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THE DESIGN AND APPLICATION OF THE IPMLO - A FORTRAN LIBRARY
FOR LINEAR OPTIMIZATION WITH INTERIOR POINT METHODS

Abstract

The design principles of the IPMLO, a modularly structured library of FORTRAN
subroutines for large scale Linear Optimization with Interior Point Methods are
addressed. The objective of the library is to provide the base for the development and
experiments with the new attractive approaches that apply interior point methods for
solving linear programming problems. An example application of it for the
implementation of the primal-dual logarithmic barrier interior point method of McShane
et al. (1989) is described. The preliminary computational results of the code’s application
to the solution of mediate scale LP test problems from Netlib collection are given and
the comparison with the state-of-the-art implementation of the simplex method is made.

Key words. Linear Programming, Interior Point Methods, Program Library.

CONCEPTION ET APPLICATION DE IPMLO - UNE BIBLIOTHEQUE FORTRAN
POUR L’OPTIMISATION LINEAIRE AVEC DES METHODES INTERIEURES

Résumé

Dans ce cahier, on présente les principes de conception de IPMLO, une bibliothéque

structurée de facon modulaire, de procédures FORTRAN pour 'Optimisation Linéaire

de problémes de grande taille & I'aide de Méthodes de Point Intérieur.

L’objectif de cette bibliothéque est de fournir une base afin de développer et
- expérimenter de nouvelles approches intéressantes qui utilisent des méthodes intérieures

pour résoudre des programmes linéaires.

On décrit un exemple d’application de cette bibliothéque pour implémenter la méthode

primale-duale avec barriére logarithmique de McShane et al. (1989).

Enfin, on présente les premiers résultats expérimentaux de I’application de ce code 4 la

résolution des problémes-test de programmes linéaires de taille moyenne de la collection

Netlib et on le compare avec I'état de I’art en matic¢re d’'implémentation de la méthode

du simplexe.

Mots-Clés : Programmation Linéaire, Méthode intérieure, Biblioth&que de programmes
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i. Introduction

Rarmarkar's (1984) publication of the polynomial-time linear program-
mirg algorithm initiated a flood of research papers in which the application
of different interior point methods to the solution of linear optimization.
problems was addressed. In parallel, much effort has been made so as to
develop implementations of the iﬁterior point methods that could outperform
the state-of-the-art simplex codes. It seems that, when large scale linear
problems of over 1000 constrainte are solved, the interior point methods
are faster than the simplex-type ones (see e.g.: Cheng et al., 1889 and
Marsten et al.,1990). Consequently, further search for its new attractive
and more efficient variants seems well justified.

A need then arises for an experimental modularly structured library of
gubroutines that coula facilitate this research. In this paper the design
principles and example applications of such a library are addreased.

The IPMLO is a set of FORTRAN subroutines that can be applied to
solve large scale [inear QOptimization problems with Interior Boint Methods.
It has been designed to use as much as possible the ideas of structured
programming. The intericor point algcjrit}m has been modularized and the
closely related or even identical steps of its different variants (e.g.:
input/output management, preprocessing, handling the projections or problem—
oriented BLAS - basic linear algebra systém) have been identified. Theﬁr
have later been implemented resulting in a software that accurately rgflects
the overall structure of the basic algorithm. In particular, the routines
that j_tl\eorporate the logic of the interior »oint method can almeost never
access directly two fundamental data structures: one for the original
problem data and one for computing Karmarkar »rojections. The later are in

aur oode handled hy a direct approach, i.e. the Cholesky factorization of

Gondzio {1991Dh).



Although in the library design a good structure rather than an efficie-
ney of code has been emphasized, the program is competitive, Additionally,
due to the careful exploiting of the sparsity of the linear program both in
the management.of original problem data and in the computations of orthogo-
nal projections, it was possible to eolve with it even mediate scale
problems (of up to 500 constraints and 1000 variables) on a microcomputer
with operational memory limited to 640kB.

The most computationally attractive wvariant of the interior point
algorithm, 1e the primal-dual logarithmic barrier one of MeShane et al.
(1989) has already been developed on the basis of the IPMLO. Issues of its
implementation are discussed in detail to illustrate rossible applications
of the library.

The experience gained sco far indicates that any new variant of the
interior point method can be quickly incorporated inte IPMLO library and
tested (even on a 640kB microcomputer) when applied to solve mediate scale
problems, which should show whether it is attractive for further atudy or
not. The library seems thus to be a useful tool that may facilitate
algorithmic research when an application of interior point methods to linear
optimization is concerned.

The paper iz organized as follows., In Section 2 general iseuss of the
IPMLO design are addressed. It contains: descripticn of the library structu-
re, management of the LF problem data, computing Kamarka.r projections;,
implementation of the problem—oriented bésic linear algebra routines and the
implicit treatment of rows e;nd columns that are added to the constraint
matrix in the preprocessing phase of different variants of the methcl;d. In
Section 3 a theoretical background of the method implemented on the basis of
the Iibrary i1s discussed. Issues of its implementation are addressed in
section 4, In Section D the efficiency of the code is analysed and, on the
basis of its aprlication to the solution of mediate scale problems from

Gay’'s (1985) ANe:lib collection, compared with the one of the simplex code
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of Gondzio (19890). Section 6 brings our conclusions.
2. IPMLO description

We start this section with some general remarks concerning the constru-
ction of a FORTRAN program library for linear optimization. Such a library
should satisfy several widely accepted requirements (see e.g., Gill et al.,
1973) that, unfortunately, often conflict with each other. Let us now
briefly discuss the most important of them. For thelr excellent detalled

analysis the reader ls referred to the paper of Marsten (1881).

Subsarvience. The library should consist entirely of the set of subroutines
that can be called (and linked) in different configurations. Argument lists

ghould be the only mean for communication between different routines.

Readability. The gource code should be well documented and thus readable to

ite intended users.

Extendibility. It should be posasible to replace library routines by the

alternative ones and add new capabilities.

Modularity and hierarchical structure. User programs should be able to

call library routines at any level in their hierarchical structure.

Hidden dota siruvctures. None routine should access directly problem data
structures (neither the routines that incorporate the logic of interior

point algorithm nor the ones that handle Karmarkar projections).

Abrlity to solve large problems. It should be able to solve large scale

problems such as for example those from Netlid collection.

Reliability. It should respond gquickly to user’s errors or numerical

diffionities.
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Portability. It should be easy to install and compile on any kind of

computer.

In the following subsections the process of finding the comprémise

among these reguirements is addressed.
2.1. Structure of the library

The structurse of the library reflects as much as possible the natural
phases of solving an IF problem. In particular, such functions as: reading
MPS-formatted data, preprocessing, solving the problem and writing the ]
results can be distinguished in it. To satisfy the modularity requirement, .
much effort has been made to minimize the cross references among these
phages and within them. |

MFS data input has practically been completely isolated from the rest
of the library. It was possible since a special internal standard formula--
tion of the IP problem, independent on the variant of interior point
algorithm is kept (see section 2.2). -

Analogously, the whole preprocessing phase i1a also independent on the
logic of the interior point method chosen. This phase 1s in turn (see sec-
tion 2.3) atrongly dependent on the method of handling Rarmarkar projections
for which we applied the Cholesky decompoaition and should be .replaced if
the uger wants to apply another approach for computing projections.

The most implementationally involved part of the code ig the driver
routine (golver) for the chosen variant of the interior point met‘hod_. We
describe it in section 4.

IFMIG cutput, 1.e, writing the MPS formatted results, was also made

general in wide extent.



Z2.2. Problem data management

IRMIO is intended to solve the linear prégramming problems

minimize | ch s :( 1a)
subjent to Ax = b, (ib)
0= x=u, _ : (1c)

where A = Rmn, c,X,u € R? and b e R”. This internal standard form used in
the library differs from the general cne in which inequality constraints,
ranges for the right hand sides and nonzero lower bounds of the variables

ars allowed. Any linear program of more general form

minimize cyTy , o (2a)
] - = <

subject to by r= Ayy = b}‘r s (Zb)

< ot .

ly =v=u, , (2¢c)

where Ay = ERPXq, cy,y,ly,uy e RY  and by,r = IRP, can easily be
transformed to ite egquivalent form (1) (see e.g., Murtagh, 1981). It is
achieved by applying to (2) some straightforward techniques such as: adding
slack variables to constraints (2b) (upper bounded, if ranges r are
rregent), removing fixed variables and moving variables bounded from below
to zZerc lower bound (theee opérations require simple modifications of by
vector), aeplitting wnbounded variables, etc.

We have found useful to stop ﬁfoblem transformations on form (1)
although we are aware that many variants of the interior point - algorithm
(see e.g., Vial, 1887 and Goldfarb and Todd, 1283) need further transfoma—
tions (leading to zero right hand side, removing upper bounds of variables,
etc). As those usually deperd on the chosen approach, it is édvantageous to
handle them lmplicitly within the logic of the algorithm instead of explicit
bordering LFP constraint matrix with additicnal (presumably dense) rows and

columns. Sincs this problem seems particularly importeant for the modularity

wn



of the library, we shall address it in more detail in_section 2.4,
Différently to the simplex method, in which it suffices to handle LP
constraint matrix A by columns only, interior point algorithms need much
more computations that involve A and, consequently, require .comfor'table
access to both rows and columns of it. Following the technigques discussed in
chapter Z of the book of Duff et al. (1989), we thus store it as a collec-
tion of sparse column vectors (CLENTS,RWNMBS and ELMNTS arrays aré pointers
to columns, row numbers and nonzerc elements, respectively), and additio-
nally remember the sparsity pattern of A by rows in the form of row linked
lists (RWHEAD, RWLINK and CLMMBS arrays are headers to the lists, row linked
lists and column numbers where nonzero entries are present, respectively).
Figures 1 and 2 below, present an example matrix A and data

atructures that handle it, respectively.

] 3.0 5.0
1.0 2.0 3.3
A = -2.0 3.0 2.1
- 3.5 0.2
=7.0 4.5
7.0 1.0 2.0

Fig. 1. FExample LP constraint matrix A = RSP,

subscripts 1 2z 3 4 b B 7 8 9 10 11 1Z 13 14 15 18

CLENTS 1 4 5 7 9 11 13 15 16

RWNMES t 3 6 2 2 5 38 4 4 6 3 6 1 86 2
ELMNTS 3. -2, 7. 1. 2. -7. 3.3.5 .2 1.2.145 5, -2. 3.3
RWHEAD 1 4 2 8 8 3

EWLINE 13 7 10 5 1% 1Z i1 9 0 14 0 0O 06 0 o0
CLNMES 1 +r 1 2 3 3 4 4 5 5 6 6 7 T 8

fig. &. PFORTEAN arrays storing matrix A of Fig. 1.



Observe that, to access sparse column of A, say column 3, one has to _

determine where it begins in RWNMBS and ELMNIS arrays (in the example c:f
Figs 1 and 2, CLENTS(3) = B) and to compute its length (LENCOL =
CLPNT5(4) - CLPNTS(3) = 2). S5Starting from position 5, two subsequent
elements of ERWNMBS and EIMNTS arrays contain row numbers whére nonzeros of
colunn 3 are present (2 and 5) and its nonzero entri'ies (2.0 and -7.0),
respectively. To access sparse row of A, say row 2, row linked list has to
be scanned. It starts from RWHEAD(Z) = 4 and contains three elements indica-
ted by RWLINK array: 4 is the first one, 5 = RWLINK(4) and 15 = RWLINK(5)
are second and third, respectively. Zero value of RWLINK(15) indicates the
end of the list. Conseguently, row 2 of A is stored in positions 4, 5 and
15 of two arrays CLNMBS and ELMNTS handling column numbers where nonzeros
are present (2, 3 and 8) and the n@nzero entries (1.0, 2.0 and 3.3),
respectively. |

Let us obsex‘ve that such data structures ensure high efficiency of
arithmetic operations with A and A" and allow eagy construction of AAT
matrix., The sparsity of A may esasily be exploited in these operations.
Additionally, data structures presented have very small memory requirements.
oince EWMMBS and CLNMES arrays can be half-length integer (BWLINK array

mist be full-length integer), the storage needed for LP constraint matrix

management is

r, =7, (3)
and i, =n+m+ 27, +1 (4)

of real and integer nmumbers, respectively ( T, denotes the number of nonzero

entries of A).

An important feature of IPMLO library ls that data structures of Fig. 2
ara never aocesgsd dirsctly by the high level routines. Those can only call
two specialized reoutines GETROW and GETCOL to build up a single row or

colwm of A, Our approach to this is similar in spirit to the one of



Marsten (1981) in which problem data was hidden in two work arrays and. could
be accessed by the limited number of routines special-ized for‘ this purposé.
We are aware that such approach musf, lead to some loss of .code’s efficiency.
Consequently two routines of those handling Cholesky factorization of AAT
that extensively operate on matrix A have exceptionally been given a dirsct

access to data structures of Fig. 2.
2. 3. Preprocessing

The reading of the MPS input file ends up with the comstruction of
data structures of Fig. 2 for the IPMLO internal standard problem
formulation (1). Depending however on the method applied to Karmarkar
projections these data structures may require further modifications.

Preprocessing pvhase depends on the choice of the method used for
computing Karmarkar projections. As has already been stated, the Cholesky
deconposition of the matrix of form A9AT is used for this purpose. The
matrices that have fto be lnverted in euccessive iterations of any interior
point method differ only with the diagonal Weighting matrix ¢. They thus
ghare the same sparsity pattern although their rnumerical values change. This
means that an expensive sparsity structure analysis, i.e. reordering that
minimizes the fill-in of Chélesky matrix and the symbolic factorization, can
be performed only once in the whole solution process (see e.g., Gondzio,
1891b). The buildin,g‘ up of the matrix A0AT and the numerical phase of
Cholesky decomposition (followed with the solves with the triangular factor)
have tc be repeated at every iteration of the methed.

The whole sparsity structure analysis is then done in the following
five gteps:

() removing empty rows from A4;
(£2) aplitting dense columns of A4;

(227} finding the minimum degree ordering of AAT;



(iv) permuting rows of A according to the reordering resulting from (izi);
(v)  building static data structures for the Choleéky matrix (symbolic

factorization).

The reader interested in more detaill in the preprocessing phase is
referred to papers of Gondzio (1991a,b).

It is a particularly important feature of the IPMLO library that all
the preprocessing operates on the pure LP constraint matrix. Conseguently,
the Cholesky factorization is computed for matrix A6AT without bordered
rows or colums. The roubines computing the decomposition are thus well
isolated from the logic of an Interior point algoriihm, which ensures their
generality. Any modifications of A required by different variants of the
intericr point methed, that csuse uswally bordering A with (probably dense)

rows and/cor columns, are always handled implicitly.
Z. 4. Bordered rows and columns

There exist several reasons which justify the choice of direct approach
to the solution of eguations with ABAT (see e.g., Gondzio, 1981b). As was

already mentioned, IPMLO librarv applies Cholesky factorizavion to handle

these equations

T

sep” = LU, | (5)

where L is a lower triangular matrix of dimension m. It is easy to chserve
that having computed (5), egquations with 2647 can be replaced with two
triangular sclves with matrices L and LT, respectively.

The computational practice of application of the Cholesky factorization
indicates that the process of finding decomposition (5) involves usually
much more Flops (floating point operations) than applying this factoriza-

tion to solve equations with ABAT . The costs of computing the decomposition

X}



. \ _ T 1 wm 2. el
and one triangular solve with factor L; (or L) are fzizl n, and Ei:1 n_i,

respectively (n; denotes the number of 'éntries of the i-th column of matrix
L). Consequently, it is often advantagecus to simplify the decomposition

alone even if more triangullar solv.es have to be done later. Such approach is

particularly useful when dense columns are added to the LP constraint

matrix, which is the case in many variants of the interior point method that

transform the problem to be solved into a new equivalent form with zero

right hand side or add an artificial variable when an initial feasible

solution is locked for (see e.5.: \.Tial, 1887 and Lustig, 1891).

Consequently, instead of solving the eguation
ASA™n = g, SR (6)

the computation of the projection requires solving the more complicated

equation

8.8 A% = £, | W
whers

Aﬂ:[A [c,] with C < R™X )
amd

o = [diag & f diag Dc] with disg D_ = R&E, (9)

<

Chserve that this technique could be applied not only to handle added
columns but also to deal with dense columns removed from A, if such are
prasent in the linsar program. We do not however suggest to use it for such
purpose gince removing dense colums from A may lead to the rank-deficiency
of A®_AT (A, and &_ denote sparse parts of A and ©, respectively). We
rather suggest a more robust approach that split dense columns into shorter

anes (gee e.Z., Gondsio, 18991a) and can never affect the full row rank

property of A,

10



Substituting (8) and (9) inl.to (7) gives
(AeAT+ CDGCT)f = £, (10)

Applying (5) and the Sherman-Morrison-Woodbury formula (see e.g., Golub and

Van Loan, 1983, page 3) to (10), we obtain
£ = (a8A™+ CD_CT)'E

= (LLT+ 'CDccT)"f

= (WL - VST'W L H)E (11)
where

v = cn.%, (12)

w=L'v, (13)
and S=I1+WW, (14)

iz a kxk Schur complement (see e.g.: Cottle, 1874 or Hager, 1989).
Summing up, given the factorization (5), the solution & of (7) can e

obtained by the following sequence of calculaticns (see (11)-(143):

(1) solve g = £,
(tt) solve W=V-= CD;/Z,
(111) compute S =1 + WW ,

(iw) solve ©Sh=Wag,

(v) solve (LLT)E_: f - Vh .

We thus avoid the decomposition of ACSCAZ for which we pay with more
triangular solves in steps (f) and (1) and an additional factorization of

the emall, in general, Schur complement S,

11



Although the above presentation assumed adding a general ,mxk'matrix~1C=
to A, in practice, C is usually built with only one or two columns. These

two special cases have already beenlimplemented in IPMLO.

Another problem constitutes bordering matrix A with new rows, l.e. the

need of solving

T _ . .
ASAE = £, (16)
where
A, = { A } with R < RET, (16)
R -

and £,f « R™E,
In this case, formulas for solving (15) trace back to the block

elimination technique (see e.g., Duff et al., 1988, page 97):

A BAT = { A J & AT |RT
» R
R
_ | AeAT|P"
T K |
-
_ [ aes™|o I {Q (17
BEE T S
where
P=ReA", K = RER',
Q = (AeAT) *aeR", (18)
and S = FOR - ReAT (A6AT) 'A6R", | (19)

 —
(SN



Consequently, given the factorization (b) and the partition
£ =(¢,,8) and  £=(£,£), (20)
the equation (15) may be replaced with the following sequence of calculations:

(i) solve | (LLT)Q = ASR",
(¢t) solve (LLD)g = £,,

(i71) compute S = RER" - BOA'Q ,
(iv) solve g =1,

(v) compute £, =g - @ .
In other words we avold the decomposition of ARSA; but mére equations with
the Cholesky factor have to be solved in steps (£) and (¢i) and an
additional factorization of the small Schur complement has to be computed.

In the above presentation, a general kxn matrix R bordered to A was
congldered. In practlice however only one row 1s usuwally added to A, which
has already been lmplemented in  IPMLO,

Summing up, rows and columns bordered to A by different reformulaticrs
of the original problem (1) can be handled implicitly without affecting the
Cholesky decomposition (8). The maintained generality of Cholesky
factorization (it im independent on the variant of ﬁhe intericor polnt method
used) and the preventing of the sparsity of L (added columns might degrade

it gubstantially) are obvious advantages of such arproach.

3. The primal-dual logarithmic barrier method

In this section we shall briefly remind a logarithmic barrier interior
roint algorithm that has already been implemented on the bagis of IPMLO. We
address theoretical issues rather, leaving implementaticnal detalls to e

Adiscusssd in the nest ssction.

13



We have chosen the primal-dual logarithmic barrier interior pom'b
method (see e.g.: Megiddo, 1986, Kojiiﬁ& et al., 1988, Monteirc and Adler';,}'
1989, McShane et al., 1989 and Cheoli et al., 1880) mostly due to its high
efficiency. It applies the logarithmic barrier e.lpproachr (see e.£., Flacco
and McCormick, 1968} simultaneocusly to primal and dual problems. Consequ-
ently, it iterates at the same time on the interior estimates of both primal
and duval variables and perfgms Newton steps that maintain feasibility and
reduce the violation of the complementarity constraint. Although its single
iteration is slightly more expensive than that of a pure primal or a pure
dual barrier method, the primal-dual method has several advantages. It gives
both primal and dual optimal solutions and it can earlier be terminated
since it works with the .exact duality gap as soon as the primal feasibility
is cobtained.

Gill et al. (1986) showed that the projective method of Karmarkar
(1884) is under some assumptions eguivalent to a leogarithmic barrier one.
Meidde (1988) was to our knowledge the firet to propose applying logari-
thinice barrier approach to primal and dual problems at the same time. This
led Kojima et al. (1988), Monteiro and Adler (19889) and McShane et a]H
(1983) to practical (implementabie) methods.

Let ua congider the dual pair of LP problems

minimize clx | (21a)
(P) subject to Ax =b , ' (21b)
x= 0, (21c)

arnd
maximize by, (22a)
(D) subject to Ay+z=z=c, (22b)
z =0, (22c)

where v < R™ and z = RY,

14



Simple bounds (2l1c) and (22c¢) can be replaced in these problems by .
logarithnic barrier function (see e.g., -Fiacco and McCormick, 1968) leading
to the following primal and dual ob,}'ective functions

n
£,06,0) = ¢'x - ¢ E lnxg, (23)
=t *

n
£,(v,2,4) =b'x - p T Inz, (24)
- i=1

where p denotes the barrier coefficient.

Problems (21) and (22) can thus be replaced by the barrisr eguivalents

(PB) mninimize fP(x,y) (25a)
subject to Ax = b, (Z2Eh)

and

(DB) maximize fD(y,z,u) (26a)
aubject to ATy +Z =0, {26Db)

Having formulated lagrangians for (28) and (26):

n
Lop (%,7,02) = &'x - 2 T Inx, - ¥ (Ax-b) , (27)
i=1 .

n
Lo(xy,2,0) =by - I Inz, - x (Ay+z-c) , (28)
izt b

we can easlly derive the first order conditions for (25} and (26)

Ax =D, | (298)
ATy + 3 =c, {29b)
XZe = pe (29¢)

where X and 2 dencote diagonal matrices built with Xy and 2y respactively

. , n
and e is a vector of cnes in R,



(29a,b) are primal and dual feasibility conditions while (29¢) leads. to
the complementarity condition as u tends to 0 The algorithm assumes 'E;hat
feasible interior primal, dual and dual slack solutions x = 0, ¥ and‘ a 2. 0
are known and applies Newton s method to determine their corrections Ax, Ay
and Az, respectively. The corrections maintain the feasibility and reduce
the viclation of the complementarity constraint (28¢). This leads to the

following equations that define the corrections

Abx =0, (30a)

ATAy + Az =0, - (30b)

ZAx + XAz = v(y) , (30c)

where vig) = XZe - pe . {81)
Thelr soluticn gives

Ay = - B *AZ *v(m) (32a)

Az = - AAy (320)

Ax = 2 'v(n) - 2 %Az, | (820

-1 T )
where B =AZ "XA . (324)

Correctiong of the current solutions x, v and =z with the direction (32)
completes the iteration.

The algorithm procesds Lu“ltil the duality gap becomes small. It is
advantageous that it operates on feasible sclutions, which allowé its
earlier termination. Additiocnally, if continued until the end, it gives both

primal and dual optimal solutions never mind whether a degeneracy is present

or not.



4. Implementation of the primal-dual method

In thie section we shall address the problem of method’s implementation
on the basis of IPMLO. We shall in particular focus our attention on

exploiting modularity features of the library.

As was shown in section 3, the primal-dual method operates on feasible
estimates x, ¥ and 2z of primal, dual and dual slack variables. As those
are not known in advance, ﬁe chall apply the approach of McShane et al.
{1989) and transform problems (Z1) and (22) to some more complicated forme
with a priori known feasible solutions. We assume that some initial values
P a, yD and 2= 2 0 that may violate constraints (21b) and (22b) are

given. Consegquently, (21b) may be replaced by a new constraint with the

artificial variable X,
Ax + (b - Ax“)xa =b, (33)

that has a strictly positive feasgible solution (xO,l). Similarly, given y?

a sufficiently large 3 can be found such that for Y, = -1

O T
] =c—AyU-ﬁ'eya, (34)
ig strictly positive.

Summing up, a new dual pair with a priori known feasible solutions can

e formulated

ra T
minimize o x + C X, > (35a)

(Pl) subject to Ax + (b - Axo)xa = b, (35b)
£ +x =D 35¢)

fe x %, = b, (3bc

X, X, %y =0, (354)

17



and

(36a)

. e T
maximize | by + baya ’
(D1) subject to A’y + Bey, + 2z =c, (36b)
0.7 _
{(b-&x )y + z, = c (36c)
Yy + gy = a, (364d)
z, 2z zb =0 . (36e)

(bzerve that artificial variables x_, g and slack variables Xb’ z, and %,

a
were added to the coriginal problem leading to its bordering with two columns

and one row

(37)

where colum d = b - Ax~ is presumably dense.

Ags shown  in section 2.4 such bordered row and columns can and should
be handled implicitly. This is then the approach chosen. We use the Cholesky
factorization to decompose AZ*XAT and later, when the direction (32) has
to be computed, solve equations with AZ?1XA? applying techniques of section
2.4.

Observe that once a primal (or dual) feasibility 1s achieved, the
artificial column (or row) may be rvemoved from (37), which simplifies the
computation of Newton s direction.

We omit further discussion of implementaticnal details and refer to
Luatig (19881), MeShane et al., (1989) and Choi et al. (1880) for their
studies. The numerical results reported in this paper were obtained for the

parameters set up as below.



Initial solutions:

primal and dual step lengths:

I

o
P

a = 0.999 ,
D T

artificial cost coefficients:

(8]
[H]

X .
10m maxlcil :

and b

10n” max]bi| ,

the barrier parameter determined at every iteration as:

_ cTx - bTy
su - 2 ?
n

and the stopping oriteria

o x - bTy

T
C X

with = = 107°,

5. Mumerical results

We shall now present some preliminary computational results. They show
in particular tﬁat when ﬁhe efficiency of code is concerned, IPMLO routinés .
compare favorably with other state-of-the-art LP codes. Congequently, below,
the results of applying the primal-dual interior point methed and the
simplex code of Gondzio (1980) to the solution of several mediate scale
problems from Netlib collection (those which have no upper bounded
variables) are presented. The simplex method used in this comparison was
based on Marsten's XMP library. LAOD routines of Reid (1982) that handle

Bartelz-Golub updates of the basis were however replaced in it with slightly

18



faster and remarkably more storage efficient basis inverse representation
that apply Schur complement updates. T
Table 1 contains the description of the test problems (M and N dencte
problem dimensions, T, indicates the number of nonzero elements of the. r
constraint matrix (1b)) and the numbers of nonzero entries in appropriate
inverse representations. In case of the interior point method this contain
the number of subdiagonal entries of A@AT, the number of subdiagonal
entries of its Cholesky factor L, and the fill-in. For the simplex methed,

the number of nonzero entries of the largest Schur complement encountered

during the whole ran is reported,

Table 1. Nonzeros of the inverse representations.

Tnterior Folnt Method  SIMELEX

PROBLEM M N T, * (AAT) T, Fill-in nz of Schur
AFTRO o7 51 102 63 80 17 35
ADLITTLE 58 133 4724 328 355 27 900
SHAREZB 95 162 777 775 941 166 961
SHARE1B 117 753 1179 824 1286 382 1521
SCAGR7 129 185 465 500 637 137 961
SCSD6 147 1350 4316 1952 2398 446 2025
BEACONFD 173 295 3408 7668 2728 59 1849
TSRARL, 174 318 2443 11053 11259 208 951
ISRARL (split) 182 326 2459 5819 7840 1821 ~
ERANDY 182% 292 2191 2541 3281 690 1849
SC205  204% 316 664 451 1000 549 729
206 293 472 2768 2600 3443 843 1236
SCTAPL 300 660 1872 1386 2360 a74 2304
BANDM 305 472 2484 3419 4358 939 1849
SCFXM1 330 600 2732 2003 4452 1549 2401
SCAGRZ5 471 671 1725 1922 2509 587 1843
SCRS8 490 1275 3288 1708 5804 4096 1936

*  Empty rows have been removed from BRANDY (38) and SC205 (1).

The analysis of Table 1 results substantiates the well known conclusion
on the storage offilciency of simplex code when compared with interior point
method, especially that the memory needs of the interior point algorithm are

at least two times larger than that indicated in column TL {results col-

as



lected in Table 1 indicate numbers of nonzero entries of different inverse
representations and not their storage needs)

Table 2 collects results on the efflciency of the two methods
considered: primal-dual logaxithmlc barrier one and the henchmark simplex
one. For every method, both the number of iterations and the solution times
on a 20MHz IBM 80386 computer with the arithmetic coprocessor 80387, the

memory limited to 640kB and the relative ;mecisian. £ = 2.2 107*° are

given.

Table 2. Comparison of the methods”™ efficiency.

PROBLEM Pr?mal—Dual H§thod Simplex Met@od
iters time iters time

AFTRO 13 28 g 1s
ADLITILE 19 s 171 9a
SHAREZR 7 1llg 146 128
SHAFE1B 54 45 330 34s
SCAGRT 22 10s 112 10s
20308 ' 15 33z 543 1m4s
BEACOMED 20 Im10= 11a8 188
TERARL - - 464 im04e
IZRARL (split) 34 3m28e - -

BRANDY = 29 imi6s 328 E8s
SC2056 = 23 15a 50 Ts
E226 a5 im30s 808 2m0Za
SCTAPL 27 40z 349 Bls
BANDM 29 1mZ4s 578 2m0ls
SCFRM1 31 1m3ds 475 1mZ28a
SCAGRZDH 33 bbb 642 2m0bs
SCR38 52 dmi8s 683 2m3ds

*  Empty rows have been removed from BRANDY (38) and SC205 (1),

Az the results of Table 2 show, implementations based on IFMLO compare
favorably with the efficient simplex code. They also indicate that even
mediate scale LP problems may be solved on a microccomputer with only o©640kB
- of cperational memory. IPMIO library seems thus o be a useful and easy to

install tool when a practical development of new interior point methods is

coneerned.



6. Conclusions

IMMLO library can be used for different research purposes:

- 1t can be the basis for implementing new aﬁtractive variants of interior
peint method (ses e.g., Tolla, 1887);

- it can be modified to deal with specially structured linear programs such
as dynamic, stochastic, network (see e.g., Lisser and Tolla, 1989);

- 1t can be used for experiments with different projection technigues
(iterative as e.g., Karmarkar and Ramakrishnan, 1988 and others as e.g.,
Tachat, 1991).

The code iteelf is small and uses storage efficient data structures.
Conzequently, even on a microcomputer with 640kB of operational memory, pro-
blems of remarkable size (up to bB0O0 constraints and 1000 variables) can be
golved with it. Additionally, it compares favorably with other LP solvers.

It is wall-documented and easily extendible due to its modularity.

We end up thiz paper with indicating near future develcopment of the
IPMLO library. There are at least three attractive directions of these
erhancements., The first one is the incorporation of upper bounds on
variables in 1t (curvent version does not accept them). The second one ig
the improvement of the efficiency of the already implemented primal-dual
logarithmic Dbarrier interior point method and the ooding of other
computationally attractive methods. The third one is the implementation of
different methodz for computing projections that could deal with badly

conditioned problems.
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Availabity of code
It is our intention to make the IFMLO code available for ény research
purposes. More infbnmation_regarding this can be obtained by contacting'th¢;..'

authors,
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