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METHODES DE RANGEMENT A PARTIR DE RELATIONS VALUEES :
CARACTERISATION D'UNE METHODE FONDEE
SUR LES FLUX SORTANTS ET ENTRANTS

Résumé.

Le but de ce cahier est d'étudier une méthode permettant d'obtenir un préordre partiel au départ
d'une relation de préférence valuée. Cette méthode, fondée sur la notion de flux sortant et de
flux entrant, est utilisée dans la méthode PROMETHEE L. On montre que cette méthode est
caractérisée par un systeme de trois axiomes indépendants.

RANKING METHODS FOR VALUED PREFERENCE RELATIONS:
A CHARACTERIZATION OF A METHOD BASED ON
LEAVING AND ENTERING FLOWS

Abstract,

In this paper we study a particular method that builds a partial ranking on the basis of a valued
preference relation. This method which is used in the MCDM method PROMETHEE 1, is
based on "leaving” and "entering" flows. We show that this method is characterized by a
system of three independent axioms.



I Introduction

Suppose that a number of decision alternatives are to be compared taking into account different
points of view, e.g. several criteria or the opinion of several voters. As argued in Barrett ez al.
(1990) and Bouyssou (1990), a common practice in such situations is to associate with each
ordered pair (a, b) of alternatives, a number indicating the strength or the credibility of the
proposition “a is at least as good as b", e.g. the sum of the weights of the criteria favouring a
or the percentage of voters declaring that a is preferred or indifferent to b. In this paper we
study a particular method allowing to build a partial ranking, i.e. a reflexive and transitive
binary (crisp) relation!, on A given such information. Since a partial ranking is not necessarily
complete, the method considered in this paper will allow two alternatives to be declared
incomparable. Though this may seem strange, it must not be forgotten that the available
information may be very poor or conflictual. Declaring that a and b are incomparable thus
means that it seems difficult to take, at least at this stage of the study, a definite position on the
comparison of a and b.

Let A be a finite set of objects called "alternatives" with at least three elements. We define a
valued (binary) relation? on A as a function R associating with each ordered pair of alternatives
(a, b) € A2 with a # b an element of [0, 1]. A method & building a partial ranking, or, for
short, a partial ranking method, is a function assigning a partial ranking 2(R) on A to any
valued relation R on A.

In this paper, we study a partial ranking method used in PROMETHEE I (see, e.g., Brans et
al. (1984) or Brans and Vincke (1985)) and defined by:

a 2pe®R) b iff [L(a, R) 2 L(b, R) and E(a, R) £ E(b, R)] (1)
where:
L@, R) = 2 R(a,c) [Leaving flow]
ce A\a}
and
E@,R) = X, R(c,a) [Entering flow]
ce A\a)

1A (crisp) binary relation S on A is reflexive if a S a, for all a € A. It is transitive if for all a,b,ce A,aShb
andb S c imply a S c. Itis complete if foralla,be A,aSborbSa,

2 From a technical point of view, the condition a # b could be omitted from this definition at the cost of a minor
modification of our axioms. However, since it is clear that the values R(a, a) are immaterial in order to rank the
alternatives, we will use this definition throughout the paper.
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It is easily checked that the method defined by (1) is indeed a partial ranking method and that
21/£(R) is not necessarily completel.

We will refer to the partial ranking method defined by (1) as the L/E Method. Besides its use in
PROMETHEE ], the interest of the L/E method lies in its simplicity and intuitive appeal. The
L/E method generalizes, through the use of entering and leaving flows, to the valued case the
idea of declaring that a is preferred to b if a "beats" more alternatives than b and is "beaten” by

less alternatives.

It should be emphasized that the L/E Method makes use of the "cardinal” properties of the
valuations. In fact, it is obvious from (1) that we may well have:
| 21ER) # 21/ER))

where R, is defined by Rq,(a, b) = ¢(R(a, b)) for all a, b € A and ¢ is a strictly increasing trans-
formation on the real line such that ¢(0) = 0 and ¢(1) = 1. Thus this method does not seem to
be appropriate when the comparisons of the valuations only have an ordinal meaning in term of
credibility. '

The purpose of this paper is to present an axiomatic characterization of the L/E method. The
axioms and the characterization are presented in the next section. In a final section we present
our proofs and show how the characterization of the L/E method can be extended to a much
wider class of partial ranking methods.

{I- The main result

Throughout the paper, we note =(R) and >(R) the symmetric and asymmetric parts of 2(R),
i.e. foralla,be A, [a=(R)biff a 2(R) b and b 2(R) a] and [a >(R) b iff a 2(R) b and
Not (b 2(R) a)].

We say that a partial ranking method 2 is non-discriminatory if for all valued relation R on A
and alla,be A,
[R(a, b) =R(b, a) and R(a, ¢) = R(b, ¢), R(c, a) = R(c, b) forallc € A\{a, b}] = a=(R)b.

Non-discrimination says that if two alternatives are compared similarly vis-d-vis any other
alternatives then they should be considered indifferent. It seems rather an unobjectionable
property in this context. It is obvious that the L/E Method is non-discriminatory.

1 This will only happen if R has some special properties, e.g. if R(c, d) + R(d, ¢} is constant for all¢,d € A.
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Non-discrimination has strong connections with the classical property of neutrality (see, e.g.,
Henriet (1985) and Rubinstein (1980)). A partial ranking method 2 is said to be neutral if, for
all permutation ¢ on A, for all valued relation Ron Aand all a,be A:

a 2(R) b < o(a) 2(R°) o(b)
where R is defined by R%(c(a), o(b)) =R(a, b)foralla, be A,

Neutrality expresses the fact that a partial ranking method does not discriminate between
alternatives just because of their labels. It is easily checked that neutrality implies
non-discrimination for partial ranking methods always leading to a complete binary relation.
When incomparability is tolerated, neutrality implies that for all valued relation R on A and all
a,be A, ‘

[R(a, b} =R(b, a) and R(a, c) =R(b, c), R(c, a) =R(c, b) forallc € A\{a,b}] =

a=(R) b or (Not[a 2(R) b] and Not[b 2(R) a]).

Non-discrimination excludes the latter case.

A ranking method is said to be monotonic if it does not respond "in the wrong direction” to a
modification of R. More formally, 2 is monotonic if, for all valued relation R on A and all
a,be A:

' a2R)b = a2R"b
where R' is identical to R except that [R(a, ¢) < R'(a, ¢) or R{c, a) > R'(¢c, a) for some
ce A\{a}] or [R(b, d) > R'(b, d) or R(d, b) < R'(d, b) for some d € A\[b}].

A partial ranking method is strongly monotonic if it responds "in the right direction” to a
modification of R. More formally, & is strongly monotonic if, for all valued relation R on A

andallia,be A:
a2R)b = a>R)b,
where R’ is as before.

As defined here, monotonicity seems rather an unobjectionable property in the context of partial
ranking methods. Strong monotonicity is much more demanding, excluding, in particular, the
use of any threshold in the treatment of the valuations. However, it is obvious that the L/E
Method is strongly monotonic and thus monotonic.

In order to introduce our final axiom let us recall some well-known definitions used in Graph
Theory. A digraph consists in a set of nodes X and a set of arcs U < X2, We say that a is the
initial extremity and b is the final extremity of the arcu=(a,b) e U.
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A cycle of length q (abbreviated as a g-cycle) in a digraph is an ordered collection of arcs (u1,
uz, ..., Ug) such that fori =1, 2, ..., q, u; # uj41, one of the extremities of u; is an extremity of
u;_; and the other an extremity of u;,1, where ug is interpreted as ug and ugy as uj. A cycle is
elementary if each node being the extremity of one arc in the cycle is the extremity of exactly
two arcs in the cycle. An arc u; in a cycle is forward if its common extremity with uj.; is its
initial extremity and backward otherwise. A cycle is said to be alternated if every forward arc in
the cycle is followed by a backward arc and vice versa. Thus, the length of an alternated cycle
is necessarily even.

Define A+ and A- as disjoint duplications of A. We note a+ (resp. a°) the element of A+ (resp.
A-) corresponding to a € A. Consider a digraph G which set of nodes is X=AHUA- and which
set of arcs is U = {(x*, y) € X2:xte At, y- € A-and x # y}. It is obvious that there is a
one-to-one correspondence between valued relations on A and valuations between 0 and 1 of
the arcs of G. In the sequel, we identify a valued relation R with its associated valued digraph
in which for all a, b € A the valuation vk(u) of the arc u = (at, b-) is R(a, b). It should be
noticed that all cycles in G are alternated by construction.

A transformation on a elementary cycle consists in adding a positive or negative quantity to the
valuations of the forward arcs in the cycle and subtracting it from the valuations of the back-
ward arcs. A transformation on an elementary cycle is admissible if all the transformed
valuations are still between 0 and 1. When we apply an admissible transformation to the graph
associated with a valued relation R, we obtain another valued relation R’ and we say that R
has been obtained from R through an admissible transformation.

A partial ranking method is independent of alternated cycles if for all valued relations R and R"
[R' can be obtained from R through an admissible transformation on an elementary alternated
4-cycle or 6-cycle] = 2(R) =2(R).

It is easy to see that if R' can be obtained from R through an admissible transformation on an
clementary alternated cycle then L{a, R) = L(a, R') and E(a, R) = E(a, R") for all a & A so that
the L/E Method is independent of alternated cycles (see Figure 1).



Figure 1 : An admissible transformation on an elementary alternated 4-cycle.

a+

b+ ®

ct+

d+ =

It is easy to see that the L/E method is not the only partial ranking method that is
non-discriminatory, monotonic and independent of alternated cycles. This is also the case for
the method which, for all a, b € A and all valued relation R on A, always declares that
a=(R) b. This method, however, is not strongly monotonic. Unfortunately, the L/E method is
not the only partial ranking method that is non-discriminatory, strongly monotonic and
independent of alternated cycles. For instance, this is also the case for the following method
based on net flows:

a2(R) b iff E(a,R) - L(a, R) 2 E(b, R) - L(b, R),
which has been characterized by Bouyssou (1990).

Nevertheless, it turns out that partial ranking methods that are non-discriminatory, (strongly)
~ monotonic and independent of alternated cycles have strong connections with the L/E Method
and we have the following:



Theorem.

If a partial ranking method 2 is non-discriminatory, monotonic and independent of alternated
cycles then, for all valued relation R on A and all a, b € A, [a 2LE(R) b = a 2(R) b].
Furthermore, if 2 is strongly monotonic then, for all valued relation Ron A and alla, be A,
[a>1ER) b=>a>(R) bl.

This theorem says that the L/E method is the smallest (in the sense of inclusion) partial ranking
method that is non-discriminatory, monotonic and independent of alternated cycles. If & is non-
discriminatory, monotonic and independent of alternated cycles, it may happen thata > g(R) b
and a =(R) b. The second part of the theorem says that such a situation is impossible if & is
strongly monotonic. Thus the L/E method "imposes" its indifferences and strict preferences to
every partial ranking method that is non-discriminatory, strongly monotonic and independent
of alternated cycles. These partial ranking methods differ from the L/E method by comparing in
terms of indifference or strict preference alternatives that were declared incomparable with the
L/E Method.

We already noticed that the L/E Method is non-discriminatory, strongly monotonic and
independent of alternated cycles. The proof of the theorem appears in the next section. Let us
first observe that these three axioms are independent as shown by the following examples:

i-Let®d: A — {1, 2,..., |Al} be a one-to-one function.

Define 2 as:

a2(R) b iff [Li(a, R) 2Ly(b, R) and E(a, R) £E(b, R)]

where L;(c, R) = L{c, R).®@(c), forallc € A.

This partial ranking method is stongly monotonic (and, thus, monotonic) and independent of
alternated cycles but not non-discriminatory.

ii- Define 2 as:

a2(R) b iff E(a, R) 2 E(b, R) and L(a, R) <L(b, R).

This partial ranking method is non-discriminatory and independent of alternated cycles but not
monotonic (and, thus, not strongly monotonic).

iii- Define 2 as:
a2(R) b iff [Ls(a, R) 2 Ls(b, R) and Es(a, R) < E3(b, R)]
where La(c, R) =2, R(c,d)2 and Es(c,R)= X, R(d, c)2 forallce A.
de A\c} de A\c)
This partial ranking method is non-discriminatory and strongly monotonic but not independent
of alternated cycles.



lll- Proofs and remarks

Lemma 1. For all valued relations R and R', if [R' can be obtained from R through an
admissible transformation on an elementary alternated cycle] then [R' can be obtained from R
through a finite number of admissible transformations on elementary alternated 4-cycles and/or
6-cycles].

Proof of Lemma 1. |
The proof is by induction on k where 2k is the length of an elementary alternated cycle in G. If
k = 2 or 3, then the lemma is proved. Suppose now that the lemma is true for k = 3 and let us

show that it is true for k+1.

]

Consider an elementary alternated cycle C of length 2(k+1) in G, i.e., an ordered collection of
ordered pairs of alternatives ((xi*, vi") ; Xi1™, ¥i) 1 i= 1, 2, .., k+1) with for all i, j € {1, 2,
s k+1}:

Xi # Yi, Xisl # Y (because arcs of the type (at, a-) are not in G) )
and _
X; # X; and y; # y; (because the cycle is elementary) 3)

where Xy is interpreted as x;.

Let us show that any admissible transformation on C can be obtained through a finite number
of admissible transformations on elementary alternated cycles of length greater than 4 and
smaller than 2k. In order to show this, we claim that for some j e {1, 2, ..., k+1},

C; = ((x1%, y1)» (X2%, y1), (x2%, y27), (X3, ¥2°), -.os (%51 ¥7)y Kats ¥7))

and

C'i = ((x1*, ¥77)s Kjsrts ¥i7)s (Kjsdts ¥ir1)s Kjazhs Yie1ds vos (k1™ Vi1 (K15 Yi#17)
both correspond to elementary alternated cycles in G.

Condition (2) implies that we must look for candidates in {2, 3, ..., k}. From (3), we know
that {2, 3, ..., k} contains at most one element t such that x; = y;. Let J be the set obtained by
removing t, if such a t exists, from {2, 3, ..., k}. We have Il 2 (k-1)-1 = k-2. Since k=3, J is
not empty and the claim is proved.

By construction, Cj and C'j are both of length greater than 4 and smaller than 2k (see
Figure 2). These two elementary alternated cycles have only the arc (x;*, yj") in common. This
arc is backward in C; and forward in C';.



Suppose now that R' has been obtained from R through an admissible transforn_jlation of e on
C. If € = Q, there is nothing to prove. Suppose now that € > 0 (the other case being sym-
metric). '

If R(x1, y;) > 0 then we can find a sufficiently large integer n such that performing a transfor-
mation of &/n on C;is an admissible transformation. After this first transformation, performing
a transformation of €/n is an admissible transformation on C';. It is easily seen that, after
having repeated n times these transformations, we obtain R'.

If R(x1, y;) = 0, then performing a transformation of € on C';is an admissible transformation.
After this first transformation, performing a transformation of € on C; is an admissible
transformation. We obtain R' after these two transformations. This completes the proof of

lemma 1. 0

Figure 2 : A transformation on C via transformations on C; and C';.
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The following lemma establishes a crucial link between admissible transformations on elemen-
tary alternated cycles and Leaving and Entering flows.



Lemma 2. For all valued relations R and R,

[L(a, R) =L(a, R") and E(a, R) =E(a,R") forallae Al &

[R' can be obtained from R through a finite number of admissible transformations on elemen-
tary alternated cycles].

Proof of lemma 2.

The &= part is obvious. In order to prove the = part, suppose that for some R and R' and for
allc e A we have L(c, R) =L(c, R") and E(c, R) = E(c, R". If R =R’ the lemma is proved. If
R # R' then R(a, b) # R'(a, b) for some a, b € A with a # b and we suppose for definiteness
that R(a, b) > R'(a, b) (the other case being symmetric). We claim that R(a, d) < R'(a, d) for
some d € A\[a}, for otherwise R(a, d) = R'(a, d) for all d € A\{a, b} and R(a, b) > R'(a, b)
would contradict L(a, R) = L(a, R"). Using a similar argument, there is a ¢ € A\{d} such that
R(c, d) > R'(c, d). This process leads to the construction of an ordered collection of arcs in G
[(at, b)), (at, d°), (ct, d°)]. Repeating the same process will lead to the creation of an elemen-
tary cycle in G since the number of alternatives is finite. Let A be the minimum over the arcs
(s*, t) in the cycle of IR(s, t) — R'(s, t)l. It is easily checked that adding A to the arcs in the
cycle such that R(x, y) < R'(x, y) and subtracting it from the arcs in the cycle such that
R(x, y) > R'(x, y) is an admissible transformation on the cycle. After peforming this
transformation, we thus obtain a valued relation R;. If Ry =R’ the lemma is proved. If not, we
can repeat the same argument starting with R; instead of R.

Because A is finite, there is only a finite number of arcs such that R(x, y) # R'(x, y). Since, at
each step the number of arcs on which the current relation and R' are different is decreased by
at least one unit, this process will terminate after a finite number of steps, which completes the
proof of lemma 2. O

Proof of the Theorem.

In order to prove the first part of the theorem, we have to show that 2 i3 non-discriminatory,
monotonic and independent of alternated cycles then:

L(a, R) 2 L(b, R) and E(a, R) <E(b,R) = a 2(R) b.

Let us first show that if 2 is non-discriminatory, monotonic and independent of alternated

cycles then:

L(a, R) = L(b, R) and E(a, R) =E(b, R) = a =(R) b. @)
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In order to prove (4) consider a valued binary relation R on A such that L(a, R) = L(b, R) and
E(a, R) =E(b, R) for some a, b € A. Define R by:

R(a, b) = R(b, a) = (R(a, b) + R(b, a))/2,

R(a, ¢) =R(b, ¢) = (R(a, c) + R(b, c))/2 for all c € A\{a, b},

R(c, a) = R{(c, b) = (R(c, a) + R{c, b))/2 for all c € A\{a, b},

R(c,d)=R(c, d) forall c,d € A\{a, b}.

It is easily checked that R is a valued relation on A.

We have R(a, b) = R(b, a), R(a, c) = R(b, ¢) and R(c, a) =R(c, b) for all ¢ € A\{a, b}. Thus
non-discrimination implies a =(R) b. i
We also have L(c, R) =L(c, R) and E(c, R) =E(c, R) forall c € A. Given lemma 2, we know
that R can be obtained from R through a finite number of transformations on elementary
alternated cycles. Given lemma 1, independence of alternated cycles implies 2(R) = 2(R).
Thus a =(R) b which establishes (4).

Let us now show that if 2 is non-discriminatory, monotonic and independent of alternated
cycles then: ‘

L(a, R) 2 L(b, R) and E(a, R) £E(b, R), at least one of these inequalities being strict,
=>a2R)b ' 5

wihich will complete the proof of the first part of the theorem.

In order to prove (5) suppose that L(a, R) = L(b, R) and E(a, R) < E(b, R), at least one of
these inequalities being strict. We note 8 = L(a, R) - L(b, R) and { = E(b, R) - E(a, R).

We define the following sets of alternatives:

Ai={ce A\{a,b}:R(a,c)>0},A;={de A\{a,b} :R(b,d) <1},
As={ee A\{a,b}:R(e,a)<1}, Ay={fe A\{a,b}:R(f,b)>0},
and denote by B; the complement of A; in A\ a, b}. If:

8 < X R@c)+ X (1-Rb,d) : (6)
ce Ay de Ay

and

£ < Y RED)+ 2 (1-Re,a) 0
fe Ay e€ Ag

it is easy to see that it is possible to obtain a valued relation R’ identical to R except on the
ordered pairs of alternatives (a, ¢) with ¢ € Ay, (e, a) withe € Agz, (b, d) withd € A; and
(f, b) with f € Ay4, such that L(a, R") = L(b, R) and E(a, R") = E(b, R"). Thus (4) implies
a=(R") b and repeated applications of monotonicity lead to a 2(R) b.
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Let us show that (6) holds, the proof being similar for (7). We have:

L{a, R) = 2, R(a,c)+R(a, b).
- Ce Ay
and

L(b,R)= X, R(b,d)+R(b, a) + IBal.
de Ay

thus,

8= Y R(a,c)+R(a b)-2X R(b,d)-R(b,a)- Byl
ce A de Az

and we have to show that:

Y R(a,c)+R(zb)-Y Rb,d)-Rb,a)-1Byl <X R@c)+2 (1-Re,qd),ie.,
ce A1 de A2 ce Al de Ay

|Asl + IB2l 2 R(a, b) - R(b, a).

Noticing that IAjl + IBjl = Al — 2, it is easy to see that (6) holds as soon as IAl 2 3, which
completes the proof of the first part of the theorem.

In order to prove the second part of the theorem, we have to show that if & is
non-discriminatory, strongly monotonic and independent of alternated cycles then:

L(a, R) 2 L(b, R) and E(a, R) < E(b, R), at least one of these inequalities being strict
=a>R)b ty
Since strong monotonicity implies monotonicity, we know that (4) holds. Then, using strong

monotonicity instead of monotonicity in the proof of (5) shows that (8) holds which completes
the proof of the theorem. 1

We conclude this paper by pointing out a straightforward extension of our results. Let:

Ly@R) = X ¢ (R(3,¢)) and Ey(a, R) = X ¢ R(c, 2))
ce A\(a)} ¢ € A\[a}

where ¢ is a strictly increasing transformation on the real line such that ¢(0) =0 and ¢(1) = 1. Tt
is not difficult to see that a similar method of proof can be used to characterize the partial
ranking method defined by:

a2(R) b iff [Ly(a, R) 2 Ly(b, R) and Ey(a, R) <E(b, R)],

by keeping non-discrimination and strong monotonicity unchanged and replacing our third
axiom by:
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[R'y can be obtained from R, through an admissible transformation on an elementary alternated
4-cycle or 6-cycle] = 2(R)=2(R’)

where R, and R'y are defined by Ry(a, b) = ¢o(R(a, b)) and R'q,(a, b) = ¢(R'(a, b)) for all
a,be A.
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