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Une nouvelle implémentation de la méthode de Cholesky pour le calcul des
projections dans les méthodes de points intérieurs concernant les programmes
linéaires de grande taille.

RESUME

Chaque itération de méthodes de point intérieur, pour des programmes linéaires de
grande taille, nécessite le calcul d’'une projection orthogonale du gradient de la fonction
objectif sur le sous-espace nul des contraintes définies par la matrice A. Lors de la
détermination de la projection orthogonale, I'étape essentielle est Pinversion de la
matrice symétrique AOA o0 O est une matrice diagonale de scalarisation. Nous
décrivons, dans ce papier, quelques résultats spécifiques de l'implémentation de la
factorisation de Cholesky, pour la résolution de telles équations.

Le code appelé CHFACT, résultat de ce travail, a été comparé favorablement avec
I'implémentation de la décomposition de Cholesky de Georges et Liu(1981). Il a été
utilisé pour le calcul des projections de Karmakar dans la bibliothéque de méthodes de
point intérieur pour I'optimisation linéaire de grande taille de Gondzio et al. (1991).
Gréce & efficacité de stockage de CHAFT, il a été possible de résoudre des problémes
de taille moyenne (de I'ordre de 500 contraintes et 1000 variables sur un PC IBM de
mémoire opérationnelle limitée & 640 kb. Notre volonté premiére lors du developpement
de CHFACT était de l'inclure dans un "solveur” de programmes linéaires mais ce code
peut également étre utilisé, avec succés, pour la résolution de systémes creux définis
positifs de grande taille, courants dans de nombreuses applications.

Mots-clés : Programmation Linéaire, Méthode point intérieur, projection orthogonale,
systéme creux défini positif, factorisation Cholesky. '



AN ADVANCED IMPLEMENTATION OF CHOLESKY“FACTORIZATION'.
FOR COMPUTING PROJECTIONS IN INTERIOR POINTVMETHODS

OF LARGE SCALE LINEAR PROGRAMMING

Abstract

Every iteration of an interior point method of lai:-ge scale linear program-
ming reguires computing at least one orthogonal projection of the objective
function gradient onto the null space of a linear operator defined by the
problem constraint matrix A. The orthogonal pro.jection iteelf is in turn
dominated by the inversion of the symmetric matrix of form ASAT, where &
is a diagonal weighting matrix. In this paper several specific imssues of
implementation of the Cholesky factorization that can be applied for solving -
such egquations are discuseed. '

The code called CHFACT being the result of this work is showm ‘o
compare favorably with the state-of-the-art implementation of the Cholesky
decomposition of George and Liu (1881). It has been used for computing
Rarmarkar s projections in a library for large scale linear optimization
with interior point methods of Gondzio and Tachat (1981). Due to the storage
efficiency of CHFACT, it was possible to solve even mediate scale LP prbb—
lems (of up to 500 constraints and 1000 variables) on an IBEM PC computer
with operational memory limited to 640kB. Although primary aim of developing
CHFACT was to include it into an LP optimizer, the code may eqi.lally well be
used to solve general large sparse positive definite systems arising in

different applications. .

Key words. Linear Programs, Interior Point Methods, Orthogonal Projections,

Sparse Positive Definite Syatems, Cholesky Factorization.
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1. "Introduction

We are concerned with applying a variant of an interior point method to

solve a linear programming problem

pinimize e x s {(1la)
subject to  Ax = b , (1b)
x=0, (lc)

where A € R™, o,x « R® and b € R™. We will not however discuss in this
paper any algorithmic technigques that can be used to solve 1t. The reader
interested in them is referred to papers of Adlei' et al. (1889), Choi et al.
(1980), Gill et &al. (1986), Goldfarb and Todd (1988) and other reférences
therein. |

The common feature of any LP code based on an interior point method is

a need of solving eguation
aea"y = 4, o (2)

where & e R™™ ig a diagonal matrix and v,d Rr™,
Note, that it is often the case that matrix A which appears in (2)

differs from the vroblem constraint matrix (1b) with one or two border=d

columns or rows. Since those are usually supposed to be dense (and may

change In different phases of an interior roint method), it is advantageous
to handle them implicitly. We address this problem in detail in our subse-
qQuent paper (see Gondzio and Tachat, 1991), so for ease of preseritation in
this paper A of (2) denotes always the original LP constraint matrix (1b).
The time spent in equations of type (2) takes in the aversge 80-90% of
the time of solving LP problem (1). It is thus important to implement this
part of the iInterior point method with a particular care if the maximum

efficiency of the whole LP code is to be ‘reached.



In this paper we justify why it is advantageous to apply the symmetric _
triangﬁlar decomposition to handle equations (2) and discuss in detail both
general aspects of its implementation and specific issues of its incorpora-
ting into the LP code.

The implementation‘discussed was‘applied in the IPMLO, & modularly stru-
ctured FDRTRAN‘library for large scale Linear QOptimization with Interior
Point Methods of Gondzio and Tachat (1991). The library is intended to
become a tool for the comparison of the already existing variants of Karmer-
kar's method and to be a basis for the development and experiments with the
new attractive technigues. It is highly advantageous then to apply the
direct approach such as Cholesky decomposition for computing projections in
it. Recall that direct methods can be used practically in all existing
variants of interior point algorithms since they are presumedlto gi&e exact
solutions. {terative meghods'are attractive if (2) dces not have.to be
solved exactly (iterativé process can éarlier be terminated). This however
remarkably limits the number of variants of Karmarkar's algorithm in which
they can be applied.

The key probleﬁ of the efficient implementation of the Cholesky facto-
rization for large sparse systems constitutes the choice of a reordering
that reasonably minimizes the Fill—in created in the process of the
decomposition. From meny different available orderings we have chosen the
minimum degree one that is a symmetric varisnt (see e.g., Tirmey and Walker,
1967) of the well-knowm Markowitz (1257) strategy. The implementation of
other intermediate phaées of the factorizatién has followed the description
made in the book of Duff et al. (1989) and, consequently, has been strongly
influenced by a multifrontal approach to the Cholesky decomposition that is
due to Duff and Reid (1983 and 1984).

We are aware that there exist several highly efficient general purpose'
implementations of the Cholesky decomposition. Le£ us mentlon only the three

examples: the Harwell MAZ7 code (Duff and FEReid, 1982), the Waterloo



SPARGPACK package (see e.g., George et al. (1980) and the book of George and
Liu (1881)) and the Yale sparse matrix pac:kagé YSME (HEisenstat et al.,
18823, We then obviousl§ aimed af obtaining a Cholesky decomposition code
that is competitive with other implementations of Gaussian Elimination used
for cemputing Karmarkar's projections. The preliminary results of applying
the code described in this paper and its comparison with the GENOMD routine
of Georsge and_ Lin (1881) indigate that this requirement 1s well satizsfied.

Let us finally mention that the code may easily be applied to solve
other general large sparse positive definite systems (not only those of the
least squares type).

The paper is orgenized as follows. In Section 2 specific issues of
computing projectio.ns. onto the null space of the linear operator related to
A that arise in interior point methods. of large scale linear programming are
discussed. At the begimming of Section 3 the implementation of a general
gparse Cholesky decomposition is addressed. Further, data structures used

for handiing both the LP constraint matrix and the sparse Cholesky factor
are described. Section 3 ends up w:_'.th a brief presentation of several
auxiliary routines that comnect CHFACT with the LP code. In Section 4 the
efficiency of the code is analysed on the basis of i1ts application to the

real-life LP problems from Gay's (1885) Netlib collection. Section 5 brings

our conclugions.
=s Pr-o_jectiané in interior point methods

Every iteration of an interior point method for linear programming
reguires computing at least one projection of some vector c, related with
the objective function gradient c of (la) onto the null space of the
operator related to. the LP constraint matrix A. This in turn 1s equivalent

to maltiplying the given vector with the projection matrix

(s ]



Q=1- eiszT(ABAT_)-1A81/z. | | (3)
Compating the pmjection
c, =Qe, | ' (4)

may thus easily be replaced with the following sequence of calculations

d = "%, ‘ | | (5a)

y = (80AT) 'a (5b)
12, T .

cpzco—e Ay . | | : (5c)

Bquations (5a) and (5c) are the simple matrix-vector multiplications while
(Bb) needs solving (2). (Methods from ‘the affine scalingrfamily require only
computing (Bb) instead of finding the full projection (5)).

Although every constraint matrix of large scale linear program is
supposed to be sparse, the matrix ASAT can be quite dense. A lot of effort
have then been made to obtain the maximum efficiency of solving equaticns
with it. There are two basic apprc;aches to solve such eystems - lterative
and direct ones (some sophisticated methods combine these two approaches).

The: main adventage of thé -first group of methods is the possibility of
avoiding the explicit formulation of the matrix ASAT, which allows a natural
expléiting of the sparsity of A and saves the computer storage. The
conjugate gradient method that _belongs 1o this group may however converge
varticularly slowly if the eigen{ralues of 46AT are not clustered {see e.8.,
Dernis snd Turner, 1987). For the above reason its application is limited to
those variznts of interior point methods in which nonexact projections can
be applied (the conjugate gradient algorithm is then terminated before the
exact sclution has been found). Its application to other wvariants of
Interior point method reguires preconditioning to improve the numerical

accuracy of projections and to accelerate the convergence. For a discussion



of a successful implementation of the conjugate gradient method see for
example Rarmarkar and fkmakrishnan (1989) (computing Karmarkaf’s projec-
- tions) and Paigé and Saunders (1982a,b) (solving general linear Ileast
squares problems): |

The second group of methods contains @R and Cholesky factorizations
(8ee e.g., Golub and Van Loan, 1983,.chapters 6 and 5, respectively) and the
augmented system approach to the least squares problem (see e.g., Duff et
al., 1989, pp. 142-143 or Arioli et al., 1989). Tvo of them: the GR
decomposition and the augﬁénted system approach (especially when armed with
an iterative refinement) guarantee the perfect stablility of solutions.

Although there are cases, such as the presence of dense columns in A,
in which a careful implementation of the augmented system approach proved to
be faster than the Cholesky decomposition of ASAT (Vanderbei, 1991), both
the QR factorization and the auvgmented system approach are in general known
" to be wmefficient when storage requirements for factors and the computation
time are concerned (see e.g., Arioll et al., 1889).

The Cholesky decompcsiﬁion‘ seems . to be the most efficient (and
sufficiently stable) method of this group and for this reason we pick it up
for the implementation.

Note, that since it produces exact solutions, it can be successfully
applied to any variant of interior point method ahd that dense columns of
the LP constraint matrix may easily be handled in it. Such columns can be
eplit with the method of Gondzio (1991) or eliminated as in the Schur
complement approach (see e.g., Gill et al., 1984, Choi et al., 1990 and
Vanderbei, 1991). It is advantageoué that neither of the methods mentioned
sbove affects the implementation of the Cholesky factorization itself {the
second one adds only some overhead to it).‘Let us finally observe that the
implamentation presented in this paper could also be modified to compute the

incomplete Cholesky decomposition and applied to precondition the conjugate

gradient method (see e.g., Munksgaard, 1880).



The matrices of form A©A" that have to be inverted in successive
iterations of any interior point method differ only with the diagonal
weighting matrix ¢©. They thus share the same sparsity pattern although
fheir numerical values changé. They are all symmetric by definition and
positive definite as far as the LP problem (1) is well formulated (i.e. its
constraint matrix has full row rank}.

The_implementatign of the Cholesky factorization has to take advantage -
of the above facts. In particular, an expensive sparsity structure analysis
(reordering that minimizes the fill-in reasonably and the symbolic
factorization) can be performed only once in the whole solution process. The
construction of the matrix ASA" and the numerical vhase of Cholesky
decomﬁosition (followed by the solves with the factor L) have to be repeated
at every iteration of the method. There exist methbds {Shanno, 1988, Adler
et al., 1889) that take advantage of the fact that only a small part of
diagonal elements of & changes in subsequent iterations and update the
factorization instead of calculating the_new one (they take into accoﬁnt
only those compénents of € which have been modified remarkably). The
Cholesky decomposition resulting from such approach is then an approximate
one and, consequently, so are the projections. The cost of the single
projecticn is supposed to decrease but the number of iterations of the
interior point method may.grow up, The success of the approach depends thus
cn which of the above effects will dominate the other and is hard to
predict. Which is however more impoftant, analogously to the iterative
methods of solving (2), this approach produces in general nonexact
projections so it could not be used in all variants of interior point
methods .

summing up, the choice of Cholesky decomposition seems well justified
when the application for computing Karmarkar's projections in a library for
linear optimization with interior point methods is concerned. It is both

robust and efficient, it allows easy handling of dense columns of A, and it



cant be used in any variant of an interior point method.

3. Data structures and programming techniques for the Cholesky

decemposition

We shall be concerned in this section with the sparse symmetric trian-
gular decomposition and the specyfic issues of its incorporating into an LFP
solver. Although we are aware that there exist several efficient general
purpose implementations of it (see e.gZ.: Duff and Reid, 1982, Georse et al.,
1880 and Eisenstat et al., 1882), we have found it advantageous to develop
another one. Welwere rotivated for example by the possibility of choosing
for the implementation all those enhancements of the besic algorithm that
seem to be the most suitable for the primary application of the code.

We also wanted to establish a good basis for a further development of
the different techniques of computing Karmarkar s projectioﬁs. In particular
we plan to extend the code to handle an incomplete Cholesky factorization,
which would open the possibility of applying it to precondition iterative

methods of solving (2).

2.1. A colum-oriented sparse symmetric triangular decomposition

Let
B = A8A" : (6)

e a sparse gymmetric posltive definite matrix. We aim at decomposing it to

the form
B = LDLT, | (7)

where L and D are unit lower triangular and diagonal matrices,

respectively. (In fact, this is a slightly different form from the Cholesky



one in which matrix B is decomposed to LL , where L is a lower triangular
matrix. We prefer form (7) since it avoids expenéive square root operations
necessary to compute diagonal elements of L.) It is easy to observe that
having computed (7), equation (2) can be replaced ﬁith two triangular and
one diagonal solve with matrices L (LT) and D, respectively.

A naive way to implement sparse Cholesky factorization is to perform
both the sparsity structure analysis and the numerical operations at the
same time (as it is often the case in an unsymmetric LU decomposition).
There are however several disadvantages of sﬁch approach. Firet, the decom-
position may break down because of the lack of storage. Second, the cost of
recrdering and explicit operations on sparsity pattern of L ig unacceptably.
large. It is o(g), where é’is the number of flops (floating point opera-
tions) performed in the numerical factorization. |

It is thus advisable to separate the following three phases of Cholesky
decomposition: the recrdering for sparsity;,the gymbolic factorization an&-
the numerical factorization.

The particularly difficult step (when implementation is. concerned)
congtitutes the reordering for sparsity, i.e. a search for such a symmetric
row and column permutation of B that the triangular factor L has the
minimum number of nonzero entries. Although finding this permutation for a
general sparse symmetric matrix is proved to be an  NP-complete problem,
there exist several problem-oriented hegristics that determine satisfacto-
rily good orderings. |

Billionnet and Breteau (1989) compare three algorithms for reducing the
profile of the matrix that are rather easy to implement (they do not require
complicated data structures) but usually produce remarkably denser Cholesky
factors than other more sophisticated orderings such as minimum degree or
minimum fill-in ones (see e.g., Duff et al., 1988 and George and Liu, 1981).
Since in our particular application sparsity pattern analysis is supposed to

be done only once followed further with several numerical factorizations, it



is advantageous to do it with more care, especlally that even small reduc-
tion of nonzero count of the Cholesky factor givés often remarkable savings
in the numerical phase of the deéomposition'(see_e;g., George and Liu, -
1989). ‘

Although this might Jjustify the choice of the most expensive minimum
fill-in algorithm, we picked up easier to impiement and remarkably faster
| minimum degree one. Recall that several variants of interior point method
drop rowg and columns during the optimization, which eventually requires

repeating the sparsity structure analysis for the reduced problem (the

reordering applied should not be in such case too expensive).
Minimum degree ordering

Markowitz (1857} observed that it is advantageous to choome for the

pivot element in the k-th step of sparse Gaussian Elimination such an

element aij that minimizes

fij = (ri"‘l)(cj"l) 3 (8)

where r; and c. are the numbers of nonzero entries of row i and column J
in the k-th Schur complement, respectively (Schur complement means here a
submatrix active in the given pivotal step, see e.g., Golub and Van Loan,
1883). PFunction (B) estimates the number of flops reaquired by the k-th step
of Gaussian Elimination and, at the same time, limits the potential fill—in
caused by this step. The piﬁot sequence found that way should thus well
prevent excessive fill-ins and ensure a low cost of the factorization.
Tinney and Walker (1967) applied this strategy to symmetric matrices. Let us
obgerve that when symmetric positive definite systems are considered pivot

gelection may be restricted to disgonal elements, so (8) becomés



£55 7 (cj_l)z, : (9

and leads to a simple rule that the best candidate for t.he- pivot column is
the one with the minimum entries. Interpreted in terms of the elimination
graph (see e.g., George énd Lin, 1981), this is equivalent to the choice of
the node that has the minimum degree, which gave the name to the heuristic.
The key problem of an efficient implementation of the minimum degree
ordering is to avoid the explicif gtorage of flll-ins when the elimination
proceeds (their explicit storage would result in an unacceptably large of{p)

complexity of the algorithm). The fill-in of the current Schur complement is

then handled implicitly in the form of cligues. A cligue denotes here the L

get of mumbers of rows that are active in a given pivotal step. Let us
obeerve that the storage of a cliaue requires remembering, say, D mw
numbers, while the symmetric matrix represented by it has %p(pﬂ) elements.
The sparsity pattern of the Schur complement of the k-th step of Gaussian
Elimination (needed %o determine the next step minimum degree célumn) is
thus represented implicitly by the sparsity pattern of the original matrix
B and £he pivotal cliques from previous steps of the elimination.

Before we pass to the formal statement of the minimm degree algorithm
let us introduce scme useful notation. Let :8.}., J = 1,2,...,m denote the
sparsity pattern of the subdiagonal part of the J-th column of B
represented ag a clique, i.e. in the form of a set of indices of those rows
in which nonzero elements of this column appesr. At its k-th step, the

algorithm builds up the k-th pivotal cligue Ek and updates the degrees n 3

of those columns that still remain active, i.e. are not yet elimiriated.

10



Algorithm 1. Minimum degree ordering

for 3 =1,2,...,m

initialize :BJ. . nJ.

for k = 1,‘2,...,m

find the colum with the minimum degree:

n. :=  mnin {n.}
Jd¥ j active Y

order ,jk to the k-th position and form the pivotal clique -“?k

£ =B, U U £, - Ldyrdor-adeyd N (10}
{1:Jke;€i}

update the degrees of the active columns:

for J e Sk

nJ. = c:ard(v'EJ U U "Ei - {Jl)JZ}"JJk}) (11)
{i:je:&i}

The most computationally expensive.step of this algorithm is the update
of degrees of all columns involved in the pivotal step (the inner loop of
Algorithm 1). Both this and the cdnstmction of the pivetal clique .t’k need
an excessive merginé of integer lists, which we shall farther lock closer
to. 7 |

Let us mention that -there exist many devices that may sign'ificantly
improve the performance of the minimum degree ordering. Their influence on
the efficiency of the code is discussed in detaill by Georgé and Liu (1989).
come of them have already been implemented in ocur code resulting in its -
sufficiently good performance. The recrdering time alone 1is usually
remarkably amaller than the time of a single numerical factorization that

follows it. BSince solving (1) reauires usually 20-50 iterations each

11



involving one numerical factorization, the contribution of the reordering
for sparsity to the whole computation time may be neglected.

Let us now pass to the discussion of those enhancements that have
already been implemented in the CHFACT code.

The first cne is an implicit fill—-ins representation (George and Liu
(1889) call it the generalized element approach). We have already indicated
cne advantage of using cliques, i.e. storage efficiency of this technique.
Another cne is the emse of handling operations (10) and (11). Definiticn
(10) implies for example that the newly merged list Jﬁ’k can be stored at the
place of those cnes which were used to create it (cligues already used are
no longer needed) so, when carefully implemented, the minimum degree algo-
rithm cammoct breask down fpr the reason of lack of memory. |

The second one makes use of the observation that .any clique that is a
subset of the other one can be removed from the list of active cliques
without any loss of information. Cliques merging operations (necessary to
create the pivotal cliqgue (10) and to update degvees (11)) might then be
glmplified since only active cliques have to be scasmned. The proof of this
property follows easily the observation that if for some il,iz = k
£ S &£,,, then £, canbe omitted in (10) and (11). This cligue discarding

i1
mechanisn is also called thé element absorption technique (George and Liu,
1389).

The last enhancement of those already coded is a mass elimination
technigue. A formal .justification'of | it follows the observation: if at the
k~th step of the algorithm, after elimination of column J'k with degree
Ny, One or more of yet uneliminated columns get the new degree equal to
njk—l, then they can all be eliminated in the next step of the algorithm. A
time consuming degree update (11) has in such case to be done only once
after the whole block of columns {j: n, = njk—l} has been eliminated. The

J

appearance of the block of columms with degrees n ,jk”l means that they all

have the identical sparsity patterns equal to the one of column Jk‘ Subject

12



to symmetric row and column permutation, the subset of columns with degrees
njk—l forms a dense window Independent of the rest of yet uneliminated
columns and can thus be eliminated at the whole. Let us observe that the use
‘of the mass elimination technique suits particularly well the application to
the symmetric matrix of form aep” (each colum of A creates a dense window
in AeAT subject to its symmetric permutation).

It was not our aim to analyse the influence of the enhancements
described above on th,e, effiéiency of the minimum degree ordering routine.
For an excellent discussion of this type the reader is referred to the paper
of George and Liu (1988). We conclude however that the implementation of
these _enhancements signifiéantly improved the performance of the minimum
degree heuristic and allowed néglecting its contribution to the time of
solution of LP problem (lj .

On the cutput of Algorithm 1 a symmetric permutation P is determined

such that computing the Cholesky factorization of the matrix
T . T .
PEP" =" (PA)&8(FA) (12)

should produce relatively amall fill-in. CObserve that (2) may then be

replaced with
(PAYS(PAY Py = Pd , (13)

ﬁhich naturally leads. to a new .(equivaient) LP problem formulation 'Ehat
differs from (1) with only a row permutation. It is advantagecus to permute
rows of (1b) subject to P and "forget" this permutation for the rest of
computations, which creates a need for an auxiliary routine that we shall

further describe in more detail.



Symbolic factorization

The next phase of the symmetric decomposition consists of a generation
of data structures for the numerical factorizatlon Qur appreach to this has
been strongly influenced by the multifrontal factorization technique of Duff
and Reid (1983 and 1884). At the k-th step of this algorithm sparsity
structure of the k-th oolumn.of 'L is generated. To construct this, a
sparsity pattern of the subdiagonal part  of the k=th colum of FBP® is
merged with the sparsity patterns of all those columns of L that have their

firet nonzerc entry in row k. The process ends up with excluding the

element k from the obtained list.

1 x X X

2 X x

3 X X x
4 x X X .
5 x X X X =
8 X X X X
7 X =m m x X

Firg. 1. Bullding sparsity pattern of L (symbolic factorization).

Fill-ins are shown as =,

In the example illustrated in Fig.ll, at the fourth step of the algorithm,
sparsity patterns of columns i, 3 and 4 (only their subdiagonal parts) are

merged to bulld the cne of the fourth column of L:

=B UL UL, - {4}

19} U {4,5} v {4,7} - {4}

{5,71. : (14)

Ubserve that once a given column has been used to build another one, it nay
be discarded (the information on it is saved in the representation of the
actually built clique). Every element of L ia thus accessed only once in

the whole procese so the complexity of the symbolic factorization is cnly

14



o(m)+o(TL), where T, is the number of nonzeros of the Cholesky factor.
Since repeated merging operations do not in general produce lists'in'
increasing order of row numbers, the presence of which significantly
gimplifies the implementétion of the numerical factorlzation, we end up the
symboiic rhase of the decomposition with applying a double-transpose

ordering sort (see e.g., Duff et al., 1888, chapter 2) to the sparsity

pattern of L.
Numerical factorlization

This rhase proceeds similarly to the previous one. Differently however
Vto the symbolic factorization, at the k-th astep of the nﬁmerical factoriza-
tion every column that has nonzero entry in row k contributes (not only .
those having thelr first nonzero element in this row, as it was the case in
the symbolic factorization). In the example of Fig. 1, the sparsity pattérn
of colum & was obtained from merging those of columns 4 and 5 (column 1
was not taken Inte account since it contributed to the aparsity pattérn of
colunn 4, see equation (14)). Now, in the numerical phase, both columns 1
and 4 contribute to column 5.

It is easy to compute (exercise‘lo.T in the bock of Duff et al. (1983))

the complexity of this phase. It requires

1 J

.0
T

N b

1=

J
flops to determine the triangular factor L (n‘j denctes the number of
subdiagonal entries of its J-th column). Observe, that (15) confirms the
well-known fact that even a small reduction of the fill-in at [ might
result in substantial savings of the numerical factorization time.

We conclude this subsection with the obeervation that the success of

the Cholesky decomposition implementation strongly depends on the choice of

15



data structures appropriate for its different phases. The next subsection is

then devoted to this problem.
3.2. Data structures

Before passing to the presentation of data structures used in different
phases of the decomposition, let us first briefly discuss the way of storing
original LP data. We acknowledge here that this part of code, i.e. handling
of A, has been developed by Dr. D. Tachat. It is described in detail in the

raper of Gondzio and Tachat (1991).

LFP constraint matrix management

An efficient implementation of any interior point method requires the
comfortable access to matrix A of (1b) both by columns and by rows. We thus
handle it as a collection of sparse Qolumn vectors (CLENTS,EWNMBS and ELMNTS
arrays remember pointers to columns, row numbers and nonzero coefficients,
respactively), and additicnally store sparsity pattern of A by rows in the
form of row linked lists (RWHEAD, RWLINK and CLNMBS arrays are headers to.
the lists, row linked listé and column numbers where nonzero entries éfe
present, respectively). For a detailed describtion of such structures the
reader is referred to the hook of.Duff et al. (1989). Below, an example is_

given of matrix A (Fig. 2) and data structures that remember it (Fig. 3). . -

- -
3.0 5.0
1.0 2.0 3.3
A= |20 3.0 2.1
- - 3.5 0.2
-7.0 4.5
7.0 ‘ 1.0 -2.0 ]

Fig. 2. Example of an LP constraint matrix A4 e R™*?,
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subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CLENTS 1 4 5 7 9 11 13 15 18

RWNMBS i 3 6 2 2 5 3 4 4 6 3 5 1 8 2
EIMNTS 3. -2. 7. 1. 2. -7, 3.3.5 .2 1.2.14.5 5.-2. 3.3
RWHEAD 1 4 2 8 6 .3

RWLINK 13 7 10 5 16 12 11 9 0 14 0 0 O 0 O
CLNMBS 1 1 12 3 3 4 4 5 5 6 8 7 7 8

Fig. 3. FORTRAN arrays storing matrix A of Fig. 2.

Such data structures ensure high efficiency of arithmetic operaticns
with A and A" and allow eagy construction of AeA" matrix,- which we shall
further discuss in more detail. |

Let us observe that two arrays RWNMBS and CLNMBS can be h'alf-lengt;h.'
iﬁteger (RWLINK array must be full-length integer), so the memory space |

required for LP constraint matrix management is

r, =T, (18)

and i, =n+m+2r, +1 - (7).
of real and integer numbers, respectively ( 7, denotes the number of nonzero

entries of A).
Storing the Cholesky factor

The triangular factor L alone can ‘easily be handled as a collection of
sparse column vectors (recall that we implement the colwm—oriented Cholesky
decomposition). LCLFTS, LRWNBS and LELTS arrays store pointers to columns,
row numbers and nonzero elements of its subdiagonal part, respectively. The
diagonal matrix D is handled separately in LDIAG array. It results in a
small memory needs of m + T, real numbers and m + -zi-TL + 1 integer numbers
(LEWNBS can be half-length integer array).

To code efficiently intermediate steps of the Cholesky decomposition

(minimum degree ordering and the symbolic factorization) we need however an
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additional full-length ihteger work array LLINES of size T, - The minimum
degree routine uses it to handle pivotal cliqueé J%k. The cliques are kept
in the form of linked lists, which are particularly suitable for merging
operations that constitute the most time consuming parts of Algﬁrithm 1. As
was already pointed out, implicit f£ill-in representation with pivotal
cliques allows én in-place implementation of the minimum degree ordering
((10) implies that the newrpivotal clique can be stored at the place of
those which were used to build it). The minimum degree routine may thus
always proceed until the ordering P is fully determined.

Apart from LLINKS array, several other integer work arrays (fortunate-
1y, all of length m only) are needed by the minimum degree and the symbolic
factorization routines. Those include two half-length integer arrays for
handling permutation vectors that result from the minimum degreé ordering
‘(dir_ect and inverse permutations of rowe of A) and three half-length
integer arrays to store doubly linked 1lists of columns with the same
degrees. The use of doubly linked liste remerkably simplifies the columme
degree update and the selection of the column with the minimum desree (see
Algorithm 1). In the symbolic factorization phase those doubly linked lists
are reused to handle the lists of columne with their first subdiagonal
nonzero entries iﬁ the same rows. Finally, in the numerical stage of the
decompogition they handle lists of columns that contribute in the k-th stép
of Gaussian Elimination. ‘ |

Additionally, two full-length iInteger arrays are supplied to the
routines operating on the Cholesky factor. Different routines use them

temporarily for different purposes.

Consequently, storage required for the whole management of the Cholesky

deconposition is

rL:m+TL (18)_
and iL = 5.5m + 1.51'L + 1 (19)
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of real and integer numbers, respectively.
3.3. Auxiliary routines

We have already bpresented three main routines that handle sparse
Cholesky factorization: the minimum degree ordering and the symbolic and
numerical decompositions. Now, we shall briefly describe the other ones that
connect the factorization with the [LP solver. Although these routines are
simpler to code than for example the minimum degree ordering one, they also
require application of the advanced sparse matrix technigues and their

efficient implementation is not at all straightforward.
Building ASA”

Eoth the routine that iwmplements the minimum degree heuristic and the
one performing the symbolic factorization take as an input the sparsity
pattern of ASAT‘. Although it is possible to code the minimum degree ordering
in such a way that only a triangular part of the symmetric ASAT matrix is
used (theoretically, it is even possible to treat this matrix implicitly,
i.¢. to access only the conetraint matrix A), the sparsity structure of the
whole sguare matrix B = AOAT is constrﬁcted. Let aﬁi. and &f_j-denote the
gparsity vatterns of the 1i-th row and the Jj-th column of A, respectively.

Algorithm 2 produces on its output the sparsity pattern of (squars) B.

Algorithm 2. Butlding sparsitiy pattern of ASAT

for 1= 1,2,...,m

®, = VY (20)
Jesy
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Its implementation takes full advantage of the ease of access ‘t¢ the
sparsity patterns of both rows and columns of A, At its i—th step, the i-th
row of A is scanned and the sparsity patterns of all columns that- intersect
it are merged. | |
A similar algorithm, that operates however not only on the sparsity
rattern of A bubt also on its numerical contents-, was applied to build the
matrix _AQAT and to load it into static data structures used as an input of

the numerical factorization routine. Additionally, it zerced fill-in

positions of LELTS array.
Permuting rows of A

The minimum degree ordering routine determines the permutation P that,
when applied symmetrically to rows and columns of B, ensures relatively
small fill-in in the Cl;lole.sky factor. For the reasons that have already been
explained, we prefer to recrder rows of A once before the computations start
instead of repeating this at every iteration of the interior point method
(see equation (13)). The routine that performs this takes full advantage of
the data structures used for handling the [P constraint matrix. Observe
that reo'fde.ring rowé of A resolves itself to reordering the RWHEAD array
subject to the required permutation followed with é single scan of ERWNMBS

array that updates it ac_:cordingly.
4. Numer-icél reéults

HWe shall now present the results of the application of the Cholesky
factorization described in this paper to computing Karmarkar's projections
for real-life LP test problems from Gay’'s (1985) Netlid collection (for the
analysis of the efficiency of the IPMLO golver the reader is referred to

our subseguent peper). All computations were performed on a 20MHz  IBM
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80386 computer with arithmetic coprocessor 80387, memory limited to 640kB
and relative precision & = 2.2 107*°. |

Firat, we compare the storage efficiency of the implementation of the
minimum degree algorithm described in this paper with the one of the

state-of-the-art GENGMD routine of George and [iu (1881) that has been used

- by Gill et al. (1986) in their implementation of the barrier method for

linear programming. _Table 1_ collects the results. Its first three columns
contain: number of rows m, number of nonzero entries in A T, &nd number
of nonzerc elements of the lower triangular portion of the  pOAT matrix
T (AAT). The following columns contain the number of subdiagonal entries of
AeA" Cholesky factor and the fill-in obtained during the decomposition for
the two methods compared: the one described in this paper called CHFACT and
the GENQMD of Georée and Liu (1881) (see Table 6 in the paper of Gill et
al., 1836). Due to the presence of dense columns, problem ISRAEL has been
gelved in three different wayes: in its original form, with 6 dense columns

removed and with 6 dense columns split with the method of Gondzio (1891).

Table 1. Comparison of the storage efficiency of CHFACT and GENQMD.

CHEACT GENGMD

PROBLEM m 7. T (AAT) T~ Fill-in T Fill-in
AFIRO 27 10Z 83 80 17 80 17
ADLITTLE 56 424 323 355 27 355 27
SHAREZB 26 777 775 241 166 225 150
SHARELB 117 1179 684 1266 382 1345 461
BRACONED 173 3408 2669 2728 59 2727 58
TSRAEL ‘ 174 2443 110563 11258 208 11258 206
ISRAEL (removed) 174 1904 3371 3633 162 3533 162
ISRAEL (s=plit) 182 2459 0819 7640 1821 not lkmown
BRANDY 182+ 2191 2541 3231 690 . 32b1 710
E226 223 2768 2600 3443 843 3416 816
BANDM 306 2494 3419 4358 939 43585 836
oC3D6 147 4316 1862 2398 446 2398 448

* 38 empty rows have been removed from BRANDY.

The analysis of Table 1 results brings easily the conclusion that the

Cholesky decomposition code described in this paper produces comparably
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gparse factors L as the one of George and Liu (1981). The times of the
numerical phases of the decomposition should then alsc be comparable (éee
flops count (15)). This is a good prediction for the efficiency of the whole
LP code since, as we have already stated, numerical factorizations of ASA®
dominate in the solution time of (1).

The results collected in Table 2 give an insight into different
intermediate steps of the Cholesky factorization. The last four columns of
it contain: time of the ﬁinimum degree ordering, time of the whole
preprocessing phase of the decomposition (including building AoaT sparsity
pattern, finding the minimum de@ree ordering, reordering rowe of A
according to the permutation resulting from the minimum degree heuristic and
the symbolic factorizafion), time of the numerical phase of the decomposi-
tion and time of one. solve of equation (2). The time of the analyeis
performed to find coptimal splitting of dense columns of ISRAEL has been

added to the time of preprocessing.

Table 2. CPU times of intermediate phéses of the decompositicon.

PROELEM m MO PREFROC. NUM, FACT. SOLVE
AFIRQ 27 0.0z 0.03 0.0086 0,004
ADLITTLE 58 0.18 0.20 0.0861 0.015
SHAREZE .98 0.25 0.30 0.14 0.037
SHARE1B 117 0.48 0.80 0.30 0.048
ISRAEL 174 3.0 11.0 12.0 0.40
ISRABL (removed) 174 4.0 6.0. 3.0 0.13
ISRAEL (split) 182 7.0 10.0 5.0 0.27
BRANDY 182% 3.8 6.0 2.0 0.12
BE226 223 3.0 5.0 1.0 0,13
BANTM 305 5.9 - 7.0 2.0 0.18
SCED6 : 147 3.8 4.2 1.0 0.09
CAPRI 271 5.6 7.8 2.0 0.21
SCEM1 330 4.6 5.7 2.0 0.17
SCTAP1 300 4,2 4.7 1.0 0.10
FORPLAN 135 1.5 3.0 3.0 0.13
SCRS8 4390 3.8 11.0 2.0 0,22
GEFRD-PNC 616 4.2 5.1 1.0 - 0.08
SCAGR7 128 0.5 0.8 (.08 0.028
SCAGR25 471 6.5 7.0 0.32 0.108

*  Empty rows have been removed from BRANDY (38) and FORPLAN (26).



Surprisingly, results collected in Table 2 indicate that the prepro-
éeseing rhase takes usually more time than the numerical factorization. We
suppose that this is due to_the pregsence of arithmetic coprocessor 80387
tﬁat dramatically accelerates calculations (and, consequently, numerical
phase of the factorization) and does not change the efficiency of prepro-
cessing in which many different "nonnumerical” operations on indirectly
aﬂdressed data are performedt We have then repeated computations on an IBM
XT computer Witﬁout coprocessor and found much more natural relations
between different intermedlate phases of the decomposition. For ome of the
most difficult problems i.e. ISRAEL with dense columns split, the four last
columns of Table 2 would for example contain: 778, 107s, 489%8s and 29s,
respectively.

(ur last expériment allows the practical analysis of the accuracy of
CHFACT code. The primary application of the code is to decompose matrices of
form ASAT. Diagonal matrix & is usually bullt of the inverse of the
appropriate components of vector x and; as the optimal solution of (1) is
approached, many variables xj becoms very small leading to a large growth
of 83, which increases the condition number of A®AT. We thus generate

problems of different level of difficulty measured with the ratio of the

largest and the smallest E’J.
g, : .
N o= Jmax s N (21)
Jmin ‘
decompose matrices AGA?, apply the factorization to solve {2) with a priori

known solution v, and analyse the relative srror of the computed solution

Hy-v |l
w =z —= (22)
Iyl

Table 3 collects errors w for several problems from our test

collection for different values of A.
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Table 3. Relative errors « for different conditioning of &.

PROBLEM * = 1 10° 10* 10° 10° 10*° 10*2
AFIRO 9.E-16 1.BE-14 4.E-14 3.E-12 1.E-12  1.E-10 4.E-11
ADLITTLE 1.E-12 2.E-12 4.E-13 5.E-10 1.E-11 2.E-10 4. F-8
SHAREZ?B  6.E-10 4.E-9 2.E-8 5.E-7 2.E-8 5.E-5 1.5-2
SHAREIB  1.E-9  6.E-9 4.E-8 1.E-5 4.E-6 2.8-1 5.E-2
ISRAEL 8.E-8  6.E-7 6.5-6 2.B-5 8.E-5 3.E-3 6.E-3
BRANDY 3.E-12 3.E-10 3.E-10  2.E-§ 5.6-8 7.5-6 1.E-3
E226 2.E-10 3.E-10 7.F-9 4.5-6 2.5-5 6.E-5 9.E-3
BANDM 2.E-12 1.E-10 5.E-10 = Z.E-9 1.E-8 3.E-6 2.5-4
SCSD6 2.E-12 1.E-12  1.,BE-13 2.E-12 2.E-12 2.E-12 1.E-11
CAPRT 4.E-11 T7.E-10 3.E-9 2.E-8 7.5-6 8.E-5 1.E-3
SCFXM1 1.E-9  3.E-9 4.E-9 1.E-8 1.E-5 1.E-6 7.E-5
SCTAP1 5.E-13 3.E-12  5.E-10  1.E-9 1.E-8 2.5-8 1.5-6
FORFLAN  1.E-11 5.E-11  5.E-8 7.E-9 1.5-6 1.E-8 2.E-3
SCRS8 5.E-11 6.E-11  B.E-9 3.5-3 3.E-7 7.E-5 2.E-5
GFRD-PNC 5.E-9  3.E-8 8.E-7 3.E-5 8.E-4 2.8-1 -
SCAGRT 5.8-14 2,E-13  3.E-12 6.E-12 9.E-10  2.E-8 4.E-7
SCAGR25  3.E-14 3.E-13  3.E~12  3.E-11 S.E-10  2.E-7 4.8-7

It follows from Table 3 that CHFACT code may be successfully applied
to solve even badly conditioned systeme of type (2). It may however produce
inaccurate solutions for extremely ill-conditioned ones. Unfortinately, the
presence of such ill-conditioned systems is highly probable iﬁ interior

point method applications.
It is not at all easy to detect the zituations in which the Cholesky

decomposition starte to produce inaccurate solutions. Hansen (1987)-suggests
the use of pivoting In several last steps of decomposition (when the factor
L becomes dense) and monitoring the ratio of the smallest and the largest
diagonal - elements dii' As this ratic becomes comparable with computer
- relative precision S,: the decomposed matrix is presumed to be rank
deficient. Let us observe that the implementation of such technique would be
straightforward if only the code aloné contained the computationally
attractive option of the awitch to full matrix technology near the end of
decomposition (see e.g., Duff et él., 1989 and.Forrest and Tomlin; 1930).

It is also necessary to chooee the method that well prevents the losa

of accuracy in (2). A thumb-rule suggests rather simple devices such ag for
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example iterative refinement. The other approach (that will probably soon be
included in our code as it seems to be the most rébust one) is a switch to a

conjugate gradient method and the use of an inaccurate Cholesky'decomposi—

tion as its preconditioner.
5. Coneclusions

We have presénted in this paper several issues of the implementation of
a sparse symmetric decomposition for computing orthogonal projections onto
the null space of (sparse) linear operator.

Although its primary purpose was to compute Karmarkar s projections in
interior point methods of large scale linear optimization, the resulting
FORTRAN library called CHFACT might be used in nﬁhy other optimization
codes where Newton directions are computed and the sparsity of problems
Plays an important role.

The main partes of the code (rputines implementing minimum degres
ordering, symbolic factorization, numerical factorization and triangular -
solves) sult well solving other large sparse positiveldefinite systems not
necessarily thoee arising in optimization applications. |

As the numerical results of section 4 show, the code compares favorably
with the GENQMD one of Georsge and Liu (1981). It has already been success-
fully applied as a numerical kernel in the IPMLO - a linear optimization
library of Gondzio énd Tachat (1981). Due to its particularly small memory
reguirements (see equations (18) and (18)) and the ability of operating on
storage efficient data structures for the LP .constraint matrix (see
equations (16) and (17)), even mediate scale linear programs (of up to 500
constraints and 1000 variables) could be solved on a microcomputer with
only 640kB of operational memory.

Let us finally indicate two extensions of the implementation discuseed

in this paper that will be subject of cur near future research.
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The first one is the option of a switch to full code at the end of the
decomposition.' Forrest and Tomlin (1990) showed that even on a serial
computers this techriigue gives remarkable savings of the computation time
since it avoids expensive indirect addfessing. Its additional advantage is
the ease of incorporating Hansen's (1987) method of detection of a
near-singularity of ASA" in it. |

The second cone j.s the possibiiity of handling an Iincomplets .Cholesky
decomposition that could eventually be used as a preconditioner for\ the
conjugate gradient method (a switch to the iterative method of solving (2)

seems inevitable in case that A®A® is presumed rank-deficient).
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