process, either by adding some
new assignments of reference buses or by revising the previous judgments, which would result in new
possible and necessary assignments.

9 Conclusion

SGMS which sorts actions into

In this paper we presented a new multiple criteria method called UTADI
ordered class. The underlying preference model is a set of monotone non decreasing additive value
functions. The method applies to the case in which the classes are explicitly defined by thresholds
on the value that separated consecutive classes, and to the case where classes are implicitly defined

through the sorting examples. In order to specify the sorting model, the DM is asked to provide

19

Table 7: Possible and necessary assignments in the second iteration

u2 142 .

Lg R Assigned buses

C Cy ag, @19, 423, @30, 440, A47, A60, 462, @63, G469

Ch Cs ag, a4, 417

Cy Cy a2, aio, @11, a12, @15, @20, A21, 424, A26, 27, @31, 434,
a36, a3g, a39, A45, A46, A48, A50, A53, 466, A67, A70

C Cy az, ag, aie, As52, 458, A68

Cs Cs ai

) C3 a2s, (28, G41, 042, @43, G64

Cy Cy a4, A13, A22, A33, @37, A44, A55, A56, G459, A65, A71, A73,
a4, Q75

Cs Cs as, ags

Cs Cy asz, as1, As4, as7, 461, 476

Cy Cy az, aig, 429, @49, ar2

U? U2 :

LY Ry Assigned buses

C Cy ag, @19, 423, @30, 440, A47, A60, 462, @63, G469

Cs Cs ai

C3 C3 as, ass

Cy Cy Qq7, A18, A29, G49, 72

Table 8: Additional exemplary assignments in the third iteration

Reference bus Lower class (LPM) Upper class (RPM)

a26 Cs Cs
a4 Cy Cy

assignment examples (desired assignment for specific actions) which yield a set of compatible value
function.

In reference to the set of sorting examples, the method provides, for each action a, two intervals
of classes: the possible assignment corresponds to the interval of classes to which the action can
be assigned considering any compatible value functions individually, while the necessary assignment
corresponds to the interval of classes to which the action a can be assigned considering all compatible
value functions simultaneously. The necessary and possible assignments are computed through the
resolution of linear programs.

This new method provides new capabilities as compared to existing value based sorting methods
in several ways: firstly, it consider possible and necessary assignments which no previous method
did consider. Second, UTADIS®MS make use of a very general and flexible preference model as it
considers all non-decreasing marginal value functions (rather than piece-wise linear marginal value
function). Third, it considers, when computing assignments all value functions compatible with the
assignment examples provided by the DM (and not only a representative one). Lastly, the method
makes it possible to account for both the threshold based and example based sorting procedures. We
envisage the following possible developments for future research:

e consideration of other type of preference information such as intensity of preferences and trade-

20

Table 9: Possible and necessary assignments in the third iteration

us U3 :
Lg RE Assigned buses

C Cy a6, A19, 23, G430, @40, A47, A60, 62, 463, A6

Ch Cs as, a4, 417, @27

Cy Cy a2, @10, @11, @12, a15, G20, @21, G424, G434

a36, 38, A39, (45, A46, A48, 50, A53, A66, A6T7, A70

C Cy as, ag, a6, @52, A58, A68

Cs Cs ai, @26

) C3 a25, A28, G31, 41, 42, 043, 064

Co Cy a4, a13, G22, A33, A37, (44, 455, A56, A59, 465, A71, A73, AT5
Cs Cs as, ass

Cs Cy asz, as1, 54, 461

Cy Cy ar, a18, 029, 449, As7, A72, A74, AT6

u3 u3 . .
L% R% Assigned alternatives

C Cy a6, A19, A23, G430, @40, A47, A60, 62, 463, A6

Cs Cs ai, @26

Cs Cs as, ass

Cy Cy ar, a1s, 429, 449, As7, A72, A74, A76

offs,
e extension of the approach to group decision,
e application of this methodology to interactive optimization problems,

e application of the methodology to some classical classification problems such as bankruptcy
risk or global risk evaluation and comparison with classical ordinal regression methodologies
(UTADIS, MHDIS, etc.) and other competitive methodologies such as discriminant analysis,
neural nets or support vector machine.

e improve the interactive process induced by the methodology, to support the DM in the elabo-
ration of robust recommendations

Acknowledgements : The authors acknowledge the support of the COST Action IC0602 “Algo-
rithmic Decision Theory”, www.algodec.org. The authors also wish to thank Mitosz Kadzinski who
implemented the UTADIS®™S method on the DecisionDeck Platform and run the calculations of
the illustrative example.

21

References

[DGJLS0)]

[FGS09)

[GMS08]

[Jac95]

[KBOOY]

[KR93]

[KUO3]

[MDF*03]

[Roy96]

[ZD00a]

[ZDOOb)]

1ZD02]

[Z595]

J.M. Devaud, G. Groussaud, and E. Jacquet-Lagreze. UTADIS: Une methode de construc-
tion de fonctions d’utilite additives rendant compte de jugements globaux. In European
working group on MCDA, Bochum , Germany, 1980.

J. Figueira, S. Greco, and R. Slowinski. Building a set of additive value functions rep-
resenting a reference preorder and intensities of preference: GRIP method. Furopean
Journal of Operational Research, 195(2):460-486, June 2009.

S. Greco, V. Mousseau, and R. Slowinski. Ordinal regression revisited: multiple criteria
ranking using a set of additive value functions. European Journal of Operational Research,
191(2):415-435, December 2008.

E. Jacquet-Lagreze. An application of the UTA discriminant model for the evaluation
of sc R&D projects. In P. Pardalos, Y. Siskos, and C. Zopounidis, editors, Advances
in Multicriteria Analysis, Nonconvex Optimization and its Applications, pages 203-211.
Kluwer Academic, Dordrecht, 1995.

M. Koksalan and S. Bilgin Ozpeynirci. An interactive sorting method for additive utility
functions. Computers & Operations Research, 36(9):2565-2572, September 2009.

R.L. Keeney and H. Raiffa. Decistons with multiple objectives: Preferences and value
tradeoffs. J. Wiley, New York, 1993. second edition.

Murat Koksalan and Canan Ulu. An interactive approach for placing alternatives in
preference classes. Furopean Journal of Operational Research, 144:429-439, January 2003.

V. Mousseau, L.C. Dias, J. Figueira, C. Gomes, and J.N. Climaco. Resolving inconsis-
tencies among constraints on the parameters of an MCDA model. Furopean Journal of
Operational Research, 147(1):72-93, 2003.

B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer Academic, Dordrecht,
1996.

C. Zopounidis and M. Doumpos. Building additive utilities for multi-group hierarchical
discrimination: The MHDIS method. Optimization Methods & Software, 14(3):219-240,
2000.

C. Zopounidis and M. Doumpos. PREFDIS: a multicriteria decision support system
for sorting decision problems. Computers & Operations Research, 27(7-8):779-797, June
2000.

C. Zopounidis and M. Doumpos. Multicriteria classification and sorting methods: A
literature review. European Journal of Operational Research, 138(2):229-246, April 2002.

J. Zak and J. Stefanowski. Determining maintenance activities of motor vehicles using
rough sets approach. In Proceedings of the Furopean Conference EUROMAINTENANCE
94, pages 39—44. Amsterdam, 1995.

22

Appendices

A Proofs of section 3

A.1 Proof of Proposition 3.1

Proposition 3.1 For any action a € A\ A*, the example-based sorting procedure provides an
assignment a — [Crv 4y, Cro (o), such that LY (a) < RY(a).

Proof. Let us suppose that :

LY(a) > RY(a) (36)
Consider the sets A*" C A* and A*~ C A* defined as A*~ = {a* € A* : U(a*) < U(a)} and
At ={a* € A* : U(a*) > U(a)}. (36) mean that there exists a*~ € A*~ and a** € A*" such
that LPM(a*~) = LY(a), RPM(a*") = RY(a) and LDM() > RDM(a *). As the set of assignment
examples is supposed to be consistent with U, LM (a*~) > RPM(a**) implies that U(a*~) > U(a*").
However, as a*t € A*" and a*~ € A*", it holds that U(a*~) < U(a*"), which contradicts the
hypothesis and concludes the proof. O

A.2 Proof of Proposition 3.2
Proposition 3.2 The example-based sorting procedure assigns each reference action a* € A* to an
interval of classes [Cru g+, Cruq+], such that:
LY (a*)
RY(a*)

LPM(a*) (37)
RPM(q%) (38)

IN IV

Proof. According to (5) and (6) :

LY(a*) = Max {L"M(a”): U(a™)
RY(a*) = Min{R"(a"):U(a")

AVARVAN

U(a*), a* € A*} (39)
U(a*), a” € A*} (40)
Since U(a*) < U(a*), then LPM(a*) € {LPM(a*) : U(a”) < U(a*), a* € A*} and, therefore,

a
Mazx {LPM(a*) : U(a”) < U(a*), a” € A*} > LPM(a*), i.e. LY(a*) > LPM(a*). Analogous proof
holds for RY(a*) < RPM(a*). O

A.3 Proof of Proposition 3.3

Proposition 3.3 Consider the case where the DM provides precise assignment examples only, i.e.,
LPM(g*) = RPM(q*), for each a* € A*. Assuming the use of a single value function U in the
ezample-based sorting procedure, if we choose, for each h = 1,...,p—1, the threshold b in the interval
IMaz a0, {U(a*)}, Ming_c,,,{U(a*)}], we obtain a threshold-based sorting procedure that restores
the assignment examples and assigns each non-reference action a € A\ A* to a single class in the
interval [Crv), Cru o)) stemming from the example-based sorting procedure.

23

Proof. As we suppose the assignment examples to be consistent with U, we have Va*,b* € A*,
U(a*) > U(b*) = RPM(a*) > LPM(b*). Moreover, since all assignment examples are precise
(LPM(a*) = RPM(a*)), we will use LPM(a*) to refer to the category to which the DM wishes to
assign a*. Therefore, the fact that assignment examples are consistent with U can be reformulated
as Va*,b* € A*,U(a*) > U(b*) = LPM(a*) > LPM(b*). If we choose the threshold values b7 in
the interval |Maz,«_c,{U(a*)}, Ming_c,,,{U(a*)}], for each h = 1,...,p — 1, then any a € A for
which U(a) € [bY_,,bY[will be assigned by the threshold-based sorting procedure to category Cj, (see
Definition 3.1). As a consequence, the assignment examples will be restored by the threshold-based
sorting procedure.

Considering a non-reference action a € A\ A*, we distinguish two cases:
i) 3h € {1,...,p} such that U(a) € [Ming—c,{U(a*)}, Maz—c, {U(a*)}],
ii) 3h € {1,...,p — 1} such that U(a) €]Max,—c,{U(a*)}, Ming ¢, ,{U(a*)}[.

case 1):

Considering Definition 3.3, we have LY(a) = RY(a) = h, i.e., a is assigned to class Cj, by the
example-based sorting procedure. In this case, the interval [Crv 4y, Cru (4] boils down to Cj,.
Moreover, since U(a) € [Ming—c,{U(a*)}, Maz~—c,{U(a*)}], a will be assigned to class C}, by the
threshold-based sorting procedure, whatever the value of the thresholds

bh—1 € |Max,—c, {U(a")}, Ming_c,{U(a*)}] and by, € |Maza—c,{U(a*)}, Ming—c,, {U(a*)}].

case ii):

Considering Definition 3.3, we have LY(a) = h and RY(a) = h + 1, i.e. a is assigned imprecisely to
interval of classes [C},, Chy1] by the example-based sorting procedure.

Moreover, since U(a) €|Mazxq-c,{U(a*)}, Ming_c,,,{U(a*)}[, a will be assigned by the threshold-
based sorting procedure to class Cyiy if by, € [Maxy 0, {U(a*)},U(a)], or to class Cy if b, €
|U(a), Ming -y, {U(a")}] .

A.4 Proof of Proposition 3.4

Proposition 3.4 Consider the case where the DM provides possibly imprecise assignment examples,
i.e., LPM(a*) < RPM(a*) for each a* € A*. Assuming the use of a single value function U in
the exzample-based sorting procedure, if we choose, for each h = 1,...,p — 1, the threshold b in the
interval 1(bf)) = |Max . gosgey<p {U(a*)} , Ming. osgysp, {U(a*)} [, with b < bj, we obtain a
threshold-based sorting procedure that assigns each reference action a* € A* to a single class in the
interval [Cpou ey, Crom g+, and assigns each non-reference action a € A\ A* to a single class in
the interval [Cru(q), Cru(q)] stemming from the example-based sorting procedure.

Proof. The proof will consist of the five following points:

1. The set of possible values for by, I(bY), is a non-empty interval.

2. If b)) < Mawg.goy(g<p {U(a*)}, then the threshold-based sorting procedure assigns each
a” € A* such that bf] < U(a") < Max,«.gom(ey<n {U(a*)} inconsistently with the statement
of the DM, in the sense that a* is assigned to a class C, with k > RPM(a*).

3. If b > Ming..ppugeyp, {U(a*)}, then the threshold-based sorting procedure assigns each a* €
A* such that Mings.ppu ey, {U(a*)} < U(a*) < bj inconsistently with the statement of the
DM, in the sense that a* is assigned to a class Cy, with k < LPM(a*).

24

4. 0¥ € I(BY), h=1,...,p— 1, then the threshold-based sorting procedure assigns each a* € A*
to a single class C} in the 1nterval [CLow ey, Cgprr(eny], and each a € A\ A* in a single class
Cy in the interval [Cru(q), Cru(q))-

5. For each each a* € A*, and for each Cy, € [Cpoar(g+), Croa(qn)], there exist thresholds bj, € I(b}),
h=1,..,p—1, such that the threshold-based sortmg procedure assigns a* to CY; for each each
a € A\ A*, and for each Cy € [Crv(q), Cru(y), there exist thresholds b, € I(b}/), h=1,...,p—1,
such that the threshold-based sorting procedure assigns a to Cj.

Proof of 1.

Consider b*, ¢ € A* such that U(b*) = Max,..goum (<, {U(a*)} and U(c*) = Ming.. gy {U(a*)}.
Therefore, we have LM (¢*) > h > RPM(b*). As we suppose the assignment examples provided by
the DM are consistent with U (see (4)), we have U(b*) < U(c"), i.e

Maz - goy(aey<n {U(a")} < Ming.pom s {U(a")}-

Proof of 2.

Consider a* € A* such that b < U(a”) < Maz . goa)<, {U(a*)}.

Since bY < U(a*), according to Definition 3.1, a* should be assigned to class Cy with k > h.
As U(a") < Mazqs.gomgy<p {U(a")}, we have RPM(g*) < h.

Therefore, the threshold-based sorting procedure assigns a* inconsistently with the DM’s statement.

Proof of 3.

Consider a* € A* such that Min,..;ou sy {U(a*)} < U(a*) < b

Since U(a*) < bY, according to Deﬁmtlon 3.1, a* should be assigned to class Cj with k& < h.
As Ming.;pugysp {U(a*)} < U(a”), we have LPM(a*) > h.

Therefore, the threshold-based sorting procedure assigns a* inconsistently with the DM’s statement.

Proof of 4.
Consider a* € A* such that U(a¥) € [bY_,,bY[and, therefore, for Definition 3.1, a* — Cy. Since, by

hypothesis,
bk: 1 E]Maxa :RDM (g*)<k—1 {U()} s MZ'TLQ*:LDJW(Q*)>]€_1 {U(a*)}]

and
bg E]Ma,l'a*:RDM(a*)Sk {U(a*)} s Mina*:LDM(a*)>k {U(a*)}],
we have
Maz,- *:RDM (g*)<k—1 {U()} < bl[cj—l < U(a*') < bg < Mina*:LDM(a*)>k {U(a*)}
From

Ma,xa*:RDM(a*)Skfl {U(a*)} < U(a*/)
we get RPM(a*') > k, while from
U(a*’) < M’ina*:LDM(a*)>k {U(a*)}
we get LDM(OJ*,) < k. Thus, Ck c [CLDA4(G*/), CRDIw(a*/)].

Analogously, for a € A\ A* for which U(a) € [b{ ,,bV] and, consequently, a — Cj, we have
Cy € [OLU(G),CRU(Q)].

Proof of 5.
Consider a” € A* such that Cy € [Cpom ey, Cgon(gen).
Let us fix the thresholds Y, h = 1,...,p — 1, such that:

25

o b < U(a") for each h < k
e bY > U(a") for each h > k
with bf < bj ;.
For the above thresholds, a* is assigned by the threshold-based procedure to class Cy. Hence, we
need to prove that there always exists a set of thresholds defined as above which verify
vWoe I = JMaz . gorgey<p {U (@)}, Mings. oy gysp, {U (@)} [h=1,...,p = 1. (i)
Consider h < k. For (i) we have
Ula’) > b > Mazx g gor gn<p {U(a”)}
which holds because RPM (a*) > k > h.
Consider h > k. For (i) we have
Ula”) < b < Mings. pm gy, {U(a")}

which holds because LPM (a*) < k < h. O

26

B Proofs of section 4

B.1 Proof of Proposition 4.2

Proposition 4.2 Given a set A* of assignment examples and a corresponding set Ua« of compatible
value functions, it holds, for each a € A,

o I%(a) < L (a)
o ¥ (a) < R¥%(a)

o Lif(a) < Rp(a)

Moreover, for any a € A, we have:
e Cp(a) C [T (a), R¥(a),
o if L(a) < Rf(a), then Cy(a) = [L{(a), R (a)],
o if [(a) > R¥(a), then Cx(a) = 0.

Proof. Consider -y 4y — 14 € A* VU € Uy-, U(a®) < U(a)},

A (a) = {a* € A* : U € Uy~ for which U(a*) < U(a)}, Va e A
A (a) = {a* € A* : YU € Up+,U(a*) > U(a)},
At (a) = {a* € A* : U € Uy~ for which U(a*) > Ula)}.

Observe that A%, (a) C A% (a) from which we get:

one

L¥(a) = Mazgrear {LPM(a*) : VU € Ua-,U(a*) < U(a)}
< Mazgear {LPM(a*) : U € Uy- for which U(a*) < U(a)} = L% (a)
Analogously, from A*f(a) C A%F (a), we get:

one

R¥(a) = mingscax {RPM(a*) : 3U € Uy~ for which U(a) < U(a*)}
> mingrea- { RPM(a*) : VU € Uy- for which U(a) < U(a*)} = R%(a)

For all U € Uy~ and for all a*~ € A% (a) and a*" € A% (a) we have U(a*") < U(a) < U(a*")
which implies LPM (a*~) < RPM(a**+). Therefore

maz{L°"(a*) : a* € A" (a)} < min{R"M(a*) : a* € A*"(a)}. (41)
From the definition of L% (a) and R%(a), we get
L% (a) = min{L"M(a*) : a* € A (a)}

and
R%(a) = max{R"M(a*) : a* € A*"(a)},
such that (41) gives
Lt(a) < Ri(a).

Observe that for any a € A and for any U € Uy«, LY (a) > L%(a) and RY(a) < R%(a), i.e.
L7(0), R¥(@)) € [L8(a), B4 (a)]. (2
For (11), (42) gives
Cp(a) € [L¥(a), RE(a)].

27

Observe that for any a € A |
L (a) = maz {LY(a) : U € Ua-}

and

RY(a) =min {RY(a) : U € Ua-} .

For (11), if LY (a) < R%(a), then Cx(a) = [L4(a), B (a)]. Instead, again for (11), if L% (a) > RY%(a),
then Cy(a) = 0. O

B.2 Proof of Proposition 4.3

Proposition 4.3 Cy(a) # 0 if and only if the following strict continuity condition is satisfied:
for all a*,b* € A* such that LM (a*) > RPM(b*) there are no two compatible value functions U, U’ €
Uy~ for which U(a) > U(a*) and U'(b*) > U'(a).

Proof. Let us observe that if for a € A, Cy(a) = 0, then there exist U, U’ € Uy~ such that
(L7 (a), RY(a)] N [L (a), RY (a)] = 0. (43)

Supposing without loss of the generality that LY(a) > RY'(a), (43) is equivalent to the fact that
there exist a*, b* € A* for which LPM(a*) > RPM(b*), U(a) > U(a*) and U’(b*) > U'(a), such that

LY (a) = max{LPM(c*) : U(c") < Ula),c* € A*} < LPM(a")
>
RPM(b*) < min{ RPM (¢*) : U'(¢*) > U'(a), " € A*} = RV (a).

)=
Thus, there do not exist U, U" € Uy~ for which U(a) > U(a*) and U'(b*) > U'(a), i.e. strict continuity
holds if and only if for all U,U’ € Uy, [LY(a), RY(a)] N [LY (a), R (a)] # 0, and consequently

C(a) # 0. [

B.3 Proof of Proposition 4.4

Proposition 4.4 The no jump property (12) holds, and therefore Cp(a) = [L%, RY], if and only if
the weak continuity (4.4) holds.

Proof. Let us start by proving that weak continuity (4.4) is necessary for the no jump property (12).
For contradiction, let us suppose that weak continuity does not hold and therefore that:

a) there exist a*,b* € A* such that LPM(a*) > RPM(b*), and U’,U" € Uy~ for which U’'(a) >
U'(a*) and U"(b*) > U"(a), but

b) there does not exist U"” € Uy« for which U"(a*) > U"(a) > U" (b*).

28

Consider
UL (a,a*) = {U € Uy~ : such that U(a) > U(a*)}
Uy (a,b*) = {U € Uy~ : such that U(b*) > U(a)}

Since the set of assignment examples is consistent with all value functions U € Uy~ according
to (4), LPM(a*) > RPM(b*) implies that for all U € Uy we have U(a*) > U(b*). Therefore b)
implies that for all U € Ua+, U(a) > U(a*) > U(b*) or U(a*) > U(b*) > U(a). This means that
UL (a,a*) U U (a,b*) = Use and UL (a,a*) N Uy (a,b*) = 0. Since from a) U'(a) > U'(a*),
UL (a,a*) # () because U’ € US.(a,a*). Analogously, since from a) U”(b*) > U"(a), U . (a,b*) # 0
because U” € Uy.(a,b*). For all Ut € U}, (a,a*) and U~ € Uj.(a,b*) we have

LY (a) = Maz{LPM(¢*) : U (¢") < U*(a), ¢* € A*} > LPM(a¥)
>
RPM(b*) > Min {R"M(¢*) : U (c*) > U (a), ¢* € A*} = RY (a),

such that there is no U € Uy~ for which [LY (a), RV (a)]N[RPM 41, LPM —1] £ (), i.e. for all U € Uy~
and h € [RPM 4+ 1, LPM — 1], h ¢ [LY(a), RY(a)]. This means that no jump property (12) does not
hold. Thus we proved that (4.4) is necessary for the no jump property (12).

Now we prove that (4.4) is sufficient for the no jump property (12) to hold. Two cases are possible:

1) for all a*,b* € A* such that LPM(a*) > RPM(b*) there do not exist U’,U"” € Ua~ for which
U'(a) > U'(a*) and U"(b) > U"(a),

2) there exist a*,b* € A* and U',U"” € Ux~ such that LPM(a*) > RPM(p*) and U'(a) > U'(a*)
and U"(b") > U"(a).

Case 1) For 4.3 Cy(a) # (). Remembering that

On(a)= () 12V(a), RV ()],

Uel 4+
Cy(a) # (0 implies that for all U, U” € Upy-,
L (a), R (a)] N [L7"(a), B ()] # 0, (44)

because Cy(a) C [LY (a), RV (a)] N [LY" (a), RV" (a)]. Remembering that

Crla) = | [2V(a), RV (a)]

Uel 4+

from (44) we have that (12) is satisfied, i.e. there are no jumps in the classes of possible assignment.
Case 2) Let us observe that

LY (a) = maz{LPM (") : U'(¢*) < U'(a), " € A"} < LPM (ax)
>
RPM (bx) < min{RPM(¢*) : U"(¢*) > U"(a),¢* € A*} = RY"(a)

such that
(L7 (a), R ()] N [LY" (a), R (a)] = 0

29

and therefore there could be a jump with respect to some classes C}, belonging to [LPM (b*), RPM (a*)].
However, for weak continuity (4.4), we have that there exists U"” € U for which U (a*) > U"(a) >
U"(b*) and thus

LUW(a) _ max{LDM(C*) . U///(C*) S U///(a)’c* c A*} Z LDM(b*)

and
RU///(a) _ min{RDM(C*) . U”/(C*) Z U"'(a),c* c A*} S RDM(CL*),

such that, for proposition 3.1,
LPM(p*) < LV (a) < RV (a) < RPM(a¥).

If there does not exist any other d* € A* different from a* and b* such that U"(a*) > U"(d*) >
U"(b*), we have LYV (a) = LPM(b*) and RV" (a) = RPM(a*), such that

L (a), R (a)] = [LPM(b"), RPM (a"),

and therefore there is no jump with respect to classes C}, belonging to [LPM (b*), RPM (a*)].
If instead there exists some other d* € A* different from «* and b*, such that U"(a*) >

U"(d*) > U"(b*), there could continue to be some jump with respect to to classes C} belonging
to [LPM(b*), RPM (a7)], if

1) U"(a) > U"(d*) and LPM(d*) > RPM(b*), or
2) U"(a) < U"(d*) and RPM(d*) < LPM(a*).
In fact:
e in case 1), we would have
LY (a) = maz{LPM(c*) : U"(c") < U"(a),c" € A"} > LPM(d*) > RPM (")
such that [LY"(a), RV (a)] N [LY" (a), RY" (a)] = 0;
e in case 2), we would have
RY"(a) = min{RPM(¢*) : U"(¢*) > U"(a),c* € A*} < RPM(d*) < LPM(a*)
such that [LY (a), RV (a)] N [LY" (a), RY" (a)] = 0.
However, observe that for weak continuity (4.4), we have that there exist U™, UY € U4~ for which

U%(a*) > U%(a) > U™(d*) and U*(d*) > U"(a) > U™(b*), such that we can repeat the same
reasoning until there is no more space for some jump. O

30

B.4 Proof of Corollary 4.1

Corollary 4.1 If the set Ua+ of compatible value functions satisfies the weak continuity (4.4),

the example-based sorting procedure assigns each reference action a* € A* to an interval of classes
[Lp(a*), Rp(a®)] € [LPY(a*), RPM (a”)].

Proof. Since we are supposing that weak continuity (4.4) holds and for 4.4, in this case Cp(a) =
[LY(a*), R%(a*)]. Moreover, for proposition each compatible value functions in the corresponding
example-based sorting procedure assigns each reference action a* € A* to an interval of classes such
that

LY(a*) > LPM(a®) (45)
RY(a*) < RPM(a*). (46)
Therefore also
Lp(a”) = LY (a") (47)
Rp(a”) < R”M(a”), (48)
which gives [LY(a*), R%(a*)] C [LPM (a*), RPM (a*)]. O

B.5 Proof of Proposition 4.5

Proposition 4.5 [f the set Ua+ of compatible value functions is convez, the Cp(a) = [L¥(a), R%(a)],
i.e. the no jump property (12) holds.

Proof. We prove that if the set U4~ of compatible value functions is convex, then weak continuity (4.4)
is satisfied, because, on the basis of 4.4, this is sufficient for no jump property (12). Let us suppose
that there exist a*,b* € A* such that LPM(a*) > RPM(b*) and U, U’ € Uy~ for which U(a) > U(a*)
and U’'(b*) > U'(a). Since Uy- is convex, then for all o € [0, 1], also aU + (1 — «)U" € Ua-. Thus we
look for U” = aU + (1 — «)U’ such that U”(a*) > U"(a) > U"(b*), that is

Ul@)+ (1 —a)U'(a*) >Ua) + (1 —a)U'(a) > aU(d*) + (1 — a)U'(b*) (1)

Let us remember that since the set of assignment example is consistent, from LPM(a*) > RPM(b*)
we get U(a*) > U(b*) and U'(a*) > U’ (b*). Thus from (i) we get

aU(a*)+ (1 — a)U'(a*) > aU(a) + (1 — a)U'(a)

=

alU(a*) = U'(a*) = U(a) + U'(a)] > U'(a) — U'(a*)
54

alU'(a*) = U'a)+ U(a) — U(a*)] < U'(a*) — U'a)
54

U'(a*) — U'a)
[U'(a*) = U'a) + U(a) — U(a*)]

a <

and
alU(a)+ (1 — a)U'(a) > aU(b*) + (1 — a)U'(b")

31

=
alU(a) = U'(a) =U®") +U'(b")] > U'(b*) — U'(a)
=
alU(a) =Ub) + U (b*) = U'(a)] > U'(b*) — U'(a)
=
u'(b*) — U'(a)
[U(a) =U®*) +U'(b*) = U'(a)]
This means that if U” = aU + (1 — a)U’ and we fix

o >

U'a*) —U'a) 0 U'(b*) — U'(a)
[U'(a*) = U'a) + Ula) — U(a*)] [U(a) =U") + U'(b*) = U'(a)]
we get U”(a*) > U”(a) > U”(b*), which concludes the proof. O

B.6 Proof of Proposition 4.6

Proposition 4.6 If Ua- is the set of all additive compatible value functions, then Cp(a) =
[L¥%(a), R%(a)], i.e. the no jump property (12) holds.

Proof. On the basis of Proposition 4.5, we have simply to prove that if {4« is the set of all additive
compatible value functions, then it is convex. Observe that, for any U, U’ € U-Ur~ and all a,b € A
if

Ulo) = 3" w05(@) = 3" wy(95(0) = UD),
and . .
U(@) = 3w gs(a)) 2 D, 0)) = U0,

then also

> (auy(g;(a) + (1 = a)us(gs(a) = Z au;(g;(0) + (1 — a)uj(g;(b))

J=1

J
such that for all j € G ufj(z) = (au;(g;(z)) + (1 — @)u;(g;(z)) is an additive compatible value

function. Since U” = aU + (a)U’, then if Uy« is the set of all additive compatible value functions, it
is convex. 0

Therefore, if U, U’ € Uy~ are additive compatible value functions, also U"(x) = 7, u//(g;(a)

32

