CAHIER DU LAMSADE

Laboratoire d’Analyse et Modélisation de Systémes pour 1’Aide & la Décision
~ (Université de Paris-Dauphine)
Unité Associée au CNRS n° 825

ON HANDLING DENSE COLUMNS OF CONSTRAINT MATRIX
IN INTERIOR POINT METHODS
OF LARGE SCALE LINEAR PROGRAMMING !

CAHIER N° 105

J. GONDZIO ?
avril 1991

Received : October 1990.

! The results discussed in this paper have been obtained when the author was staying at LAMSADE. A
preliminary version of the paper has been presented at the Applied Mathematical Programming and Modelling
Symposium APMOD '91 in London, January 14-16, 1991,

? Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-47 Warsaw, Poland.

CONTENTS

Pages
Résumé 1
Abstract ' 1
1. Introduction 2
2. Dense columns in linear programs ‘ 5
3. Some theory of splitting 6
4. Implementation 9
5. Numerical results 13
6. Conclusions 16

References ' 16

Une méthode de traitement des colonnes pleines
pour des programmes linéaires de grande taille

dans les méthodes intérieures
RESUME

Dans le cadre des méthodes intéricures, une matrice de la forme AAT doit &tre inversée
4 chaque itération. Si la matrice A contient des colonnes pleines, celles-ci, lors du
produit AAT, créent des sous-matrices pleines. Le facteur de Cholesky devient alors non-
creux et Iefficacité du code linéaire décroit. Nous proposons donc, dans cet article, une
méthode de traitement des colonnes pleines de programmes linéaires de grande taille.
Elle consiste & remplacer chaque colonne pleine par un ensemble de colonnes ayant
moins d’éléments non nuls. Ainsi, la densité de la matrice AAT et, par conséquent, celle

du facteur de Cholesky, s’en trouvent diminuées.
Mots-clés: Projections de Karmarkar, Programmation Linéaire, Colonnes Pleines

On handling dense columns of constraint matrix
in interior point methods

of large scale linear programming
ABSTRACT

A method is proposed for handling dense columns of the constraint matrix of large scale
linear programming problems. Such columns are known to create dense windows in
matrix AAT that has to be inverted at every iteration of the interior point method.
Consequently, Cholesky factor of AA™ becomes dense, which degrades the efficiency of
the LP code. In the method considered, all dense columns are then split into shorter
ones. One dense AAT window of large size is thus replaced with p windows each of size
p times smaller, leading to a remarkable reduction of the number of nonzeros in the

matrix to be inverted and in its Cholesky factor.

Key words: Karmarkar’s Projections, Linear Programming, Dense Columns,

1.. Introduction

We are concerned with solving linear programming problem

minimize 'y, (1a)
subject to Ay = b , (1b)
v= 0, (1c)

where A € Rmmnj c,y R" and b « R®. We assume that an interior point
method derived from a logarithmic barrier approach is applied' to lit.
Algorithmic techniques however are not discussed in this paper (the reader
interested in them is referred to papesrs of Adler et al. (1288b), Gill et
al. (1986), Choli et al. (1890) and cother references therein).

Instead, a method is proposed for solving eguation

AAx = d, (2)
where AAT e R™™ and x,d = D?m, which is crucial for the efficiency of the
whole - LP code. Let us mention that the eguation that have to be solved at
every iteration of the method has in general slightly different form from
(2). For ease of presentation however, we have omitted matrix D in it and
the fact that the matrix A that appear in (2) may differ from the
constraint matrix (1b) swith a bordered rows.

Although the problem constraint matrix A is usually very sparse,
matrix AAT in equatioﬁ (2) may be quite dense. Any colum of matrix A that
has k nonzero entries causes creating dense window of size kxk in matrix
AAT (subject to its symmetric permutation). Standard approaches to solve (2)
such as applying @R factorization to matrix’ A" or computing Cholesky
decomposition of matrix AT {see e.g., chapters 6 and b of the bock of Gélub
and Van Loan (1983), respectively) may then be completely inefficient,
especially if k is comparable with m. Matrix R or Cholesky factor L
contain in such case triangular dense window of dimension at least k (its

size is often larger due to the fill—in i.e. new nonzero elements added

during the factorization process).

For the above reasons several methods for “special treatment” of dense
columna in the constraint matrix have been proposed. The first one is to
avoid formalating AT explicitly and to apply iterative procedure of
conjugate gradient (see e.g., Golub and Van Loan 1883, chapter 10) to solve
(2). A sparse preconditioner LSL; = ASA; . where As is a sparse part of
A, i.e. it is matrix A with dense columns removed, is used to accelerate
the' convergence and improve rumerical properties of the method (see e.4.,
Munkegaard 1980). This spproach is due to Gill et al. {1986) and was
implemented for example by Adler et al. (1889a). Ancther approach, due to
Gill et al. (1888), is to handle dense colummes in the form of the Schur
complement and to apply Shermen-Morrison-Woodbury formula (see e.82., Hager
1989) to solve egquation (2). It 1s not iterative in character and when
carefully implemented {ses e.g., Lustig et al. 1990) it proved to be very
efficient.

However, dense columns are not so often present in real-1ife linear
programs (in extended‘ Netlib collection of Gay (1985) only 4 of all 86 prob-
lems cortain columms dense encugh to motivate applying special techniques to
handle them). A need then arise for rather easily jmplementable me.thod that
does not add significant overhead to the LP code but well prevents degrading
influence of dense columne on the speed of computing projections.

In this paper such a method is proposed. A procedure for preprocessing
the linear program is suggelsted which ends wp with oreating equivalent
problem that has better structured constraint matrix A. 'Consequently, the
number of nonzero elements of matrix AAT is remarkably smaller than that of

AAT. A significant reduction of nonzero counts of Cholesky factor of AAT

can thue be obtalned.

| To achleve this, any variable associated with dense column of length k
is replicated and the dense column is cut into pieces. Variable Yy is

replaced by p variables Vi1 Vigr - ,yip each of these being associated

with appropriate part of the long columm that has only k/p nonzero
elements. Summing up, instead of k° nonzero elements in AA° we have
T

p(k/p)2 = kz/p nonzero elements in p small dense windows of A (we

neglect terms linear on k). Additionally, p-1 new constraints of type

yij - yij+}. = 0 1 J = 1:21---:}?'1; (3)

are bordered to a linear program.

- Let us observe that the method proposed is particularly easy to
implement and that it can be includéd into the preprocessing of a linear
program. Conseguently, the overhead added by it to the LP code is
negligible.

The method 1is derived from technigues used widely in multistage
stochastic linear programming, where thé variables of earlier stages are
sometimes replicated te allow formulating all the scenarios inderendently -
(see a.g., Rockafellar and Wets 1987 and Lustig et al. 1989) and obtain
easily decomposable structures. Mulvey and Ruszezynski (1880) indicate
advantages of applying such appreach to two specially structured linear
prograxmﬁing problems: multistage stochastic and multicommodity network ones.
Additionally, since in these particular problems the number of lmk:mg
constraints of type (3) may be very large, they suggest spplying augmented
Lagrangian to hand}.e them.

In this paper general large scale linear programming problems are
addressed. The method presented is an easily implementable remedy for dense
columns in the constraint matrix. It has been experimentally implemented and
compared with a direct approach i.e. Cheolesky factorization of AAT . Preli-
minarf; computational resultes proved that the application of the method of
splitting significantly accelerates computation of orthogonal projections.

The paper is organized as followe. In Section 2 a motivation for
splitting dense columns is given. In section 3 a detailed description of the

method is made and in Bection 4 issues of implementation are analveed.

i

Finally, -Sections & and 6 bring numerical results and conclusions,

respectively.

= Dense columns in linear programs

We start this section from showing the degrading influence of the
existence of a single dense column in the LP constraint matrix on the
efficiency of an interior roint method of linear programming. The follosiing
example illustrates the problem. Let us suppose that m = 8, n = 9 and the

sparsity pattern of a constraint matrix has the form

P3N HARKANNM d

¥ X HMMMMMMM xd

X X - HKIMMINHNK xxdd

x x MUK KKNRK KA ‘
A= I % , AAT = | xooeuaexx and L = |=uxad s {4)

® x HHMMRH KN | e

® x HHRXKNHHK xunRxExd

x x MMM MM KRHHHRXM A

so AAT is an 8«8 full matrix with 28 elements below the diagonal that
have to be sgtored. The Cholesky factor L has also 28 entries below the
-diagonal. In other words, full matrix technology has to be applied to solve
this sparse problem (let us observe that every simplex basis matrix of the
problem is trisngular and sparse).

Let ug now introduce variables Yy1s Y10 {both equal to yl),‘split the
first column of A into two equal parts and add a constraint of type (3)

that ties up replicated varisbles. The new conetraintlmatrix hags now the

form

X MMM x d

» ® MMMN 4 xd

X ® - HHRK X wxd 4

M p- 4 MMM x MMM

= » x = HHMMN and = d 5
A X x - AA 330K L sd g (8)

Y ® M BN xxd
x x oy ux s

1-1 MRRMHHNND [T TSI ST |

80 AAT is a 9«9 matrix with only 20 elements below the diagonal and so is
its Cholesky factor.
Consequently, instead of solving linear program with constraint matrix

{4) we may golve better structured problem with matrix (5) and (at every

o

iteration of the interior point method) take advantage of the lower density

of Cholesky factor L of AA .
3. Some theory of splitting

We show in this section how the splitting can be done in a given linear
program to obtain equivalent problem that has better sparsity pattern, i.e.
leaéing to sparser Cholesky factor of matrix AAT.

Let us consider a linear programming problem of the form (1). To
simplify the presentation we assume that the first column of 1ts constraint
matrix is eplit into two parts. We thus introduce partition

A= I:al' Ag J : | (6)

and define an (m+l)=x(n+l) matrix

(1)

which together with vectors

b= (bT,O)T = EF\;m‘*‘l’ (sa)

g = (eq,0,0p, 0T & B, (8)
_ T n+l '

¥ = (Zyq5¥y0¥ps---¥) €R | (8c)

determine new LP problem

minimize QTM) (9a)
subject to v = b, (9b)
¥y=0, , {9¢)

Let us suppose that-
(10)

8y%84p T 8y -

Observe that v is a feasible point of (1) if and only if ¥y defined by

yl = Ell = 3{12 (116.)

vy=¥y . JF 2,3,...,n . (11b)

1

ig a feasible point of (9).

Proposition 3.1. Optimal solution of (1) exists if and only if optimal

solution of (8) exists and if they both exist, then they satisfy (11).

We omit straightforward proof of this result and pass to discuss 1its
practical significance.

Any dense column of the constraint matrix containing, say, k nonzero
entries can be split into two parts (equation (10)) containing g and k-g
elements, respectively. Thus, instead of a dense window of size k«k in AAT
we obtain two dense windows of sizes (a+l)x(q+l) and (k—q+i)x(k—q+1),
respectively. The best possible reduction of nonzero elements in AAT is
obviously obtained when 4q = k/Z.

Let us observe that part ayo of (7) can be further split into two
.ahorter parts {a new linking constraint will have to be bordered to a
constraint matrix then). It is equivalent to splitting the original column
8y of (6) into three parts. More generally (as follows from propogition 3.1
by induction), any dense column of length k can be eplit into p equal parts
so the dense }_{xk window in AAT may be replaced with p dense windows each
of dimension k/p+l or k/pt2 in AAT matrix. If we neglect linear terms and
emit completely the influence of the rest of the constraint matrix

(submatrix A, in equality (8)) on the sparsity structure of AAT, then we

]
may conclude that instead of k> elements in AA® we now deal with K /P

nonzero entries in AAT. Such substantial reduction of the number of entries
in the matrix M;T is supposed to lead to a remarkable savings of space
required by its Cholesky factor and to a significant acceleration of both

symbolic and mumerical phases of the decomposition of AAT.

Another advantage of the approach presented is that splitting itself

does not cause nonsingularity of AAT.

Proposition 3.2. Let A and A be defined by (6) and (7), respectively. If

(10) holds and rank(A) = m, then rank(A) = m + 1.

Proof. The proof follows easily the observation that replacing the second

column of (7) by the sum of ite two first columns we obtain

Let ug mention that removing dense columns that tzkes place when a
preconditioner for conjugste gradient method is defined or Schur complement
approach is apﬁlied, may cause sericus stability problems. I rank(AO) is
lese then m, which is often the cage since the removed dense colunn is
usually an integral part of the problem formulation, then ADA; becomes
singular. The Schur complement spproach would fail in such‘ a situation while
the corjugate gradient method might still work under the condition that the
rank deficiency of ADA; is removed to allow computing the preconditioner
(see e.g., Munksgaard 1980). To achieve this, a positive constant is usually
added to too small diagonal elements of AOAE when its Cholesky factor is
computed or columns that have too emall disgonal elements are simply
replaced with appropriate unit vectors (see e.g., Adler et al. 1883b). It
leads however to lees accurate preconditicner, which may slow dowm the
convergence of the method. It may seem that introducing artificial variables
should ensure nonsingularity of AOA; allowing safe applicatién of Schur
complement method., Computational practice of Lustig et al. (1890) did not

however confirm this zince artificlial variables tend to zero when optimum is

approached and the instability still manifests iteelf (an automatical switch

to preconditioned conjugate gradient method is suggested in such case).

In the approach presented in this paper the analogous difficulties are
less probable (proposition 3.2. ensures that AAT is always nonsingular). If
they anyway occur, then there still exists the peossibility of eswitching to

preconditioned conjugate gradient method.

4.) Implementation

The method of splitting dense columns of the constraint matrix has been
experimentally implemented. It is advantageous that the analysis of the
sparsity pattern of A have to be done only once and that it can be
completed before the solution of the problem starts. It thus can be inciuded
to preprocessing of the LP coefficient matrix.

Let us mention however that it is not the only way of implementing it.
Vanderbei (1990} suggests that it may be preferable to solve the problem in
the same form as stated originally and use splitting technigue implicitly in
a module that solves equation (2). Advantage can then be taken of the
smaller size of the problem since the linking constraints of type (3) are
not bordered to it. On the other hand, the analysis that is necessary to
determine optimal splitting must be repeated in such case at every iteration
of the interior point method, which leads to an unnecessary increase of the
computation time. Vanderbei (1990) selects the simplest possible splitting
(every column containing more than k nomzeros, where k is a given threshold
value, is split into a set of columns, each containing exactly k nonzeros
except for the last column, which containse the remainder of entries and the
nongeros are allccated to the new columns in the ordér in which they appear
in an internal data structure). The cost of splitting in his method is thus
negligible while in the method presented in this paper an advanced analysis
of the sparsity pattermn of A is made to determine optimal splitting that

ensures minimim storage requirements and maximum acceleration of the

Cholesky factorization. Although the time of splitting inrour implementation
never exceeds 10% of the time required by the reordering and the symbolic
factorization, we want to avoid adding it at every iteration.

Let us now pass to the description of a heuristic that has been applied
to determine the partition of a long column. First, let us analyse in more
detall the consequences of splitting a column of A for the sparsity pattern
of AAT. As before, for ease of presentation we assume that column ay in

{8} is completely dense and that it is cut into two equal parts

O A

A= . {123
N b e
..... 473 L

If column a4 of {6) is not completely dense, then the analysis may alwaye
be restricted to a submatrix of A built of those rows only which contain

nonzero entries of ay - From (12) we obtain

T —
a4 = AzA; dense a (13)
b e 0t 0 e e e ———rrwamrm 12
T T
811 | Fp | 2

and the problem of finding optimal splitting becomes eguivalent to choosing
such a partition of a4 that ensures ﬁinimum number of nonzefo entries in
parts AIAE and AZA; of (13). We may add here that when ay of (8) is to be
cut into p > 2 egual parts, then it is done in p-1 successive éteps each
determining the partition like (12) into agy containing k/p entries and
B0 containing the rest of nonzeros such that the mumber of elements in
A, and AAY is minimized,

Let us observe that if AD of (6) ip a staircase matrix, as for example
in case of multistage stochastic or multicommodity network problems analysed

by Lustig et al. (1889) and by Mulvey and Ruszczynski (1990}, then its

structure automatically determines optimail columm partition for which AlA;

10

=0 and AZAI
Let us now pass to the presentation of the heuristic that determines

optimal splitting. Let ﬁl and .#2 define disjoint subsets of row indices of
these nonzero elements of | column a4 that have been inciuded to 344 and
a0 respectively. The partition (12) is obtained in the iterative process
which starts with a trivial splitting: 54’1 is empty and ﬁz is the list of
row numbers of all nonzero entries of By At every step of 1t one element is
removed from list Jﬂ'z and added to Jﬁ'l. The process is continuwed until -%fl_
(and conseouvently all) has the required number of entries (k/2 if the
column is to be split into two equal parts or k/p if it is to be cut into
p equal parts). After 1-1 steps (where 1-1 < k/2) we may determine:

rJ. the number of entries of J-th column of Al and

sJ. the number of entries of j-th column of AZ’ J=1,2,...,n-1

and the mumber of nonzeros in part AIAZ of (13)

n-1

P= 21 szJ . : (14)

In the next step an element of “42 is locked for such that moving it from
MZ to ﬂfl gives the largest possible reduction of the penalty term (14). For

a nonsero entry (::112)i that appears in row 1 of a12 we thus determine

SP(1) = Z (s, -1y - 1), O (15)
J:Wij¢0 :
where Wij defines sparsity pattern of row 1 of AZ i.e.:
¢, if 85 = a,
- J (163

W, . =
+J 1, otherwise.
It is easy to observe that P + &P(1) gives the new value of penalty indica-
tor (14) which will be obtained if an element i leaves aﬂ‘z and is added to
;zfl.
HWe then calculate &P(i) for all elements that are still in 10 deter-

mine i for which &P(1) is minimum and "move” index i, from szfz to sﬁ'l.

11

Updating rj-andﬁ=sj-completes iteration

Algorithm 1.

‘ﬂl iz O
..4{32 = {i: (al)i = (0}
I‘j = 0, j=1,2,...,n-1
Sj := number of entries of Jj-th column of Az s j=12,...,n1
for 1=1,2,...,k/2
for 1 e ﬁfz
dl = (Sj - rj - 1D
J Wij#O
d, := min {4.}
i, i e g+
2
o= U LY
&:3'2 = aﬁz - {1*}
for 3 =1,2, -1
if Wi*j =1 then
. 1= +
rJ 1:'J 1
a, =5, -1
J J
end if
The algorithm ends up with determining the partition of a4 into

and 3y The row indices defining this partition are in "ﬂl and -ﬂé, raspe—

ctively.

Let us observe that a comfortable access to the sparsity pattern of
rows of A is necessary to implement the above algorithm efficiently. It is
nene restriction however since the access to the constraint matrix of the

linear program both by columns and by rows is an elementary requirement

1. This gives the following

satigfied by all codes hased on interior roint methods.

‘In our -preliminary implementation the analysis is performed while
reading MPS formatted data of the problem; A1l columns -of A that are longer
than a given threshold length are marked as those to be split. Additionally,
gpace is left in internal data structures of the LP code for new short
columns (parts of a long one) and for nonzero entries that will appear in
the linking rows of type (3) bordered to a constraint matrix. Row linked
lisps of pogitions of row entries are created for the submatrix of A that
containa only short columns. They allow a comfortable access to sparsity
pattern of rows of this part of A that will remain unchanged as e.g. AD in
(6) and ensure the efficiency of the execution of the two imner lcops of
Algorithm 1 (caloulating di znd updating 13 and sj). When the reading of
the constraint matrix is completed, all the earlier marked long columns are
supcesaively gplit and its short parts are added to internal data
etructures. The row linked lists are aleo updated after every short column
addition so all the short columms (including the parts of already
vartitioned long ones} are taken into account when the optimal splitting of

the next long columm iz locked for.
5. Mumerical results

The method described has been tested on two real-life problems from
Gay’'s (1985} Netilid collection (ISRAEL and SEBA} which are widely reported
as particularly. difficult for the reason of containing dense columns.

Problem atatiatica are given in Table 1.

Table 1, Test problemes.

' average maximam
Problem ROWS COLS ELTS col. len, col. len.
ISRAEL 174 14% 2269 18 136
SEBA 515 1028 4352 4 230

13

Table 2. presents the efficlency of the method of splitiing dense columns
applied to ISRAEL. Its first column contains the threshold length of the
colum of A such that any coiumn longer than 1t has been split. The
following columns contain: the number of added cdnstraints, the number of
nonzero eléments of the lower triangular portion of the AA? matrix after
the splitting, the mumber of the subdiagonal nonzero elements of its
Cholegky factor and the fill-in obtained during the factcorization. Before
the“symbolic factorization was performed the matrix AA? has been reordered
vy a syvmmetric rermutation resulting from the minimum degree heuristic (see
e.g., chapter 5 of the book of George and Liu (1881) or section 10.9 of the.
book of Duff et al., (1989)) that is suprosed to minimize the fill-in
reasonably. The last three columns of Table 2 present relative savings.of
storage for Cholesky factor, time of the minimum degree recrdering and the
. symbolic factorization and time of the numerical factorization, respectively

{direct method with no zplitting determines a 100%). Table 3 collects

analogous data for SEBA.

Table 2. Efficiency of splitiing Ffor ISRAEL.

RELATIVE SAVINGS (%)

THRESHOLD CONSTRAINTS NONZEROS s
LENGTH ADDED AT L Fill-in STORAGE o Tim ot
o 0 11063 11314 261 0 0 0

110 1 9838 10272 434 9 -8 18
100 2 9011 9643 632 15 -8 29

70 3 7063 8824 1561 22 10 44

60 5 6371 8502 2131 25 ~10 49

50 8 5819 7585 1766 33 +23 60

40 11 5544 BO73 2529 28 +25 54

30 31 4379 8305 3426 27 +23 56

20 56 4772 8606 3834 24 +15 55

14

Table 3. -Efficiency of splitting for SHBA.

RELATIVE SAVINGS (%)

THRESHOLD CONSTRAINTS NONZEROS | ying
LENGTH ATDED AT L Fill-in CTORAGE e mmoEot
o 0 51400 53728 2328 0 0 0

220 2 50928 52987 2059 1 0 3
210 9 41389 44891 3302 17 14 9
200 9 41389 44691 3302 17 14 10
190 13 29483 33006 3523 39 34 30
180 14 28882 82192 3310 40 45 36
110 16 78587 31822 3235 41 45 43
-100 23 24315 28437 4122 49 52 84
30 28 - 21154 24961 3807 54 63 78

70 37 18182 22094 4812 57 66 84

60 42 17299 21108 3810 61 89 88

50 51 15400 10489 4080 64 73 91

40 65 13656 18804 5148 65 75 92

30 93 12026 19293 7267 84 78 32

20 137 10299 27537 17238 43 72 82

It easily follows from the analysis of Tables Z and 3 that fhe mnethod
presented gives significant memory savings when compared with direct solu-
tion of equation {2) by applying Cholesky factorization to the matrix AAT
conatructed from the original constraint matrix of the problem. For examﬁle
when all columns longef than BQ are split in the problem ISRARL, then the
Cholesky factor of AA? has 33% leas nonzero entries than the one of aAT .
Similarly, eplitting all columns longer than 50 in 3HEBA reduces three times
the number of nonzero slements of fhe Cholesky matrix. Time savings obtained
are also significant since the reduction of nonzercs in AAT remarkably
simplifies the reordering, the symbolic factorization and, finally, signifi-
cantly accelerates the mumerical factorization. The application of the
splitting technique reduced the time of the numerical phase of the decompo-
gition by factore 2.5 and 12 for problems ISRARL and SEBA, respectively.

Let us also mention that splitting alone took always about 5-10% of
the time reguired by the reordering and the symbolic factorizatlion so ita

contribution to the time of the whole solution process is negligible.

6. Conclusions

The method of splitting dense columns has the following advantages:

- it is easily implementable (preprocessing LP data);

- it never cause singularity of AAT (assuming that the original problem is
well formulated i.e. 1t deoes not have empty fows or linearly dependent
constraints);

- i:b doeg not require any additional memory;

- it is fast.

It thug seems to be a useful option for including into any LP code

based on logarithmic barrier approach.
References

Adler I., Karmarkar N., Resende M.G.C., Veiga G. (1888a) Data structures and
programming technigues for the implementation of Karmarkar's algorithm,
ORSA Journal on Computing 1, No 2, pp. 84-108.

Adler I., Karmarkar N., Resende M.G.C., Veiga G. (1889b). An implementation
of Karmarkar s algorithm for linear programming, Mathematical Program-—
ming 44, pp. 297-335.

Choi I.C., Monma C.L., Shamno D.F. (1980). PFurther development of a primal-
dual interior point method, ORSA Journal on Computing 2, 304-311.
Duff I.S5. Erisman A.M., Reid J.K. (1889) Direct methods for sparse matrices,

Oxford University Prees, New York 1989. |

Gay D.M, (1985). Electronic mail distribution of linesr programming test
problems, Mathematical Programming Society COAL Newsletter.

George A., Liu J.W.H. (1981). Computer Solution of Large Sparse Positive
Definite Bystems, Prentice Hall, Inc., Englewood Cliffs, 19381,

Gill P.E., Murray W., Samders M.A., Tomlin J.A., Wright M.H. (1986). (n

projected Newton barrier methodsz for linesr programming snd an sguiva-

16

lence to Karmarkar’s projective method, Mathemat ical Programming 36, pp.
183-209. |

Gill P.E., Murray W., Saunders M.A. (1988). A single-phase dual barrier
method for linear programming, Report SOL 88-10, Systems Optimization
Laboratory, Stanford University, Stanford, 1888.

Golub G.H., Van Loan C.F. (1883). Matrix Computations, John Hopkins Univer-
slty Press, Baltimore 1883,

Hagér W.W. (1888). Updating the inverse of é matrix, SidM Review 31, No 2,
pp. 221-239.

Luetig I.d., Malvey J.M., Carpenter T.J. (1989). Formulation of stochastic
programs for interior opoint methods, Technical FReport S0R 88-18,
Department of Civil Engineering and Operations Research, Princeton
hiversity, Princeton, October 1989.

Lustig I.J., Marsten R.E., Shammo D.F. (1980). On implementing Mehrotra's
rredictor-corrector interior roint method for linsar programming,
Technical Réport SOR 90-03, Department of Civil Engineering and
Operations Research, Princeton University, Princeton, April 1980.

Malvey J.M., Ruszczynski A. (1890). A diagonal guadratic approximation
method for largse scale linear programs, Technical Report SOR 90-08,
Department of Civil Engineering and Operations Research, Princeton
University, Princeton, September 1990,

Munkegaard N. (1980). Solving sparse symmetric sets of linear equations by
preconditioned conjugate gradients, ACM Trunsactions on Mathenatical
Software 6, No 2, pp 206-219.

Rockafellar R.T;, Wetas R.J.-B. (1887). Scenarios and policy aggregation in
optimization under uncertainty, Working Paper WP-87-118, TITASA,
Laxenburg.

Vanderbei R.J. (1880). Splitting denée columns in sparse linear systems,

manuscript, September 1980.

17

