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GENERALISATION DE LA RELATION D’INDISCERNABILITE
POUR L’ANALYSE A L’AIDE DES ENSEMBLES APPROXIMATIFS
D’INFORMATION QUANTITATIVE

Résumé

La théorie des ensembles approximatifs est un outil formel pour I’analyse de connais-
sance acquise par l’expérience. La connaissance est représentée par un ensemble de
données sous la forme d’une table appelée systéme d’information. Les lignes de la table
correspondent aux objets et les colonnes aux attributs, L’idée de ’ensemble approximatif
consiste A approximer un ensemble d’objets par une paire d’ensembles appelés approxi-
mation inférieure et supérieure. La définition de ces approximations découle d’une rela-
tion d’indiscernabilité entre objets. Les objets sont décrits par des attributs qui sont de
nature soit qualitative, soit quantitative. Dans le cas d’attributs quantitatifs, la relation
d’indiscernabilité est définie aprés partition de 1’échelle réelle en un nombre fini d’inter-
valles. Les bornes de ces intervalles, étant plus ou moins arbitraires, peuvent influencer
le résultat de I’analyse de connaissance 4 1’aide des ensembles approximatifs. Pour ap-
préhender cette influence, nous considérons des intervalles qui se chevauchent en leur ..
extrémités et introduisons les relations d’indiscernabilité faible et forte. Nous générali-
sons ensuite les approximations inférieures et supérieures, les mesures de la qualité
d’approximation ainsi que le concept de la régle de décision,

Mots-clés : Théorie des ensembles approximatifs, analyse de connaissance, systéme
d’information, relation d’indiscernabilité entre objets.
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A GENERALIZATION OF THE INDISCERNIBILITY RELATION
FOR ROUGH SETS ANALYSIS OF QUANTITATIVE INFORMATION

Abstract

Rough sets theory is a formal tool for analysis of knowledge gained by experience. The
knowledge is represented by a data set organized in a table called information system.
Rows of the table correspond to objects and columns to attributes. The idea of the rough
set consists in approximation of a set of objects by a pair of sets called lower and upper
approximation. The definition of the approximations follows from an indiscernibility
relation between objects. Objects are described by attributes of qualitative or quantitative
nature. In the case of quantitative attributes, the indiscernibility relation has been defined
after partition of the real scale into a finite number of intervals. The bounds of the
intervals are more or less arbitrary and may influence the result of the rough sets
analysis. In order to capture this influence, we consider overlapped intervals and
introduce for them a strict and a weak indiscernibility relation, Then, we generalize the
lower and upper approximations, the measures of the quality of approximation and the
concept of decision rules.

Keywords : Rough sets theory, knowledge analysis, information system, indiscernibility
relation among objects.



1. INTRODUCTION

Rough sets theory provides a formal tool for transforming
a data set, being a record of an experience, into knowledge
understood as a family of classification patterns related to a
specific part of the real world. One of factors hindering
revelation of the classification patterns from data
representing an experience is indiscernibility caused by

granularity of the representation.

Rough sets theory, which deals with the granularity
problem, has been proposed in early 80's by Pawlak [6,7] and
quickly gained a wide acceptance because of successful
applications (cf.[2,4,5,9,11,13]). The main advantage of rough
sets theory is that it does not need any preliminary or
additional information about data {like probability in
statistics, bésic probability number in Dempster-Shafer theory,
grade of membership, or the value of possibility in fuzzy sets
theory). Another advantage is that inconsistencies in the data
base are not corrected; instead, produced classification rules
are categorized into certain and possible.

Rough sets have been compared to fuzzy sets, sometimes
with an idea of making them competitive models of an imperfect
knowledge. Such a comparison is, however, ill—poéed because
indiscernibility and vagueness are two different faces of an
imperfect knowledge (cf.[1,8]). Basically, rough sets embody
the idea of indiscernibility between objects in a set, while
fuzzy sets model the ill-definition of the boundary of a
sub-class of this set. In other words, rough sets are calculus

of partitions, while fuzzy sets are continuous generalization



of set—characteristic functions. Taking an example from image
processing, rough sets theory is concerned by the size of
pixels used to apbroximate contours, while fuzzy sets theory is
concerned by the level of gray between black and white.
Comparison of the rough sets theory with the related approaches
have been made in [1,3,8,11,14].

The observation that one cannot distinguish objects
{clients, states, cases, etc.) on the basis of given
information about them is the starting point of the roth sets
philosophy. In other words, imperfect information causes
indiscernibility of objects., The indiscernibility reLation
induces an approximation space made of equivalence classes of
indiscernible objects. A rough set is a pair of a lower and an
upper approximation of a set in terms of these equivalence
classes. The concept of an information system is used to
construct the approximation space.

The information system is the 4-tuple $=<U,Q,V,p>, where U
ig a finite set of objects, Q is a finite set of attributes,

V= X Vq and Vq is a domain of the attribute q, and p:UxQ-V is a

geaQ
total function such that p(x,q)qu for every qeQ, xcU, called

information function. Any pair (q,v), qe0Q, veV; ig called
descriptor in S,

The information system is in fact a £finite data table,
columns of which are labelled by attributes, rows are labelled
by objects and the entry in column g and row x has the wvalue
p(x,q). Each row in the table represents the information about
an object in 8.

For example, a data file concerning clients applying for a



credit in a bank is an information system. Let us suppcse that
the clients have submitted their applications in the form of
dossiers including information about their previous financial
results, present state and business plans. 5o, they can be
described by a set of attributes defined on the basis of
‘dossiers. When the time of pay back comes, some clients are
able to repay and others are not, thus the ability of repayment
makes partition of the set of clients into two classes. An
analysis of the experience gained by the bank shéuld answer
then the following questions:

- what is the quality of approximation of particular classes
of clients by the set of attributes; if it is low, it means
that some extra attributes had to be taken into account
when making decision about granting the credit,

- what is the minimal subset of attributes which'ensures the
same gquality of approximation as the whole set; if there
are several minimal subsets, those attributes which enter
the intersection of minimal subsets represent a
non-removable part of the information while other
attributes from minimal subsets are exchangeable,

- what are c¢lassification (decision) rules in terms of
attributes from a chosen minimal subset; the rules are
"epartain" if the attributea univocally assign the clients
to particular classes, and they are "possible" otherwise;
the rules explain the relationship between description of
¢lients and their ability of payving back the debt, so they
may be useful to support decisions about granting new

credits.,



One may get answers on the above questions using the rough
sets analysis. Many analogical cases have been described in
the book devoted to applications of the rough sets theory [11].

The attributes describing objects may have a gqualitative
or a dguantitative mnature. In the latter case, the original
domain of an attribute is a subset of the real line, e.g. value
of a fixed capital or value of sales are values from a real
interval. In practice, however, the original domain of a
guantitative attribute is partitioned into few subintervals,
qualified as subintervals of low, medium, high, etec. values.
This partition renders objects easily comparable. Two objects
are considered as indiscernible with regard to such an
attribute if their wvalues p(x,q) belong to the same
subinterval. The bounds of the subintervals are called norms.
The norms are more or less arbitrary, they follow from some
conventions. As shown in [12], definition of the norms may
influence the result of the rough sets analysis. In order to
capture this influence, we propose in this paper to consider
overlapped subintervals and to distinguish between a strict and

a weak indiscernibility relation.

Traditionnally [6], two objects x,vy ¢ U are indiscernible
with regard to gquantitative attribute q, if their values p(x,q)
and p(y.,q) are identical or belong to the same subinterval. We
propose to enlarge the subintervals of attribute gq from each
side by a given threshold so that the subintervals overlap (c¢f.
Fig. 1). Then, the two objects will be considered as strictly
indiscernible with regard to q, if their values p(x,q) and

ply,q) belong to oniy one enlarged subinterval which is the



game for both values. They will be coansgidered as weakly
indiscernible if the values p(x,q) and p(y,d) .belong o

at least one enlarged sgsubinterval and at least one ig the same

for both values. Indeed, for any x ¢ U, p{x,q) may belong to
one or two subintervals - in the latter case it takes value in
an overlapping zone and in the former case, outside this zone.
For example, objects X, and X in Fig. 1 are strictly
indiscernible while objects X . X, X and x, are weakly
indiscernible. 0f course, strictly indiscernible objects are
also weakly indiscernible, but aot cbnversely. The difference
between the guality of épproximations defined for strict and
weak indiscernibility relations gives an insight into an effect
of overlapping. Let us mention that another generélization of
the rough sets approach trying to deal with missing and/or

imprecise data in the information systems has been made in

[147].
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attribute g '




This paper is an extended version of {10]. In the next
section, we formally introduce the strict and weak
indiscernibility relations. In two following sections, we
generalize the lower and upper approxXimations and the measures
of the gquality of approximation. Then, we generalize the
dependency of attributes and the notion of decision rules. An

illustrative example and conclusions end the paper,

2. STRICT AND WEAK INDISCERNIBILITY RELATIONS
Let 8&=<{U,Q,V,p> be an information system and geQ a

gquantitative attribute. The domain V; is a real interval

[b:,b:]. Let split -this interval into mh subintervals
ib* ,b% ], i=1,...,m . Of course, b~ =b° =b ., i=1,...,m .
qi qi q qt gli-4? qi q

Let us also define a threshold tqt(bgi)zo for each bound bqi.
We will translate the original values p(x,q) to, so called,

coded values p° (x,q) being sets defined as

o° (x,a)={v] sp(x,q) e [B -t (b ) b+t (b )}, dell,....,m}}
where v: is a code of subinterval i. Let us notice that pc(x,q)
may have one or two elements only.

The qﬁalitative attributes take also coded wvalues pctx,q)
but they are singletons. System § with coded values of

attributes is called coded information svstem and denoted by

SG
Let PcQ and x,yeU. We say that objects x and y are

strictly indiscernible in S° by set of attributes P iff

ooz, q) = oy, q) vge P

and card [p°(x,q)] = card [p°(y,q)] =1 Yae P.



Objects % and y are weakly indiscernible in s by set of

attributes P iff
o (x,q) np(y,q) # 8 v¥ge P.

Thus, every PcQ generates two binary relations on U,
called strict and weak indiscernibility relations, depnoted by
IND® (P) and INDY(P), respectively. Let us notice that IND® (P)c
INDY(P), and IND°(P) and IND” (P) are ordinary equivalence
relations iff IND® (P)=IND"(P) (partition of U).
Indiscernibility c¢lasses of relation IND® (P) {(resp. IND"(P))
are called P°~elementary (resp. PY-elementary) sets in S°. The
union of all P'-elementary sets is equal to U while the union
of all P°-elementary sets may be smaller than U.

The family of all indiscernibility classes of relation
IND® (P) (resp. INDY(P)) in U is denoted by U|IND°(P) (resp.
U] IND"(P)).

DesP(XS) denotes the description of indifference class
(P°-elementary set) X e U|IND5(P) in terms of the coded wvalues
of the attributes from P, i.e.:

Desg(xs) = {(q,v?): v:= p-(x,q), ie{l,...,nh},

for every xeX  and geP}
Similarly, for X‘e U|IND"(P),

T E.., .&_ ¢ .
Desy (X"} = {{q,v,): ve p (x,q), 16{1,---.Hh}.

for every xcX® and geP}

3. GENERALIZED APPROXIMATION OF SETS
In order to evaluate how well the sets {Desy(X ):X°¢
U{IND®(P)} and {Desy(X'): X'e¢ U|IND"(P)} describe objects of a

set Yc U, we shall use the following concepts:



P°Y = U X°:{X°c U|IND®(P) A X°cY} - P°-lower approximation of Y

in &° (P°-positive region of Y)

Set P°Y is the set of all stri¢tly indiscernible objects of U
which can certainly be classified as belonging to Y, using

attributes from P.

PPy = | X°:{X°¢ U|IND® (P)A X°nY#0} - P°-upper approximation of
Y in §°

Set P°Y is the set of all strictly indiscernible objects of U

which can possibly be classified as belonging to Y, using

attributes from P.

Bn;(Y) = P’y - pP°y - P® -boundary of Y in §°

(P-doubtful region of Y)

It is not possible to determine whether an object in Bn;(Y)
belongs to Y solely on the basis of deseriptions of the
P°-glementary sets.

Similarly,

i)
L4
=

BP'Y = U X":{X"e U|IND"(P)}A X cY} - P¥-lower approximation of Y

in §° (P¥-positive region of Y)

P'Y = U X":{XYe U|INDY(P)A X"n¥#0} - P"-upper approximation of
Y in s°

Bn;(Y) = PYY - pP'v - PY-boundary of Y in &°
{P~doubtful region of Y)

Thus, P'Y (resp. P'Y) is the set of all weakly indiscernible

objects of U which can certainly (resp. possibly) be classified

as belonging to Y, using attributes from P.

Let us notice, that there exist the following relations



between strict and weak approximations and the approximations
based on the ordinary indiscernibility:
P°Y ¢ PY ¢ P'Y

P°Y ¢ PY ¢ P'Y

Let & = {Xi,Xa,...,Xn} be a classification of U, i.e.

. n
}{,E n Xj= @ for every 1i,jsm, izJ, juixj =U. Xj are called classes

of ¥.

By P°-lower (resp. P°-upper) approximation of & in s° we
.mean sets P°% = {gﬁxi,gfxz,...,gfxn} (resp. P°% = {Esxi,
§SXZ,...,§an}). Similar definition exists for P"-lower and

PY-upper approximations of ¥ in S§°.

4, MEASURES OF THE QUALITY OF APPROXIMATION HANDLING THE
EFFECT OF OVERLAPPING
Let ¥ be a classification of U {(for example given by an
expert) in §°. In order to evaluate how well the set of
attributes PcQ strictly or weakly approximates the
classification ¥, we shall use the following measures:

~ the accuracy of strict or weak approximation of ¥ by P

in §°, respectively

n 113
=3 =3 =5
= d [FP'X

nP(fE) j§1 card [P Xj }/jgicar [ : 1

L 1] n
v — ) bl
nP(%) —j§1 card [P Ir{j }/jg:icard [P X.i ]

- the gquality of strict or weak approximation of ¥ by F in

S°, respectively



-

117
Y;(E) = y card [gsxj]/ card [U]
j=1

1]
7p(%) = T card [gwxj]/ card [U]
=1

Let us notice that all these measures take values from interval
[0,1].

Since fﬁxjg fUXj, the difference F“xj—ﬁsxj is the boundary
of Xj in s° composzed of PY-elementary sets with ambiguous
descriptions. The ambiguity follows from an overlapping of

subintervals to the extent of thresholds tqi' i=1,...,n2, qeP.

This boundary is called Pt—boundarv of Xj in 8°. Of course, if

tqt=0 for all i and geP, then the Pt—boundary is empty.

Thus, the following measure can be used as an

indicator of an influence of overlapping on the gquality of

approximation of classification ¥:

0
Cp(%) = card [.U (PYX - P°X. )1/ card [Ul]
i=1 i i
CP€[0,1], and the smaller it is the lesser is the influence of
overlapping.

The indicator says what is the ratio of the pnumber of
objects misclassified by P because of the overlapping and the
number of all objects in &, For this reason, it can be useful
in sensitivity analysis of rough classification with

quantitative attributes (cf.[12]).

5., GENERALIZED DEPENDENCY OF ATTRIBUTES
Discovering dependencies between attributes is of primary
importance in the rough sets approach to data analysis.

We will say that set of attributes RcQ depends strictly on




the set of attributes PcQ in S° {denotation P 5 R) iff IND°(P)c
IND® (R). Similarly, RcQ depends weakly on PcQ in S° (denotation
P 5 R) iff IND"(P)cIND'(R).

Another important issue is that of attribute reduction, in
such a way that the reduced set of attributes provides the same
quality of strict or weak approximation of classification ¥ as
the original set of attributea, The minimal subset of
attributes RcPeQ such that yp(£)=yp(%) will be called ¥ -reduct
of P (or, simply, s-reduct if there is no ambiguity in the
understanding of %). Similarly, we can define ¥ -reduct of P

{or w-reduct).

Let us notice that a c¢oded information system may have

more than one ¥ -reduct and/or % -reduct. RED;(P) (resp.
RED%(P)) is the family of all ¥ -reducts (resp. % -reducts) of
P. Intersection of all ¥ -reducts of P (resp. ¥ -reducts) will
be <called the ¥ -core (resp. % -core) of P, i.e.
CORE, (P)= n RED,.(P) and CORE.(P)= N RED;(P). The °-core (resp..
¥'-core} of Q is the set of the most characteristic attributes
which cannot be eliminated from S° without decreasing the
quality of strict (resp. weak) approximation of classification
Z.
6. GENERALIZED DECISION RULES

An information system can be seen as decision table
assuming that @=CyD and CnD=g, where € are called condition

attributes, and D, decision attributes.

Coded decision table DT°=<U,CuyD,V,p°> will be called

stricly deterministic iff € 3 D and, otherwise, stricly

non-deterministic. Similarly, §° will be called weakly




deterministic iff c3D and, otherwise, weakly

non-deterministic. The stricly or weakly deterministic decision

table uniquely describes the decisions to be made when some
conditions are satisfied. In the case of a (stricly or weakly)
non-deterministic table, decisions are not uniquely determined
by the conditions. Instead, a subset of decisions is defined
which c¢ould be taken under circumstances determined by
conditions.

From the decision table a set of decision rules can be

derived. Let U|IND®(C) and U|INDY(C) be families of all C°- and

o™ elementary sets called strict and weak condition classes in

DT°, denoted by Y;* (i=1,...,k ) and th" (i=1,...,k ),
respectively. Let, moreover, U|IND°(D) and U|IND'(D) be
families of all D*- and D“-elementary sets called strict and

weak decision ¢lasses in DTI°, denoted by }ﬁ (j=1,...,ns) and

X; (j=1,...,nv), respectively.
DeaC(Yf)e DeaD(X?) is called sgtrict (C,D)-decision rule,
while DesC(Y:)g DesD(X:), weak (C,D)-decision rule in DT°. The

rules are logical statements (if... then...) relating

deacriptions of (strict and weak)} condition and decision
classes.

The set of (strict and weak) decision rules for each
(strict and weak) decision class X? (j=1,...,n ) and X;

(3=1,...,n ) is denoted by {rfj} and {r:j}, respectively:
S

{rfj} = {Desc(&f) N DesD(X?): Yf n xj £ ¢, i=l,...,k }

v W W, W v s —
{rij} = {DesC(Yi) 3 DesD(Xj). Yj f Xj Z d, 1—1,...,kw}

in

Rule rfj (resp. r:j) is deterministic iff Yfg Xj (resp. Yf



X:), and rfj (resp. r:j) is pon-deterministic otherwise. It
means that decision rules are strict or weak, and, moreover,
certain or possible.

The set of strict (resp. weak) decision rules for all

strict (resp. weak) decision classes is called strict (resp.

weak) decision algorithm.

7. ILLUSTRATIVE EXAMPLE

In order to illustrate the introduced generalizations, let
us consider a small didactic example of a hypothetical
information system. The system describes 12 clients who have
got an approximately equal credit in a bank and now should pay
" back their debts in instalments. On the basis of dossiers, the
clients are characterized by three condition attributes:

c; - value of fiwed capital,

c, - value of sales in the year preceding the application,

o, = kind of activity.

Attributes c1 and ¢, are guantitative ones, while attribute c,
is a qualitative one with three possible values.

Decision attribute d makes a dichotomic partition of the
set of clients: d=0 if the client pays back the debt, and d=1
otherwise. The decision table DT with original values of
attributes is shown in Table 1. It is clear that C={ci,cz,ca}
and D={d}.

The values of quantitative attributes have been translated
into qualitative terms {(low, medium, high) using the norms
presented in Fig. 2. The figure indicates the boundary values

of subintervals, the thresholds on both sides of the boundary



values,

and the codes of qualitative terms.

table DT° is shown in Table 2.

Table 1.

The coded decision

Decision table DT with original values of attributes
Q
U ¢ c d
1 Z
xi 43 78 0
b4 54 75 1
2
xa 124 50 0
X4 102 65 1
X 98 80 1
5
® 88 102 1
v
X} 130 57 0
X 128 g2 1l
% B2 59 0
2]
b4 134 103 1
10 )
58 55 0
11
b4 126 71 1
12




LOW (0) HIGH (2) ¢

T T T T
60 70 80 105 15 125
I MEDIUM (1)
Low (L) HIGH (H) ¢z
T 1 4 [ ot
a8 64 70 84 92 100
| MEDIUM (M)

Fig. 2. Transformation of guantities into gqualitative terms

for attributes c, and c, {norms)

Table 2. Coded decision table DT°

Q
U c C c d
i 2 3

X 0 M 0 0
1

p.q 0 M 0 1
2

b 1,2 L 1 0
3

X 1 L,M 1 0
4

X 1 M 1 1
5

X 1 H 2 1
a

X 2 L 2 0
7

xa 2 M,H 1 1
X 1 L,M 1 0
D

X 2 H 2 1
i0

X 0 L 0 0
11

X 2 M 1 1
12




The rough sets analysis o% DT® using strict and weak

indiscernibility relations gives the following results.

+ As strict and weak decision classes are identical, we will
drop for them superscripts s and w:

= X b4
X, {x1 2 e N

o %y, ¥, X1={:f:z,:fci,,,xﬁ.x'ﬂ 2 I }

12
Classification ¥ = {Xo,Xi}
. C°~elementary sets:

{x =z}, {1, {ira}, =}, fx b, {x b, ix )

» CY-elementary sets:
{xi.xz}. {xa,xi,xp}. {x4,x5,xg}, {=x 1, {x?}, {z .x 1},
{xm}, {x“}
:» Strict approximations of class XD:
Sy _
QXO— {x?} U {x“}
s _
C'X = {xi,xz} U {x7} U {xii}
& _
Bnc(xo) - {xi’xz}
+ Weak approximations of class XD:
Vo
C'X = {xa.x4,x9} v (%} u ix 1}
vy _
CX = {xi,xz} u {xa.x4,x9} u {x4,x5,x9} u {z 1 u {x“}
v -
Bnl(X ) = ix ,x } u {X;,ngxb}
+ Strict approximations of class Xi:
R
QXf-b%}u{xJ U{ﬁuiu{ﬁz}
—e., _
X = {xi.xz} U {xﬁ} U {xﬁ} U {xm} U {xiz}
= —
Bnc(xi)- {xitxz}
« Weak approximations of class X1:
Vo o
€KX = {xa} u {xa.xiz} U {xw}
o - .
C'X = {xi.xz} U {x4,x5,xs,} U {xd} U {xa,xiz} U {xm}

W —_
Bnc(Xi)— {xl,xz} U {x4,x5,x9}



@
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AT

Strict and weak accuracy of approximation of ¥:
ne= 0.6 ne= 0.53
Strict and weak quality of approximation of ¥:
7e= 0.5 Ye= 0.75
The indicator of an influence of overlapping:
Ec= 0.42
It means that 5 on 12 objects enter the Ct—boundary of ¥

because of the overlapping.

7°~ and 7" -reducts of C:

RED;(C) = R: U R;, where R: = {01’02}' R: = {c,,c_}
S —_ = 8

COREx(C) = R1 n R2 = {Cz}
W — W v _

REDE(C) = R°, where R"= {ci,cz}
w —-— ¥

CORE%(C) =R = {¢ ,Cz}

S0, for strict and weak approximation of decision classes
two condition attributes are sufficient. In the case of
strict approximation, either ¢, or c is superflious, while
cZ cannot be removed without decreasing the quality of
approximation. In the case of weak approximation, only ¢, is
superflous. Thus, in order to derive strict and weak
decision algorithms, it is sufficient to consider the
reduced decision table with c, and c2 as the only condition
attributes. |
(ci,cz)s-elementary sets (strict condition classes) are
equal to C°-elementary sets.

(ci,cz)"—elementary sets (weak condition classes}):

{xi'xﬁ}' {Xa'xQ'Xo}' {xa,x?}, {X4'xﬁ'xb}' {Xa}' {xn'xio}'

{%'ﬁz}'{ﬁ1L



+ strict decision algorithm:
strict rule #1: if cz=L then d=0
strict rule #2: if c1=0 and CZ=M then d=0 or 1
strict rule #3: if cz=H then d=1
strict rule #4: if c1=1 and c2=M then d=1
strict rule #5: if c1=2 and CZ=M then d=1
Strict rule #2 is non-deterministic (possible) while four

others are deterministic (certain}.

+« weak decision algorithm:

weak rule #1: if c1=;/2 and cz=L/M then d=0
weak rule #2: it ci=1/g and c2=L then d4=0
weak rule #3: if 0120 and cz=L then d=0
weak rule #4: if Cx=0 and c2=M then d=0 or 1
weak rule #5: if c1=1 and cz=L/M then @=0 or 1
weak rule #6: if ci=l and cz=H then d=1
weak rule #7; if 01:2 and cz=M/§ then d4=1
weak rule #8: if c1=2 and CZ=M/H then dr1

Note: ci=1/2 means that c, falls into subinterval 1 or into
the overlapping zone of subintervals 1 and 2; czzM/g means
that c, falls into the overlapping zone 05 subintervals M
and H or into subinterval H, etc.

Weak rules #4 and #5 are non-deterministic (possible) while

six others are deterministic (certain).



The strict decision algorithm could be red as follows:

All  clients showing the  wvalue of sales lower than 58
certainly don’t pay back the debt, while those showing the
value of sales higher than 100 certainly £y,
independently on the wvalue of their fixed capital. Clients
with the wvelue of sales in between 70 and 84 pay back the
debt only if the walue of their fixed capital s higher
than 80, otherwise ! is not certain if they pay or not.
The kind of activily dogsn’ i influence the clienls’

ability of paying back the debt.

Interpretation of the weak decision algorithm could be the

following:

All  clients showing the  value of scles .Lower than 58
certainly don’t poy bock the debt, independently on the
value of their fixed capital. - Clients with the  volue of
sales in between 58 and 70 and the value of their fixed
capttal irn between 105 and (85 alse certainly don’t pay,
while tt is nrot certain {f those with the value of sales
tn between 70 and 80 poy back or not. It is certain,
howsver, that all <clients with the value of sales higher
than 84 pay back the debt. Again, the kind of activity
dossn’t  influerce the clients’ ability of paying back the
debt.

It can be seen that consideration of overlapping
subintervals made possible a more flexible interpretation of

the decision algorithm.



.

8. CONCLUSIONS

Overlapping subintervals defined for transformation of
guantitative data into gualitative terms reguire a
generalization of' the- indiscernibility relation used for
definition of a rough set. Distinction between strict and wesak
indiscernibility.relation requires in turn generalization of
other concepts of the rough sets theory. The paper provides
such a generalization and ends with an_illustrative example of
its application.

Lat us remark that the next step of the generalization
could consist in considering the 6verlapping subintervals as -

fuzzy subintervals.
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