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Réductions Préservant 1’Approximabilité des Problemes
NP-Complets

Résumé

Nous construisons des réductions qui préservent l’approximation (continues) pour un certain
nombre deproblémes combinatoires. La conservation du rapport d’approximation a travers ces
réductions établit une certaine continuité entre les problémes considérés entrainant un transfert
possible des résultats positifs, négatifs ou conditionnels d’un probléme & un autre par le biais de
ces réductions. Nous nous sommes plus particuliérement intéressés & la continuité des réductions
* 3 Dinterieur des hiérarchies de problémes combinatoires. Ces réductions étant composables et
transitives, nous avons également étutié la continuité des réductions entre des membres de
hiérarchies différentes. Pour un probléme combnatoire, on obtient une hiérarchie en imposant
des restrictions sur des instances du probléme. Nous construisons tout d’abord une hiérarchie
pour le probléme de la couverture d’ensembles et explorons la complétude de ces membres &
travers des réductions préservant leur rapport d’approximation (réductions continues). Nous
construisons ensuite une hiérarchie pour le probléme du frensversal d’un hypergraphe et donnons
des résultats de continuité. Ensuite nous relions un autre probleme d’optimisation en bases
de données (minimisation des jointdres) & la hi¢rarchie concernant le probléme de couverture
d’ensembles en proposant une réduction et en prouvant sa continuité. Nous établissons une
hiérarchie pour le probléme de couverture des sommets par des cligues ainsi que pour le probleme
de couverture de sommets. Pour les membres de chaque hiérarchie nous cherchons des réductions
continues les reliant. Nous proposons également des réductions reliant les membres de hiérarchies
différentes. Nous formons ainsi des sous-classes de la classe NP-complet & linterieur desquelles
le rapport d’approximation est préservé.

Mots-clés: Probléme NP-complet, réduction polynomiale, a;pproxima,tion polynomiale



A pproximability Preserving Reductions for NP-Complete
Problems

Abstract

We conceive some approximability preserving (continuous) reductions among a num-
ber of combinatorial problems. The preservation of the approximation ratio along
these reductions establishes a kind of continuity between the involved problems,
continuity resulting to a possible transfer (up to multiplication by the so called ex-
pansion of the reduction) of positive, negative or conditional results along chains
of such reductions. We are, more particularly interested in continuity of reductions
in the interior of hierarchies of combinatorial problems as well as, given that ap-
' proximability preserving reductions are composable and transitive, we explore the
continuity of reductions between members of different hierarchies. For a combinato-
rial problem, a hierarchy is obtained when we impose additional restrictions on its
instances. We construct first a hierarchy for sef covering problem and we explore
the completeness of its members under reductions that preserve their approximation
ratio (continuous reductions). We construct also a hierarchy for hitting set and we
give continuity results for it. Moreover, we relate another N P-complete database
query optimization problem, the minimal join problem to set covering hierarchy by
proposing a reduction and by proving its continuity. After, we establish hierarchies
for the wveriex covering by cligues problem as well as for the verter covering prob-
lem. For the members of each hierarchy we investigate the continuity of reductions
relating them. Also, we propose such reductions connecting problems from distinct
hierarchies. So, subclasses of N P-complete problems related by approximability
preserving reductions are systematically constructed. ’

keywords: NP-complete problem, polynomial reduction, polynomial time approximation

11



1 Introduction, Notations and Recalls

The notion of the reduction is a key-point for proving and understanding the behaviour
of numerous combinatorial problems. This major tool seems to be, however, a somewhat
weak when one tries to investigate approximate solutions of N P-complete problems. This
means that, although the inclusion in the class N P-complete establishes a kind of “equiv-
alence” between included problems, this equivalence considers in general the optimal
solutions and not the sub-optimal (approximate) ones, in the sense that nearly optimal
solutions for one problem reveal very poor and insatisfactory when translated to another
one. We are interested in reductions that have the property to preserve not only the
optimality of the sclutions between two problems II and II', but also the approximation
ratio ([6]) from II to II' (up to a multiplicative factor).

In what follows we use the term continuous reduction introduced by Simon in [22] to
define exactly an approximability-preserving reduction. The notion of continuity resides
implicitely in many reductions of [6,7,10,11] even if, up to now, this notion is not defined
appropriately and uniformly. Very interesting works on this concept are (among other) the
ones of Papadimitriou and Yannakakis ([18,17], Panconesi and Ranjan ([15]), Crescenzi
and Panconesi ([5]), Kolaitis and Thakur ([12,13]) and of course the one of Simon ([22]).
We define firstly the adopted notion of continuity as it is expressed in [22].

Given two combinatorial problems II,II’ a reduction w : IT o< Il is called continuous with
an expansion of e if each p-approximation algorithm A’ for II' can be converted into a
p-approximation algorithm A for IT such that p < ep’. The corresponding notation is
II = II'. The notion of the approximation ratio used throughout of the paper is the one
defined in [6,16].

IT and II' are called equivalent (asymptotic equivalent) if there exist mutual continuous
reductions with e =1 (e = 1 + ¢, Ve > 0) in both directions.

Lemma 1. ([22]) Continuous reductions are transitive. More formally:

If IT =% II' and I == TI” then TT =5 T

In what follows we use the notation II — II' to denote a reduction with expansion e
which depends on the instances of 11 or 1I'.

In fact, the notion of continuity is more interesting than one may thinks. Let us use
an example to explain this. There are two well known N P-complete problems of graph
theory, the vertez covering (VC) and the independent set problem (I5).

Given a graph G = (V, E) a vertex cover is a subset V' C V such that for each edge
uv € E at least one of u and v belongs to V' and the minimum vertez cover problem (VC)
is to find a minimum size vertex cover.

Also, given a graph (¢ = (V, E), an independent set is a subset V' € V such that, for
every pair (v;,v;) of vertices in V', the edge v;v; does not belong to E, and the mazimum
independent set problem (IS) is to find a maximum size independent set.

There is an easy, and immediate, relation between vertex cover and independent set in a
graph G ([6,16]) as a vertex cover is the complement of an independent set with respect to
the vertez set of G.



But this very intuitive relationship, that constitutes also a reduction between the two
problems, is not reflected on the level of the approximation results for these problems.
Really, the existence of an approximation algorithm for VC ([6,16]) with a ratio 2 does
not lead to a corresponding approximation algorithm with a bounded error for I5.

In this paper, we establish first hierarchies for combinatorial optimization problems as set
covering, hitting set, vertez covering by cligues and V.,

For a combinatorial problem a hierarchy is obtained when we impose additional restric-
tions on its instances.

After, for each of the established hierarchies we propose reductions and we explore their
expansions. We study also expansions for reductions connecting problems of different
hierarchies. A

Moreover, we define a database query optimization problem, the minimal join problem,
we investigate its complexity and we prove that it is linked to set covering by reduction
continuous and of expansion 1.

Finally, we give results constituting examples of how the notion of continuity becomes
significant and helpfull in making easier the estimation of the approximation performance
for many algorithms.

2 Set Covering Hierarchy

“Given a collection & (|§| = n) of subsets of a finite set C' (|C| = m), a coveris a
subcollection & C & such that s-Lé{s' 8; = C and the minimum set cover problem (SC} is

to find a cover of minimum size.

We consider then the following hierarchy for SC.

WSC Weighted SC. Each subset has an integer non-negative weight and
the objective is to find a cover of minimum total weight.
PWSC(k) Polynomially weighted SC. This is like WSC with the restriction
that the weights are all bounded above by n*, where k is any fixed
integer and n = |S|. We note that PWSC(0) = SC (recall that
the weights are integers).
RSSC Regular on & SC. It is a set covering problem with the additional
restriction that the cardinalities of the members of S are all equal.
RCSC Regular on ' SC. It is a set covering problem where all the ele-
ments of the ground set C belong to the same number of subsets.
BCSC(A) Bounded on € SC. This is a set covering problem where the
number of subsets every element belongs, is bounded above by A
(which can be a function of n). We denote by BCSC(O(1)) the
instances of BCSC(A) with A a universal constant.
PWBCSC(k,A) Polynomially weighted and bounded on ' SC. It is a set covering
problem polynomially weighted by n* and bounded on C by A.
We use the notation PWBCSC(k.0,A) to denote the instances
of PWBCSC(k,A) where the weights are bounded above by an



integer (absolute) constant.

CSC Conformal SC. This is like SC with the additional constraint that
for every three sets S;,S;, Sy of &, the set (5, N §;) U (S; NS, U
(S; N Sg) is contained in a set of S.

There is a graph formalism for SC which will be used in what follows.

Definition 1. For every instance I of SC, the characteristic graph of I is the bipartite
graph B = (5, C, E) where the vertex set S denotes the family S and the vertex set C
the elements of the set C. The graph B contains the edge s;¢; if ¢; € 5;. 1

For instance, RSSC (RCSC) is characterised by bipartite graphs (definition 1) in which
the S-vertices (C-vertices) have all the same degree and for BCSC(A) the corresponding
characteristic graph has the degrees of its C-vertices bounded above by A.

We shall now show how the members of the SC hierarchy defined above are related by
continuous reductions.

Theorem 1. If o is the number of the sets participating to the optimal solution of the
instance of WSC and k any fized constant, then '

SC &S RSSC
SC <= RCSC
wSC &S PWSC(k), k> 1
WSC <& PWSC(1)
wsCc -Is §C
PWBCSC(k.0,logn) <= BCSC(logn)
PWBCSC(k,0(1)) <= BCSC(O(1)).

Also, if the weights need not to be integer, then

WSC <= PWSC(k).

Proof: For all cases the direction <= is trivially true as for every line, problems on
righthand side are subproblems of the ones on lefthand side,

SC 8 RSSC

Let us suppose that an instance I of SC is given and moreover that we have a p-
approximation algorithm A’ for RSSC.

Let B the characteristic graph of I (definition (1)) and let v = max IT(s:), ;)?zlsrpeirf} IT(s:)]
denoting the maximum and minimum degrees, respectively, of "the S-vertices of B. We
insert y—7 C-vertices in B and for each point s; of the graph B, such that I'(s;) <+, we
link arbitrarily 4 ~ |[I'(s;)| of these vertices to s;.

3



We obtain so an instance I’ of RSSC on which we apply A’

Let A the cardinality of the obtained solution. This solution constitutes of course a so-
lution of the same cardinality for the instance I. For the optimal solutions 3,5 of 1,1,
respectively, we have ' < 8+ 1. Indeed, if the size of the optimal solution of [ is # and
as the ground set C is covered by them, there remain the newly added C-vertices in I’
to be covered. All these elements can be covered by just one set among the minimum
cardinality sets in I and therefore at most 3+ 1 sets of [’ are sufficient to cover the ground
set of I'.

We have thus

P2

B >
+
[a—

which leads to

—
_|_
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2,
—

_|_
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1 {or equivalently 3 is not bounded).

for instances where 8 >

SC =% RCSC

Let us suppose that an instance I of SC is given and moreover that we have a p-
approximation algorithm A’ for RCSC. Let us also denote this time by + the maximum
degree of the C-vertices of the incidence graph B expressing I. We construct then easily
an instance I’ of RCSC by adding for each ¢; such that [I'(c;)| < v, v — [T'(e;)| S-vertices
linked to ¢;. The so obtained bipartite graph B’ expresses an instance of 2C'SC in which
every solution corresponds to a solution of I with the same size and vice-versa. So this
transformation is continuous with expansion 1.

WSC & PWSC(k), k>1
WSC = PWSC(1)

In a general way, from an instance of W.SC we can construct an instance of PWSC (k)
where we transform the weights of the former by taking, for i = 1,2,...,n, w} = [n* w.
Obviously all the new weights are integer and bounded by n*. Let us call o the transfor-
mation just described.

Let us consider an instance I of WS(C, and let us suppose the existence of a polynomial
time approximation algorithm A, with a (universally) constant approximation ratio p,
supposed to solve PW SC(k). :

We apply ¢ in order to construct an instance I’ of PWSC(k), after we apply A in I
and we store the obtained solution. We take off the maximum weight sets of I (without
removing the elements that these sets contain), obtaining so a new instance I; of WSC
in which we apply ; let I} the obtained instance of PWSC(k), in which we apply A and
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we store the obtained solution if it is feasible for I’ (and consequently for I}. We iterate
the process until no feasible solutions for I are produced. Finally we consider the smallest
solution between the so obtained ones.

Let w; the set weights produced by ¢, A’ the family of sets participating in this solution,
A’ its value and /4, the value of the optimal solution of I'.

It is easy to see that there may be a number of consecutive iterations for which the solu-
tion found when applying the process just described does not change. If this is the case
for the solution A’, we will reason with respect to the last iteration in which solution A’
has been obtained. We call f this iteration. Let T the instance of WS in the beginning
of iteration f, and w the maximum set weight in 7. Obviously, A’ contains at least one
set of weight w. For A’ we have the following.

nk
=Y ul= Y2 Yot ss T ow (1)
SiA’! Sien’ SiEA! W sienr
We select the same family as solution A of 7 (A = A’) and let ) its value. Also, let B
(|B| = o) be the sets of the optimal solution of I and let 3 the value of this solution.
For A, 8 we have:

A= Zw,_

Si€A
k

g < ;ﬁ‘l'a- (2)

By the hypothesis on the ratio of A and by (1) and (2), we have:

% 2 Wi N
<2 <
whta TV
or equivalently
A
Acofie ) 3
g=" ( nip ®)

Thus the expansion given by (3) is equal to (1 + %)

Now, consider a solution of value A; obtained on an instance I; for which the maximum
weight w; = wg, where wy the maximum weight in the optimal solution of WSC. Of
course, this assures that such a solution (of value A;) exists and is feasible for I (the initial
instance of W SC') and moreover that the optimum for I; is the same as the optimum for
T (it is easily seen that for this optimum holds § > wg+ o —1).

From (3) we have then

wyo ain
=1 htd <1 < 1 .
¢= + kﬁ - +n’°(wg—'|-cr——l) - +nk“1

As A < ), the approximation ratio provided by (3) holds also for the solution of value A.
Hence for k& > 2, and for n > 2 (we can suppose that n is not bounded by an absolute
constant) we have e < 1 + ¢, while for £ =1 we have ¢ < 2.
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WwSsC = SC

The proof of the last part of the theorem is analogous to the proof given just above, but
a little different. :
Let us suppose that a p-approximation algorithm A’ is given for SC as well as an instance
I of WS5C'. We shall show how A’ can be used to solve I.
We take off the weights on the sets of I and we execute A’ on the resulting instance.
After, we take the weights into account to evaluate the value of the so obtained solution
and we store it. We take off the maximum weight sets and we repeat the same procedure
on the resulting instance. We restore the obtained solution (always if it is feasible) and
we reiterate the procces until no feasible solution is produced. Finally we take as solution
the one of the smallest value between the so obtained solutions.
Let X the value of this solution. Also, let I; the instance (in iteration ) where its maximum
weight equals wg (the maximum weight of the optimal solution of I), let A;, G;, 3, the values
of the solution provided by A’ on I;, the optimal solution of I; and the optimal solution
of I respectively and let A} the solution provided by A’ on the unweighted instance ;.
Obviously

Bi=B2uwsg+o~1

where the first equality holds because despite of the deletion of some sets all the sets
constituting the optimal solution of I are present in I;, while the second inequality holds
because the optimal solution of I contains at least a set of size wg.
Also, by the hypothesis on the approximation ratio of A', Al < po, where o is as above.
This is because if o5, the cardinality of the optimal solution of the unweighted instance I;,
then oop, < o and therefore Al < pogy, < po (we recall that none of the sets constituting
the optimal solution of J has been removed yet in iteration ).
For the approximation ratio of A" when running on I; we have:

N _wah

B BT uwgto-17 "

Therefore, as X < J;, the approximation ratio of A’ remains the same for the finally
selected solution of value A and consequently, an expansion equal to ¢ is found.

However, for some restricted cases of WSC we can obtain straightforward continuous
reductions with expansion equal to 1, as we prove in what follows.

PWBCSC(k.0,logn) == BCSC(logn)
PWBCSC(k,0(1)) == BCSC(0(1))

Given an instance I of W.SC we can obtain an instance of SC in the following way.
Let us first denote by w;,1 < i < n the weight of the set §; in 1.
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By referring to B we replace cach point s; by w; points and each point ¢; by ]'[l (<) W;,
points, where ['(¢;) = {sj,8/,,-- i }. We create so S-groups 5;,1 < 7 < n, one for
every point s; of B (or equivalently for every set S; of I) and also C-groups C"'j one for
every point ¢; of B (or equivalently for every element c; of I). After, for every group S
corresponding to a vertex of B adjacent to the vertex ¢; we link the points of Sj, to the
— - Ire;)l
points of C; in such a way that every point of 5}, is adjacent to exactly L—W points
—_— — _ !
of C; and not two points of S;, are adjacent to the same point of C;.

In other words for each ¢;, we can order, arbitrarily, its neighbours in B, say $;,, 85, ..., Siiee)?

for each corresponding group, say Sj, and number its points by 1,2,...,w; arbitrarily.
Finally, we number the points of C; by 1,2,. ,]—L,c_c")]tvj,c Then we express each one
of those numbers in |['(¢;)| integer coordinates, the Ith coordinate taking all the integer
values from 1 to w;,. Now it is easy to see that the kth point of a group, for example of
the group S, is linked in the incidence graph B’ of the new instance I’, to exactly those
numbers having their 7;th coordinate equal to %.

The so constructed bipartite graph B’ is the incidence graph of an instance I' of SC'
We claim that any minimal solution for SC in I’ has to include only whole S-groups and
not parts of them. :
Indeed, let us suppose that there is a solution A’,(|A’] = A), for which there is a C-
group, say Cj, for which none of its adjacent S-groups is entirely contained in A’. The
way B’ is conceived implies that if from the T'(c;) groups incident to C;, A’ misses in
the kyth, koth, ..., kire,)th element respectively, then the point expressed in integer coor-
dinates by kiks.. kir\(c y will be not covered by A’. Thus for each C; at least one of its
incident S-groups is entirely contained in every solution of I".

Of course, as we can assume that A’ is minimal, by the previous discussion we can con-
clude there that no strict subset of a S-group is included in this solution.

It is obvious now, that given an instance I of W.SC, we can transform it, by the way just
discussed, into an instance I' of SC in which by applying A’ we obtain a solution A’ of
cardinality A’. This solution is straightforwardly associated to a solution A of WSP of
the same value, by picking from every S-group of " included in A’, the corresponding set
in I and by including it in A.

Obviously, for the corresponding optimal solutions 8, 8’ we ha,ve g <8

Henceforth, once A’ is supposed to have approximation ratio p, we have:

)\ Y
F

Thus the reduction just described is continuous with expansion 1.

Of course this reduction is not performed in polynomial time for every function A.

In fact if an element of C is contained in O(n) sets of § (we recall here that n = |S|) having
weights O(n), then the number of points of the corresponding C-group is of O(n%™),
hence exponential on the size of I.

It is easy to see that the polynomiality of the reduction is preserved whenever w; = O(1)
and I'g(c;) = O(logn),¥i < |C| or whenever w; = O(n*) and T's(c;) = O(1),¥i < |C]

(these are the extremal cases with respect to w; and I'g(c;)).



Let us remark before completing the proof of the theorem, that if the weights are not
integer we can easily prove that WSC <= PWSC(k).

Let w the maximum weight of an instance I of WSC and let us suppose, without loss of
generality, that w > n*. Then, the instance I' of PW SC(k) remains the same as [ but
every weight w; of T is scaled down to w) = nk%- in I’. Obviously, all the weights of this
new instance are smaller than n*. Now, given a solution of I with cost ¢ we can obtain a
solution for I' with cost ¢ = n*< by choosing exactly the same subsets to belong to the
solution of I’, while a solution of cost ¢’ in I’ is immediately associated to a solution of
cost ¢ = ¢’ in 1.

Thus, the reduction is continuous with expansion 1.

With this last reduction we complete the proof of the theorem. I

3 Hitting Set Hierarchy

Let C = {C4,...,Cn} a family of m subsets drawn from an n-clement set S. A subset
H C S is a hitting set for the family C if H has a non-empty. intersection with each
element of this family and the minimum hzttzng set problem is that of finding a hitting
set of minimum cardinality.

H S is the dual, via the interchange of the two vertex sets of the incidence graph defined in
definition 1, SC, this duality establishing a continuity between the two problems expressed
in terms of the following proposition.

Proposition 1. SC <= HS.

Consequently, we can, in a similar way as in the case of SC, define the corresponding
H S-hierarcy, where the roles of the family of sets and of the ground set are interchanged.
Of course for the hitting set the weights are considered on the elements of the ground set
S.

Let WHS, PWHS(k), RCHS, RSHS, BCHS(A), PWB;HS(k,A}, the corresponding
problems of the H S hierarchy.

Theorem 2. If o is the number of the elements of C participating to the optimal solution
of the instance of WHS and k any fized constant, then

HS &5 RCHS
HS <= RSHS
WHS &% PWHS(k),k>1
WHS < PWHS(1)
WHS -5 HS
BCHS(logn) <= PWBCHS(k.0,logn)
BCHS(0(1)) < PWBCHS(k,0(1)).

8



Also, if the weights need not to be integer, then

WHS <= PWHS(k).
The discussion of sections 2 and 3 is summarized by the following theorem.

Theorem 3.

e SC, RSSC, RCSC, HS, RCHS, RSHS are approzimate equivalent.

¢ BCSC(logn), PWBCSC(k.0,logn), BeHS(logn), PWBCHS(k.0,logn) are e-

quivalent.
e WSC, WHS, PWSC(k), PWHS(k), k > 1 are approzimale equivalent.
o PWSC(1), PWHS(1) are equivalent.

o« BCSC(0(1)), PWBCSC(k,O(1)), BOHS(O(I)), PWBCHS(k,0(1)) are equi-

valent.
Recently some researchers ([1]), have proved the following.

Theorem 4. ([1]). VC even for bounded degree graphs and IS for bounded degree graphs
do not admit a polynomial time approzimation schema unless P = NP.

As VC is a subproblem of SC, the following corollary concludes this section.

Corollary 1. If P # NP then there exists an € > 0 such thal there is no approxima-
tion algorithm for SC, RSSC, RCSC, HS, RCHS, RSHS, WSC, WHS, PWSC(k),
PWHS(k), guaranteeing an approzimation ratio smaller than 1 + e.

4 Vertex-Covering-by-Cliques Hierarchy

Given a graph G, a partition of the vertices of G into cliques (covering of the vertices of
G by cliques) is a system of cliques of G such that each vertex is contained in only one (at
least one) clique and the minimum partition into cliques (PC) (minimum vertex covering
by cligues (VCC)) problem is to find such a partition (covering) of minimum cardinality.
Also, given a graph G = (V, E), a coloring is a mapping f associating a color to each
vertex in such a way that adjacent vertices have different colors and the minimum graph
coloring problem (GC) is to find the minimum number of colors that constitute a coloring
for G.

Finally, given a graph G = (V, E), an edge covering by cliques is a system of cliques which
covers all the edges of G, and the minimum edge covering by cliques problem (ECC) is

9



to find a minimum cardinality such system.

Obviously, each color induces an independent set in G and a clique in G = (V, {viv; :
vv; ¢ E}), the complement of G, therefore PC and GC are equivalent. On the other
hand, PC and VCC are equivalent as every partition constitutes also a covering and from
every covering we can immediately obtain a partition of the same cardinality.

In fact the following holds ([14]).

Proposition 2.

PC <= VCC
vee & Ece

We construct now the following hierarchy for VC'C.

WYVCC Weighted VOC. Given a graph with non-negative integer weights,
the weight of a clique can be defined as the maximum of the weights
on its vertices, and the objective is to minimize the sum of the
weights of the cliques participating in the partition.

PWVCC(k) Polynomially weighted VCC. This is like WV CC with the addi-
tional constraint that all the weights are bounded by n*, where n
the order of the graph.

RVCC Regular VCC. This is a VCC with the additional constraint that
the instance of the problem is a regular graph (all vertices have
the same degree).

VCC(L) Thisisa VCC problem whose instances have cliques not exceeding
L, for a fixed constant L.

It is easy to see that the weighted version of VC'C defined above is N P-hard. Plainly, if an
exact polynomial time algorithm is given for WV CC, then we can execute this algorithm
on a graph whose all of vertices have weights equal to 1. In this case, the maximum weight
of every clique is also equal to 1 and consequently, the optimal solution for the weighted
case constitutes a minimum covering by cliques.

Theorem 5. If o is the number of the cliques participating in the optimal solution of the
instance of WVCOC and k any fived constant, then

veC <& RVCC
wvee & PWVCCO(E),k>1
WVCC <& PWVCC(1)

wvece - VCC.

Also, if the weights need not to be integer, then
WVCC < PWVCC(k).

10



Proof: Here also the <= part is easy for all cases as problems on nghthand side are
subproblems of the ones on lefthandside.

VCC = RVCC

Let an instance G = (V,E) ([V| = n) of VCC and let us suppose the existence of a
polynomial p-approximation algorithm A for RV CC (p an absolute constant as usual).
From G we can construct an instance G’ of RVCC by taking two disjoint copies Gy, G2
of G and the following (cross) edges between them: a vertex v;, of copy () is linked to
a vertex vj, of copy Gz if and only if v;v; ¢ E. The so constructed G’ is regular as its
vertices have all degree n.

Every solution for G’ is constituted either from cliques, each one comprising vertices
of only one copy, or from cliques some of them comprising vertices of both copies. To
obtain a solution for G, in the first case we have only to choose the part of the solution
constituting the smaller system, covering all vertices of one copie, and in the second case
to take for each clique formed by vertices of both copies, the vertices including in one of
them (a subset of vertices of a clique forms also a clique). Thus, in every case, if A, Ag
(8, Br) are respectively the solutions given by A on G and G’ (optimal solutions for G
and G') we have from the above discussion

A < Ap
Br
> 2B

b= 2

and consequently
A
=< 2p.
5 <2

So, the expansion of the described reduction is equal to 2.

Wvee =5 PWVCC(k),k>1
WVee = PWVCC(1)

Given an instance I of W.SC we construct an instance I' of PWSC(k) by scaling the
weights w;, ¢ = 1,2,...,n of the former down to w! = [nk—‘—] for the latter, where wy,y
the ma.x1mum Welght of a set in I. Obviously all the new Welgts are integer and bounded
by n*.

Let us now suppose the existence of a polynomial time approximation algorithm .4, with
a (universally} constant approximation ratio p, supposed to solve PW SC(k) and denote
by A’ the system of cliques participating in the solution provided by A, X its value and
B', the value of the optimal solution of I'.

The arguments deriving expression (1) (theorem 1) hold also for this case by considering
weights of cliques in place of subset weights and thus

/\’>—sz

G,EA’

11



where {C;}, 1= 1,2,...,|A’| the system of cliques covering the vertices of I'.

We select the same system as solution A of I (A = A’) and let A its value. Also, let B
(|B] = o) the cliques of the optimal solution of I and let 3 the value of this solution.
Via the changing of sets to cliques the arguments giving expressions (2) and (3) (theorem
1) hold always and thus we conclude that

A wo

Z<pll 4+ =2

5= ”( ’ nkﬂ)
and consequently to an expansion e = (1 + ni",;%) Let, us remark first that ¢ < n. Also
we have w < . Indeed, as the weight of a clique is the maximum weight of one of its
vertices, and as we have a system covering all the vertices of the graph, at least one of the
cliques constituting the optimal solution has to cover the maximum weight vertex and

thus to have weight equal to w.

Thus finally, .

= pk-1

A

c

Hence for £ > 2 and for n > % we have e < 1 + ¢, while for £ = 1 we have e < 2.

*

wvee - vee

Given an instance of WV CC and an algorithm for VCC we can remove the weights of
the vertices resolve the unweighted graph and after by re-inserting the weights evaluate

the value of a solution for WVCC. If A, 8 (N, B') are respectively the values of the
approximate and optimal solution of WVCC (VCC') and w the maximum weight of the
instance of WV (CC, we have :

w)’

w

=
IV IA

and consequently

A
_<)\.'< I.
= <pB

As ' < o we derive an expansion equal to ¢ for the described reduction.

For the last part of the theorem, where we relax the constraint of the integer weights the
proof is similar to the corresponding case of theorem 1. §

12



5 Vertex Covering Hierarchy

VC can be seen as a restriction of SC by considering, for every graph GG = (V, E) instance
of VC, the set V(G) as the set family and the set E(G) as the ground set of an instance
(V(@), E(G)) of SC, each vertex containing the edges incident to it. In fact such an
instance is characterized by a graph B (definition 1) that has the degree of its C-vertices
all equal to 2 and thus for all integers j

I,(VC) C T,(BCSC(2)

where givén a problem II, Z;(II) is the set of instances of II of size ;.
The VC hierarchy considered in this paper is the following.

WVC Weighted VC. Each vertex has an integer non-negative weight and the
objective is to find a vertex covering of minimum total weight.
PWVC(k) Polynomially weighted VC. This is like WV C with the restriction that
the weights are all bounded above by n*, Vk, where n is the order of
the graph.
RVC Regular VC. Tt is a vertex covering problem with the additional re-
striction that all the vertices of G have the same degrees.

Theorem 6. If ¢ is the number of the sets participating to the optimal solution of the
instance of WV C and k any fized constant, then

ve <5 Rve
WVe &S PWVO(k),k>1
PWVC(k) <= VOV

Also, if the weights need not to be integer, then

WVC <= PWVC(k).

Proof: <= part is, once more, easy for all cases, as problems on righthand side are
subproblems of the ones on lefthandside.

VC = RVC

Let us suppose that there exists a polynomial p-approximation algorithm for RV (. Given
an instance G = (V, E) of VC we can obtain an instance G’ = (V', E') of RV C by applying
the construction described in theorem 5 for the corresponding case of VC, RVC.

A solution for VC in G’ (distributed in both G;, G2) has to cover all edges of both G4
and G as well as all the cross edges. Moreover, for every solution T" of G, if we denote
by 1Y, Ty the part of 77 in Gi, Gy respectively, then T] (T73) constitutes a vertex covering
(perhaps not minimal) for Gy (Gg). Thus, if hypothetical algorithm A gives a solution
T4 for VC in G, one can easily obtain a solution 7" for G by taking TV = min{7], T3},

13



and by minimilizing it. On the other hand, for any solution in ', once the edges of the
two copies have been covered, the only cross edges to be covered are the edges linking
vertices of an independent set with respect to T in Gy to vertices of another independent
set with respect to T in G5. Consequently if 7 and o« respectively are the cardinalities
of a minimum vertex covering and of a maximum independent set in G, 7 the optimal
solution of VC in G, [Ty| = 75 and |T| = 7', we have obviously

TR < 27 4 .

From the previous discussion we have

27 Th
<-—=<p
2r+a ~ TR

and consequently
/

Ceoieg) o

T

If a < 7, then expression (4) gives an expansion of 3 for the reduction just described.
Let us now study the case where a > 7. We obtain a maximum matching M in G (let us
denote by m the cardinality of M) and we take into account graph Gy, = (Vir, E,r,) induced
by the 2m vertices incident to edges of M. Let n,, the order, 7., and ¢, the cardinalities
of a minimum vertex covering and of a maximum independent set respectively of G,,.
We have «,, < 7, because if ¢y > Tm, then @, > 7, > m ([2]) and consequently
N > 2m which is impossible as by construction n,, = 2m (recall that M is also a
maximum matching of G,, and moreover it is perfect for this graph).

Hence, if we apply in G,, the reduction described previously, we obtain

!
Tm < 3,
Tm 2

where 7/, the cardinality of the solution of RVC on graph G, constructed as described
above, .

As the so obtained vertex covering for G, can constitute part of a vertex covering for the
whole of (7, we have now to examine how we can cover edges in E \ E,,.

Obviously, V;, is a vertex covering for G as it is the set of vertices incident to a maximum
matching of G ([2,6,16]) and m < 7, < 7/, < fyn. Thus, there are less than m vertices
of V., not taken into account in the solution of G,, and if now we take also these vertices
into account we form a solution for the whole of G of cardinality less than 7,, + m for
which holds

f4m 1 mmitr  m 3 3 1)e215
i QLR R G A i l=pl=4+=] < =p.
T _'r+'r - Tm+7'_'2p+ p(2+p)__2p

Thus, given a graph G and a polynomiial p-approximation algorithm for RV (' the mini-
mum between the set of vertices incident to the edges of a maximum matching in G and
the solution provided by the reduction described assures an expansion equal to 2.

In fact, from a practical point of view, an expansion 2 for VC is not significant at all. By
saying “practical point of view”, we mean that if the concept of continuity could serve to

14



conceive efficient approximation algorithms for problems, by using efficient approximation
algorithms for some easier problems, then the found expansion would not lead to a new
approximation algorithm for VC more efficient than the known one (with approximation
ratio 2, ([6,16])) even on the hypothesis that a polynomial time approximation schema
would be conceived for RVC. But we have written down this reduction in order to show
that RV is almost as difficult as V' and moreover that both problems could belong in
the same subclass of problems, where a single algorithm for the more restrictive between
them, can lead to algorithms with a constant error for all other problems in the class.
On the other hand, if random graph theory ([3]) provides us with some intuition on some
properties possessed by “almost all” graphs, then we can conclude that the class of graphs
where a < 7 is not only not empty, but much bigger than the one where o > 7 (think
that o > 7 contradicts the existence of a matching of cardinality [2] in a graph of order
n, and that the conjecture on the existence of such a matching is true in almost all graphs
even if the edge probabilities tend slowly to 0).

Thus, if there exists an approximation algorithm for £V C with approximation ratio < %,
then the solutions of VC in all graphs admitting a perfect matching can be approximated
in a ratio strictly smaller than 2. In fact, if G admits a perfect matching, the reduc-
tion described above has expansion % and consequently the result becomes already more
significant,

wve &£ PWVC(k),k > 2 is obtained immediately from the corresponding case of
theorem 1 for SC, as VC and its variants constitute subproblems of the corresponding
variants of SC.

PWVC(k) <= VC,Vk

Given an instance I of PWV (k) we can construct an instance I’ of VC' by replacing
every vertex v; of weight w; by an independent set of size w; and if two vertices v;, v; are
linked by an edge in I, we draw a complete bipartite graph between the two independent
sets of sizes w;, w;. Then, the proof is completed with arguments similar to the ones of

theorem 1 for the cases BCSC(logn) <= PWBCSC(k.0,logn) and BCSC(0(1)) <=
PWBCSC(n,0(1)).

Finally, the equivalencies WV = PWVC(k) (if the weights need not to be integer)
can be proved in a similar way as in the case of SC'. I

Corollary 2. VC, WVC and PWVC(k),Yk are approzimate equivalent.
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6 Expansions of Reductions between Problems in Different Hi-
erarchies

We study in this section expansion for reductions linking problems of the different hier-

" archies established above.

But first let us discuss a query optimization problem from the theory of relational dalabases
([23]) and its relation with SC with respect to its approximation.

6.1 Set Covering and Minimal Join Problem

Let us introduce minimal join problem (MJP).([19]) by means of the following example.

Example 1. Let us suppose a relational schema R and the following query Q defined on
a subset { R, Ry, Ra, R4} of R. Let us suppose also that Q is expressed in terms of QBE
([24]), where the underlined symbols are called example elements. If there are attributes
in the relations participating in @ containing the same example element (here for example
Ri.A; and Ry.A,), then only tuples containing the same value for these attributes have
to be taken into account in the evaluation of @.

R |A | B |C ] Ry | Ay | By | Rs | As | Bs | Ry | Ay | By
B z | P z|z] RS

Condition Box
3z + 5y 28242

In order to evaluate the above query, we have first to evaluate the expression in the
condition box, and for doing that, we have first to decide from which relation every
example element takes its values. We have thus to associate relational names to example
elements in condition hox. Once this association has been performed, we have to perform
the joins implied by it. If for instance we associate Ry to z, R4 to y, Hs to 2, two joins
have to be performed in order the condition to be evaluated. If on the other hand we
associate relation R; to all three example elements, we have not to perform any join at all.
To conclude the example, we mention that once the necessary joins being performed, we
evaluate the condition itself and we complete the actions on condition box by performing
the selections on the relations, that is by taking into account only those tuples containing
Aj—, By—,Cy—, Ayj—, Ag—, Bs—, Ay— values that satisfy the condition in condition box.
|

It is easy to see that if n relations are associated to the set of the example elements of the
condition, then n — 1 joins have to be performed for the evaluation of the condition.
Thus, given a relational schema R and a query € defined over R and containing an
algebraic expression E having example elements as variables, MJP is the problem of
finding the least number of relations associating to the set of ezample elements of E.
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As we can see, the solution of an instance of MJP is not dependent neither on the kind
of the algebraic expression E to be evaluated, nor on the nature of the query Q. In fact,
in the step of the processing of @ concerning the evaluation of F, the only interesting
information obtained from @ is exactly the association between the example elements of
F and the relations using these elements in Q.

Theorem 7. MJP is NP-complete.

Proof: We reduce MJP to SC.

Let us suppose that we are given an instance (S, () of SC, where § denotes the family
of sets and C the ground set. We construct an instance of M JP by associating C' to the
example elements appearing in the expression £ and S to the relations containing these
elements in the body of @, relation S; containing an example element if and only if the
corresponding set element is contained in the set S;.

Let us suppose now that a solution A is given for MJP. We can easily construct a
solution for SC by simply picking the elements of § corresponding to the elements of A.
Conversely, if a solution A’ is given for SC by selecting the relations corresponding to the
elements of A’, we form a solution for M JP, because covering all the elements of C' is
equivalent to finding a subset of relations associated to all example elements of £. I

The previous reduction is continuous as, to every instance of MJP (SC) corresponds
an instance of SC (MJP) and moreover the solutions of both instances have the same
cardinality. Therefore, an approximation algorithm solving one of these two problems
solves also the other within the same approximation ratio.

The following corollary associates M JP to SC- and HS-hierarchy.

Corollary 3. HS < 50 <& MJP

6.2 Set Covering and Vertex Covering by Cliques

In this section, we conceive some simple continuous reductions between restricted in-

stances of SC and VCC.

Theorem 8.

VCCo(l) = SC
C8C == VCC

Proof: Let us suppose that an approximation algorithm A is given for SC. Then, given
an instance I of VOC/(L), we construct an instance I’ of SC by considering every clique of
I'as a set containing its vertices (recall that if L is an absolute constant, then we can find
all cliques of I in time polynomial on the size of I). It is easy to see that a set covering
of I’ corresponds to a covering by cliques of the vertices of I with the same cardinality,
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repeat
select a subset S; of maximum cardinality; put it in the solution for SC;
delete the elements of S;; update the cardinalities of the remained sets
until all elements of C are deleted;

Algorithm 1.

repeat
select a maximum clique in G; put it in the solution of VCC(L);
remove the vertices constituting it

until all vertices are removed

Algorithm 2.

thus, the hypothetical algorithm 4 has the same approximation ratio when treating both
Ianfl'.

For the second result of the theorem, let us suppose that an instance I of CSC' is given. We
construct then the graph Gg = (C, E,) having vertex set (' representing the ground set
C, E = {eic; : {cic;} € S € S} and [ an application E(G¢) — § such that {(cic;) = Sk
if Sk 2 {CiCj}.

This graph which, of course, can be constructed for every instance of SC, in the case of
C'SC has the property that every mazimal cliqgue of G represents a set of S ([2]).
Therefore, if we suppose that an approximation algorithm A is given for VCC, the clique
covering A produces for G¢ is immediately transformed to a set covering for /, thus the
reduction is continuous with expansion 1. i

In this point, we give an example on how the notion of continuity can be usefull in
conception and analysis of approximation algorithms.

Let us consider the natural greedy algorithm 1 for SC. Johnson ([9]) and Chvétal ([4])
have evaluated its approximation ratio and have given un upper bound equal to 1 +In A
for this ratio, where A the maximum cardinality of a set in S.

The way the first reduction of theorem 8 is conceived, preserves the equality between the
order of a clique in the instance of VCC(L) and the cardinality of the corresponding subset
of the instance of SC. Thus, algorithm 1 can be transformed to the greedy algorithm 2
for VCC(L).

Moreover, the observation made on the relation between degrees of G and set cardinalities
of the sets in &, prevents us to make a quite complicated analysis in order to evaluate the
approximation ratio of algorithm 2, as the following corollary 4 is immediately deduced.
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Corollary 4. Algorithm 2 resolves polynomially VCC(L) within an aepprozimation ratio
bounded above by 1 +In L. '

6.3 Set Covering and Vertex Covering
We explore now the expansion of a reduction between SC and V.

Theorem 9. If A the mazimum number of sets, an element of C is contained in the
instance of SC, then

Proof: Let us remark first that VO == SC as VC is a subproblem of BCSC(2).

Let us consider the graph Gg = (S, E,l) of an instance I of SC having vertex set S
representing the family §, £ = {s;s; : 5;N.S; # 0} and [ an application E(Gg) — C such
that [(s;s;) = e if 5;NS; = ¢

It is easy to see that, given an instance [ = (§,C) of SC in the graph Gg, every element
¢; € C corresponds to a clique whose vertices are the ones representing the sets containing
¢;, and moreover, the edges of the clique are labelled by ¢;.

Let us call such a clique mazimal and let us denote it by C;. Let us also denote by |Cj|
the order of ;.

A solution of SC on the instance I can be seen in terms of G as a set S’ of vertices
that “covers” all the edge labels of Gg (there is no label that does not appear in an edge
incident to a member of 5').

Let us now reduce G'g as follows:

e For each maximal clique C; = (8i,, 843 ..., 8i, ) With |Cif > 3, we delete all the edges
84, 8imy | > m+ 1. So, for every C;, we are left with a cycle Cf = (si, 8iy, .., Si, 81, )

e If |C;| is even, then we delete from C! the edges s;3;,, | = 2§, m = [ + 1,

J= 132,'“9%[' _
If |C;] is odd, then we delete from C! the edges s;s;., | = 25, m = [+ 1,

Icil—1

7 =12, 5

Let GY% denote the so obtained graph.

Let us suppose that a p-approximation algorithm A for V' is given. We execute A on
Gy,

The solution obtained from this execution constitutes a solution for I. In fact, as the
obtained set is a vertex covering for G by covering all its edges, it “covers” also all the
labels on its edges, thus it satisfies the property of a set covering.

Let A the cardinality of this solution.

On the other hand, let 8, 5’ the cardinalities of the optimal solutions of SC on I and for
VC on G respectively.

It is easy to see that the solution for vertex covering on G covers at most % times the
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BCSC(O(1)) BCSC(logn)

PWBCSC(k,O(1)) PWBCS5C(k.0,logn)
BCHS(O(1) BCHS(logn)
PWBCHS(K,O(1) PWBCHS(k.0,logn)

WVCC
Ve sC |
e > o PWVCC(R), k1
PWVCH) | rese [ csc 2*
A2 HS
f l5/2 RCHS PWVCC(D)
RSHS
o'T + ‘ vee [
2
pwsc) ] wsc
PWHS(D) | ] PWSC®H), k>1
2 | WHS VCL) e
PWHS(), k>1

Figure 1: Reductions between combinatorial problems. Boxes with thick (thin) border-
lines include equivalent (approximate equivalent) problems. Thick arcs repre-
sent reductions of expansion 1.

same label, whereas in the optimal solution for SC (in terms of G'), every label is covered

at least one time.
Thus

IA
o] >

and consequently

(A

o>

| >
A
vo| B>

| >

So an expansion of % is found. N

The fact that a 2-approximation algorithm exists for VC together with theorem 9 results
to a A-approximation algorithm for SC (see also [8,20]).

7 Conclusions and Discussion

We have studied the continuity of reductions in the interior of hierarchies of SC, HS,
VO, VCC as well as of reductions associating members of different hierarchies. Figure 1
surveys all the reductions proposed above. ‘

However, there are reductions in this paper not only non-continuous but also having not
constant expansion. A good open problem is the conception of other ones that could
assure at least constant expansions.

The notion of continuous reductions is usefull not only for better understanding of the
structure of the class of N P-complete problems, but also because it provides some new
instruments for obtaining approximation results. Let us take for example VC'C and 5C.
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For VCC' (we recall that VCC is equivalent to GC), there is a very strong negative re-
sult, namely there is no algorithm approximating the optimal solution of VC'C within a
relative error less than or equal to 100%. The generalization of the first result of theo-
rem 8 (VOC(L) = SC) on all instances of VCC (i.e. VCC == SC) would produce
immediately a lower bound equal to 2 for the value of the approximation ratio for SC
and this would be an interesting negative result for a well known open problem as the
approximability of SC, for which we know too little things.

As we can see, we have reductions associating SC or HS to VC, even if these reduc-
tions are not continuous. In any case, even when non-continuity appears, the conceived
reductions can be usefull as they describe in a certain way relations between classes of
problems, each class containing problems equivalent with regard to their approximability.
In what concerns the approximability relation between VC'C on the one hand and one
of SC, HS, VC on the other hand, we have no reductions {even non-continuous) relat-
ing them, and here we have to remark that the continuous reductions between resticted
instances of SC and VCC in theorem 8 give no significant information regarding the ap-
proximability relation between VC'C-hierarchy and one of SC-, HS-, V(-hierarchy. We
propose henceforth the conception of such (even non-continuous) reductions as another
open question.

Finally, we have to remark once more that all the conceived reductions are composable
and transitive.

We are going now to discuss the relation between SC and set packing problem with respect
to their approximations.

Given a collection § (|§] = n) of finite sets, a packing is a subcollection &' C & all of
whose members are mutually disjoint and the mazimum set packing problem (SP) is to
find a packing of maximum size.

SC is greedily solved by algorithm 3, which in each round, solves a secondary problem,
SP for the present case, and uses the solution of this last as partial solution for SC.
This technique, is the well known master-slave technique studied by Johnson in [9] and
also by Simon in [21,22]. The master problem is a minimization problem (in our case
SC) which calls a maximization problem, the slave problem (SP), and the algorithm
determines the solution of the former by solving the latter. Johnson has pointed out
that optimal algorithms for the slave problem lead to approximation algorithms for the
corresponding master problem whose performance ratios are bounded above by Inn, where
n the size of the instance for the master problem and Simon in [21] has extended this by
proving that if a p,-polynomial time approximation algorithm exists for the slave problem
then the master-slave technique leads to a p,,-polynomial time approximation algorithm
for the master problem with p,, < lnnp,.

We have then the following corollary.

Corollary 5.
SO 2% gp

Let us also remark here that, for VCC(L), algorithm 2 has approximation ratio Inn (the
ratio given by corollary 4 is obviously better), as the slave problem called by the algorithm
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repeat
obtain a maximal set packing 8P on §; put SP in the solution for SC;
remove the elements of C covered by the sets of SP; remove SP from &
until all elements of C are removed;

Algorithm 3.

is polynomial.

The continuity adopted throughout this paper and also by Simon in [22] is much less
restrictive than the one implied by the L-reduction of Papadimitrion and Yannakakis in
[18]. There, the authors define a broad class of maximization problems called M AXSNP,
whose main property was the completeness of its members under polynomial time approx-
imation schemas. In [1] is proved that there does not exist polynomial time approzimation
schema for any MAXSNP-hard problem unless P=NP.

But the concept of the continuity {either the one adopted here and in [22], or the one
adopted in [18]) inside the class of N P-complete problems can never be able to capture
some intuitive equivalencies as for example the one between VC and 1.5, or more generally
between a problem and its variants resulting from affine transformations of its objective
function (under the same set of constraints), or the equivalence {under approximation)
between a minimization and a maximization problem. The study of such a stronger
and more representative notion of continuity, requiring novel definitions of some notions
as optimization problem, polynomial reduction, approximation performance, etc, would
contribute to the definition of a new more consistent polynomial approximation theory,
better adapted to the real nature of the hard optimization problems.
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