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Une nouvelle méthode heuristique pour ’optimisation globale
Résumé :

On propose une méthode heuristique pour calculer I’optimum global d’un probléme de
programmation non linéaire mono-objectif dans lequel 1a fonction économique ainsi que
les contraintes ne sont pas nécessairement convexes. La méthode utilise les concepts de
base de ['analyse multicritére et décompose le probléme initial en un nombre fini de
sous-problémes. La solution optimale du probléme original est contenue dans 1’ensemble
des solutions réalisables du nouveau probléme,

Mots-clés : Programmation non linéaire, optimisation globale, analyse multi-objectif,

A new heuristic method for solving global optimization problem
Abstract :

Most of the mathematical methods in nonlinear programming problems generally yield
local solutions. In the following, we propose a heuristic method (GMC or Global
optimization with MultiCriteria analysis) to compute the global solution to optimization
problems which are not necessarily convex. This method uses multicriteria analysis
concepts. The original problem is decomposed into a finite number of subproblems
generated by a certain combination of constraints and the objective function. The
properties of the initial problem are not modified by this solution technique. The set of
solutions of the new problem obtained from this decomposition contains the global
solution to the original problem, which can finally be found by a selection routine.

Keywords : Nonlinear programming, global optimization, multicriteria analysis.



1. Introduction :

The present work is devoted to the investigation of the global solution of the

following mono-objective optimization problem : find x; € X such that :

f(x;)== Global Max f(x)
S.L. xe X )

We propose a heuristic method based on the concepts of the Multiobjective

Mathematical Programming (MMP) in order to solve problem (1), MMP allows us to

consider, explicitly and simultaneously, multiple objectives in a mathematical program-

ming framework. The basic idea consists in transforming problem (1) into a standard

multiobjective formulation (2) :

S.t.

Max £,(x)
Max f,(x) Max F(x) = ( f,(x), £,(x), ..., £,(x) )
or st. Fx)e S (2)
Max f(x)
xe X where :

f(x) = £,(x} + £,(x) + ... + £,(x) ; p is the number of objectives.

x e R, x = (X, Xy, ..., X,)' 18 the vector of decision variables;

F(x) is the vector of objectives to be maximized;

X is the feasible region in the decision variables space defined by the following
inequalities X ={ x e R"/ gx)<0;j=1..m}

X is a compact set included in the hyperrectangle defined by the following
lower/upper bounds o, £ x; < B, ;i=1,....n;

S=FX)={FXx)/xe X} ;39S is the image of X by F in the criterion space;
all the nonlinear functions f, (k = 1,...,p) and g ( = 1....m) are defined over
R" and differentiable everywhere ; f, g: X € R* - >R, f; and g are of
polynomial type;

each objective f and f; is bounded above X ;

the sets X and S are not necessarily convex ;

the functions f; and g; are not necessarily convex.



Then, we use the concept of "globally efficient solution" so as to compute the "best
compromise solution" of problem (2) which corresponds to the global solution of
problem (1). This strategy provides a mean to find "good" starting points for the "local
optimizer” to be used in the global optimization phase (GRG, Generalized Reduced
Gradient, ABADIE, (1978)) and to accelerate convergence to the final solution of (1).
This paper is organized as follows. In section 2, we define the problem and we discuss
some specific questions and possible heuristics to resolve it. In section 3, we outline the
method to be used. A brief report on computational experiments is given for small

problems. Section 4 is devoted to conclusion and further developments.

2. Global optimization and efficiency :

Generally, the algorithms which solve problem (1) converge to a local solution as
opposed to global solution (Fig. 1) , i.e. a point x” € X such that: fx) > f(x) Vx e
V({x") N X, where V(x") is a vicinity of x* ; x" is the "global solution" of the problem:

Max f(x)
S.t. xe Vx)nX
A solution xz e X is said to be a "global maximum" of (1) if and only if x;

maximizes f over X ; ie. fx)>2fx) Vxe X
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Fig.1: QGlobal and local solutions ; X = [a,b}



We can resume our methodology by the following scheme :

a)
b)

d)

€)

(Recursive) decomposition of f; f(x) = f;(x) + £,(x) ;
Definition of the MMP problem : Max f,(x)

Max f,(x}

S.t. xe X

Multicriteria analysis ; transformation of the MMP problem (more
precisely transformation of X) ;
Determination of the representative subset of the set of "globally efficient
soluttons" of problem (2) ;
Global optimizﬁtion based on the "globally efficient solutions” as starting
points for the "local optimizer" ; improvement of the objective value
function by filtering technique in order to eliminate "local solutions”,
Determination of the "global solution" of the initial problem (1) with a
fixed probability p, (TORN, (1983)).

This approach reveals the following characteristics :

i)

the first point is the data structure inherent to the decomposition
procedure (ABADIE and M’SILTI, (1988); M’SILTI and TOLLA,
(1992))'; '

the second point is the computation of the bounds of the objective
functions f and f,, and the transformation of the feasible région X;
X={xeX/fix+6H,x)2K-e;f(x)=2K,-¢,i=1,..,p}; we use

the interval analysis to compute these bounds.

Fundamental to the MMP is the Pareto optimal solution (so-called efficient solution).

Let x € X and y € X be two feasible solutions to the problem (1) in the decision

variables space, and u = F(x) , v = F(y) the corresponding points in the criterion space

(Fig.2).

Y Classification of variables ; relation existing between f, and f, , filfy = A with = @ except in the set of

measure null. It seems clear that this condition of proportionality does not maintain the differentiability and continuity

properties of the objective functions.
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Fig.2 : notion of non dominance

The notion of efficiency refers to feasible points in the decision variables space
whereas that of non-dominance concerns vectors in the criterion space. It follows from
the definition that v is strongly dominated by u ; X is said "Pareto optimal solution” if
there does not exist another point w in the cone of vertex u which dominates u.
Mathematically, there exist different definitions of the Pareto optimality (WIGHT,1982).

Here, we focus on the concept of a strongly efficient solution (Fig.3).

Definition 1 : Globally and locally efficient solutions
Given the set X of feasible solutions in the decision variables space, a solution x € X
is said to be "locally efficient" if there exists a vicinity V(x) of x, such that the
following conditions cannot be verified for any y € V(x) n X :

3re{l,2..p}

£(y) > fi(x)

fy)2f(x) Vksr

The solution x is said to be "globally efficient” if V(x) = R".

Definition 2 : Globally or locally non dominated solutions
A solution u € S = F(X), in the criterion space, is said to be “locally non dominated"
if there exists no point v, v € V(u) N S, where V(u) is a vicinity of u, and v 2 u with

v 4 u. The solution u is said to be “"globally non dominated" if V(u) = RF .



Note that, in the convex case (X and S convex), any locally efficient solution
(respectively locally non dominated) is globally efficient (respectively globally non
dominated). A very important property of the set of non dominated solutions (respective-
ly efficient solutions) is the following : all the efficient (respectively non dominated)
solutions are localized in the frontier of X (respectively S). Conceptually, an efficient
solution of MMPs is the one where any improvement of one objective function value
can be achieved only at the expense of another criterion (Fig. 3). Note that generally :
i) the set of efficient (respectively non dominated) solutions is infinite ;

ii) there is no point X" € X at which all objectives are simultaneously maximized.
In such a case, this point, called a "superior solution", is the solution of problem
(1),iex" e Xand Fx) 2 Fkx) Vx e X.

Definition 3 : Ideal point .
The ideal point for the MMP problem (2} is a point in the criterion space denoted by
Fg

Fg = (for»foz » 2 Jopf € RP

and such that the i component of Fy is the global optimum for the following problem
(Pi):
Sz = Global Max f(x)
st xeX {(Pi)

Assuming that f,(X) is closed in R, we have :

fei = Fag)
where
X € X

is the global solution of problem (Pi). Generally, the ideal point is not feasible, i.e it is

out of S in the criterion space (Fig. 3).
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Fig.3 : Non dominated solutions in the criierion space

- the points B, C, D have horizontal tangents;
- the points B’, C’, D’ have vertical tangents;

- the points P, Q have a common tangent.

The arcs BE and CC’ are "globally non dominated'. The arcs EB’ and DD’ are
"locally non dominated". The arcs B’'D’ and DC are over the frontier of S, but they are
neither locally nor globally non dominated. The major problem is that it is impossible,
except in the particular case of convex mathematical programs, to characterize the global
solution of problem (1). However, we can see that the set of solutions of problem (2)
contains the set of solutions of problem (1). Indeed, let x € X be a globally efficient
solution for (2), then x is a global optimum for (1). The demonstration is immediate. It
follows from the definition 1 that there exists no y € V(x) = X such that the following
conditions are verified :

f.(y) > £(x)
f(y)2f(x) Vker
Thus, there exists no y € X such that :
£,(3) + £ + . + £,(1) > LX) + £,(x) + ... + £,(x)
or equivalently, there exists no y € X such that : f(y) > f(x). In other words, if x is a
globally efficient solution of (2), we have f(x) > f{y} V y € X, ie x is a global
maximum of (1). The reciprocal is false. The difficulfy is the following. If x is a global

maximum of (1), then the corresponding point u = F(x), in the criterion space, must
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dominate all the points in S so as to be globally non dominated. Now, such a point is
generally not feasible in the criterion space, i.e u ¢ S ; the reason is that we have the
following inequality :

Max f; + Max f, 2 Max (f; + f,)

However, this argument allows us to search for heuristic methods based on the MMP
formulation (2) in order to solve (1). More precisely, we use this idea so as to compute
the global solution of (1) by "geometrical considerations” in the set S in the criterion
space. The problem :

Max (f,(x) + £,(x)) Max (A.f,(x) + A,.5(x)
8.t. xe X or s.t. xe X

A Ay > 050/, =1

is solved by a special routine (local optimizer, GRG) using a globally efficient solution
as starting point. This globally efficient solution is computed from a "reference point"
in the criterion space, itself obtained as a by-product of the interval analysis, by an
appropriate algorithm based on the augmented weighted Tchebycheff metric. After this
stage, a new strategy (filtering technique) allows us to improve the value of the
objective function f (if it is possible) by exploding in details the efficient frontier in the
vicinity of the current solution x° and to decide if xis a global maximum of (1) or not.
If the answer is positive, the process is stopped; if not, it is repeated.

In most cases, there will be many efficient solutions. One of these ones will be
preferred in terms of its outcome in the criterion space. It corresponds to the global
solution of (1). However, determining what this solution is requires further information
about its vicinity and about the characteristics of the objective function f and the type
of decomposition selected. Several computational methods have been proposed so as to
characterize Pareto optimal solutions (STEUER, 1986). We consider among them the
parametric method (so called Lagrange multipliers method), £-constraint method and the
augmented weighted Tchebycheff metric. Figure 3 illustrates the application of the
parametric and e-constraint methods in the case where S is not convex and f, is the

principal criteria (for the e-constraint method).



a) Parametric method :

A global parametric method (PM), i.e with global maximization, will find the arcs
BP and QC’ (Fig.3) :
Max { A.£,(x) + M 6) + ... + A, £(x) }
s.t. xe X (PM)
AL>0,k=1,..,p

A parametric method with local maximization will find perhaps, beyond BP and QC’,
the arcs PB’ and QC ; therefore, it allows us to find BB’ and CC’. Note that the solution
of (PM) always gives an efficient solution : if X’ € X maximizes X} A.f(x) with A, >
0, then x" is efficient. The reciprocal is true under certain convexity assumptions (S

convex).

b) £-constraint method :

Suppose that f; is the principal criteria. Then, if x* € X is the solution of problem

(CT), x° is efficient and reciprocally :

Max f(x)
s.t. xe X (CT)
fx)zA, k#j,k=1,..p

We can see that with the global maximization, the method will find BE and CC’ and
that, with local maximization, it will find, perhaps, beyond BE and CC’, the arcs EB’
and DD’, Thus, with this method, we obtain the arcs BB’, CC* and DD’. Consequently,
by solving (CT), all the Pareto optimal solutions (locally or globally efficient) to the
MMPs involving non convexities can be found. In practice, it is not desirable to obtain
the set of locally non dominated solutions. Moreover, in (CT), the objective f; is
specially treated. For this reason, we propose a hybrid program based on the augmented
weighted Tchebycheff metric in order to compute a representative set of efficient

solutions.



c) Augmented weighted Tchebycheff metric :

One way to characterize the globally non dominated solutions in the criterion space
is to consider the points in S < RP, closest to FDg; (which dominates the ideal point),
according to the Tchebycheff norm. To find such points, we use augmented weighted

Tchebycheff metric defined by:

P
||| FDg - F ||| = || FDg-F ||2+8.3% | FDg-f| &
i=1
where :
|| FDg - F || = Max,_, _ ,®,.| FDg - f, )

The weights 6; = 0 are used to define different metrics (see, for more details, STEUER,
(1986), chap.14).

The program (TP) for finding the closest points to Fg according to relation (3) is the

following :
P
Min, . o« +8 Y (FDg - f(%)
i=1
S.2.
« 28 (FDg - f®) i=1,.p
fxy =2 K - e i=1.,p (TP
J) < By, B € {0, 1}
xeX
where :

- K, is obtained from the interval analysis, i.e. f; € [fin » fimarl 3 K = s

- B 2 fie - A

Note that we can drop the absolute sign in the definition of Tchebycheff norm
because the quantity concerned will never be negative. The reason for the second term
in (3) is to give the contour a "slight slope” (Fig.6-7). The parameter J is selected
sufficiently small (10°° to 10?) in practice. By solving the Tchebycheff program (TP),



we search for "the closest point" to F; within a restricted region in the criterion space.
It should be emphasized here that strong global Pareto optimality for a particular
solution is guaranteed by the following fundamental property : x* € X is a global
efficierit solution to the MMP (2) if and only if x° is a global solution to problem (TP),

without a convexity assumption.
3. Outline of the GMC method : Global optimization with MultiCriteria analysis

Generally, the methods for solving non convex programming problems yield local
solutions because there is no local criteria to decide if a local solution is global
(HORST, (1988); RINNOY KAN and TIMMER (1989)). The deterministic method
proposed here mainly uses the behaviour in the vicinity of the current local solution in
order to compute the global solution. More precisely, we attempt to eliminate local
solutions once there are obtained, by addition of specific constraints. This property has
been studied in other works (M’SILTI and TOLLA, (1992)). We propose here a new
strategy based on the filtering technique so as to guarantee that a local solution is really
global. We proceed by successive reductions of interval concerning the objective value
function, [fg, » fivasd, and the decision variables, {o, , B,], in order to force convergence
near to the optimum. In other words, the solution x° of problem (TP) becomes an
“initial" solution to the global analysis based on the filtering technique. The method
involves the choice of a "reference point” in the criterion space and uses a Tchebycheff
procedure to find a suitably defined "closest point" to FD;,, where FDy, is a point which
dominates the ideal point F; (Fig.4). Note that the determination of the ideal point is
itself a global optimization problem, and is subject to the same difficulties as the initial
problem. In practice, we determine the bounds of variation of the objective functions by
interval analysis and we then proceed by parametric variation of K; :

Ki <-Ki-m,
K, <K - 21, etc.
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Flg.4 : FD;;and N are reference polnts

The technique of "reference points"” allows us to generate points hopefully localized
in the vicinity of the final solution to problem (1). This approach consists in searching
for non dominated solutions by moving from one non dominated solution to another
(Fig 5). We can thus control oscillations of the objective value function. The following
program is built in order to generate a sequence of solutions, each of them being

preferred to its predecessor.

Max A, f,(x) + A, £,(x)
st. xe X (GB)

Fig.5 : Tne refarence points are variables

11
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Fig. 7 : Tehebycheff and Augmented weightad Tchebychefi norm

The "distances" are a family of scalarizing functions. In practice, three norms are

generally used D, , D, and D, where :

P
D,(u,v)=(E |u,""vi |‘)1J’f
1

In order to avoid certain cases of degeneracy in the nonlinear programming problems,
we use an Augmented Tchebycheff norm : D} = D_ + 6.D,, where D_ is the
Tchebycheff norm. The square corresponds to D, the lozenge to D, , the circle to D,

and the polygon to the augmented Tchebycheff norm.
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The method relies on three steps :

Step 1 : initialisation of the paramaters, determination of the first reference points,
FD; and N (Nadir point) : K, = 0, g = 0, etc. The algorithm is typically
initiated through the finding of the first reference point FDg; and the
corresponding Nadir point (Fig. 4-5) by using interval analysis.

Step 2 ; determination of a first "feasible solution" for initializing the process : at
this stage of the procedure, we ask the system to determine the minimum
and maximum values for each objective function at each iteration. A
“feasible solution" for the process is obtained by minimizing the distance
from the reference point (Fig.5) according to the augmented weighted
Tchebycheff norm, following a fixed direction, (FDg - N). Note that each
time the system selects new bounds, the new ones are immediately
incorporated into the program and the process is reiterated. Iterations
continue until the computer program decides that the current solution is
"closed enough" to a best compromise, i.e to the global solution of (1).

Step 3 ¢ Global optimality analysis : Using the filtering technique, we define a
globally efficient solution x° as the starting peint for the programm (GB).

The GMC method is based on a combination of GRG code which is the "local
optimizer", Tchebycheff norm and parametric method in order to filter “"good" globally
efficient solutions. The latter must be sufficiently spaced so as to a;.roid generating the
same solution more than once (clustering problem; TORN, (1983)). The optimality
analysis is based on multiple starting points and reduction of the parallelotopes [f;y;,,
famd and [og , B, with interval analysis. The following remark is important for
implementing the system : how many reference points to use in the method in order to
find the global solution of (1) ? In other words, what is the stopping rule for the
procedure ? The problem posed is the global convergence to a final solution with a
"satisfactory cost" (number of evaluations function). The number R of reference points

is unknown. We can try to compute it by the following reasoning :

13



) to obtain the global solution of (1), we must have at least one reference point (in

the vicinity of the ideal point) which allows us to find this solution;

ii) assuming that p is the probability to find such a point, then, if we take R points
| randomly selected and mutually independent, the probability g to obtain at least
one point which will determine the global maximum is g = 1 - (1 - p)*. Then,

we have one equation and three parameters p, q and R. If we suppose p and q

fixed, then we can compute (a priori) the requiréd number R of reference points

before starting the GMC method : R = Log(1-q)/Log(1-p).

Note that p and q depend on the kind of problem treated, type of decomposition, and
type of classification selected for the variables’. The necessary information for

implementing the GMC method is the following:

- priority of criterion;

- interval of variation of the quantity f; f; € [f4, , fiaaed- The greater the
priority given to criterion f,, the more the length of the corresponding
‘interval is reduced. _

- inter-criteria information; the latter is obtained from the value of dual
variables associate to the (PM) problem. The Lagrange multipliers are
obtained as a by-product of GRG code, and there are used as "indicators”
of constraints which can be eliminated from the process (according to

their priority).

We can now present the GMC procedure in a step-by-step way. It consists of

sequential solution to a nonlinear programming problem,

2 We will study later the specific problem of separable functions, by using a similar method to the

GMC,
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Step O :

Step 1 :

Define the interval of variation for all objective functions f and £, by
using techniques based on the interval analysis. For instance, if we have
a function f(x) = x,x5 - x; with the hyperrectangle H defined by 1 < x,
<4,1<x,<3and 2<x;<6; weobtain x; € [1, 9], x3 & [8, 216]
and x,x3 € [1,36] and thus that f(x) € [-215, 32]. Set f(x) € [fopmin » Forian
where K = {

e @nd € = £, Here, we have K = 32 and &’ = -215.

The point FD of coordinates (f; gy » fogma r++ofpgve) dominates the ideal
point Fg = (fiyme » forex » -r foe) in the criterion space. fipng, is the
maximum value for the objective i determined by interval analysis,
whereas f,,;,, is the real (but unknown) maximum value of objective i.
Define the first reference point FDg as : FDg = (K, K,,..., K ) where K
= fi e Define the Nadir point Nas: N=(©N,,N,, .., N)), where N;
= figmin -1€ the lowest value of objective determined by the interval
analysis. Note that this stage does not require any optimization. Its
complexity is the same as a specific evalution procedure for polynomial

functions, ie O).

Find the (first) globally non dominated solution : v’ = (u} , uJ , ..., ug)
in the criterion space and the corresponding globally efficient solution in
the decision variables space, x’ = (x] , X, , ... , x). The point u° is the
closest to FD; in the criterion space, according to the Augmented
Tchebycheff norm ; it is obtained by solving problem (TP). The weights
0, > 0 are chosen a priori, to keep v’ in the Nadir point direction; 9, are
direction coefficients of the straight line segment proceeding from FDg
to N; 0, = 1/(K, - N ; i=1,2,..., p. The solution 1® becomes an initial
point for generating another globally non dominated solution u' and its
corresponding globally efficient solution X', by using a direction parallel
to (FDg - N)*.

% We have tested another strategies (cf. M'SILTI and TOLLA, 1992)
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Step 2 :

Make a global optimality analysis : A specific investigation procedure
based on the solution of problem (GB) (or another as for instance, the
tunnelling method) is used in order to decide whether u® is a global

solution with respect to definition 1.

i) Compare the following values : u] and K ; u} is the current
value of objective i; we have (u} - K) <0; i=1,2,..p and
Ve X

Solve problem (GB) by using a parametric variation of weights

A, so as to filter the best solution,

We try to compute the "extreme" globally non dominated solutions, i.e
the coordinates of the ideal point . In other words, we try to localize the
area of ideal point by grid technique in the criterion space (Fig.8). If we
obtain a good estimation of this point, then the global solution will be

obtained directly as the closest to the ideal point.

ii) If we obtain another globally efficient solution u' by solving
(GB) better than u®, then we set u® <--- u' and we go to step 1.
The procedure will reduce the length of interval [u? - K] by
reducing the value of K, at each iteration : K, <--- K, - I'.¢, ,
where I' = 2" ;

m = 1, 2,... , and g, is suitably chosen to avoid oscillations.

The procedure continues until two successive solutions are "identical”. In
practice, in certain cases, we have used the following strategy : solve
program (GB) every M iterations of the Tchebycheff routine, where M

is a fixed number of efficient solutions.

16



Convergence of the procedure (computing speed) : Generally, the procedure is finished
after R iterations at most, with R £ n ; R is the number of reference points fixed a priori
(R = 10, for instance for certain problems; this value is changed for another test). Note
that this does not mean that the final solution is necessarily obtained after 10 iterations
of the procedure. At each iteration, we adjust the interval of variation of all objective
functions. Then, we reduce progressively the set S by introducing new constraints of
special type (M’SILTI and TOLLA, (1992)). This aspect is very important in practice
because, if we do not take any precautions, we can introduce bounds which do not

correspond to the feasible solutions.

The procedure is based on the construction of "grid" above the set S in the criterion
space. If we have p objectives, then g° calculations are necessary (¢ is the arbitrary
number of bounds for each objective at each iteration, Fig.8). In fact, this number is an
upper bound for the computation; indeed, if certain of these bounds are fixed at a high
level, a feasible solution does not probably exist. The problem is then to reduce the
computation speed (by minimizing the I;umber of evaluations function), thanks to the
information obtained by the intervall analysis and improving of a such solution by the

(GB) program.

The sequence of U; must quickly converge to the ideal point, i.e for a certain number
R of reference points (R is arbitrary fixed in our test problems). Consequently,we control

the quantity | | U,-U,, | | e

U1 Referance palnt

7 < _rl.. .‘_.-
_______________ 42’_'/_/1:!&, —
Ideal point

{

Flg.B : definitlon of grid
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We are presently experimenting with a new strategy of filtering adapted from the
“tunnelling method" itself derived from the “deflation technique" of GOLDSTEIN and
PRICE (1970) , which consists in solving the following program :

Maz ga) - 2082
We remark that if a iS the local solution of (1), then [f(a) - fx)] >0,V xe X .In
other words, if we find a point z € X such that g(z) < 0, then f(a) < f(z) and a is not
a global solution of problem (1). In our test problems, we take a as a globally efficient
solution obtained by the Tchebycheff routine. In the general case where f is a polynome
of degree m, we consider the following "filtering function” :

) = fig) - £x)

Il x-all*.w [lx-qll?

where g, , a,, ..., 4, are the previous efficient solutions with f(a,) < f(a,) < ... <{(a,). The
~ term of the deneminator avoids obtaining a local solution already found. This solution
strategy allows us to combine advantages of both methods interval analysis and
tunnelling technique in order to optimize the stopping rule of the procedure. We will
present in another paper the results obtained. This method is operational on a micro-
computer of type 80386 with co-processor integrated. The computational and
implementation aspects are detailed in other papers (M’SILTI and TOLLA , 1992). We
have tested many (medium) problems, ie having up to 200 constraints and 300
variables. However, taking into account the great difficulty of solving nonlinear
problems in the general case, we have preferred to give priority working security, i.e
global convergence of the method and the CPU time to the detriment of the size of the

problem. The results concerning this study are summed in the following table:
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Problem Number of Number of average CPU time
variables constraints
1 2 3 0.0001 s
2 4 2 25s
3 7 6 11s
4 16 13 27 s
5 21 16 58 s
6 27 . 13 1mn 14 s
7 23 19 1 mn55s
8 21 11 I mnl0s

The average CPU time (with a sufficiently weak error tolerance) on problems test 1
to 8 depends on the number of reference points R arbitrarily fixed. The same problem
is tested for different values of R. But we impose in all cases the size of subset of

efficient solutions about 10. Consider the following example :

Max f(x) = x> + (x, - 2)* - 7
.t

- +FxXE+x,-%, <0

(6, + 302 + (% - 22 - 36 < 0

- + 3 -(x, -6 +16<0

-15<x, <15

15 <%, €15

The decomposition chosen is f(x) = f,(x) + £,(x) = (x3 - 7) + (x, - 2)°
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The objective function f has four local maxima :
a=(-1.107, 2.476) ; f(a) = - 5.547
b = (- 0416 , 0.829) ; f(b) = - 5.456
¢ =(2.036,-1.261); f(c) =7.782
d = (0.969 , 6.500) ; f(d) = 14.100
The GMC method has found the global maximum, d, in one iteration of the procedure

(R = 1 reference point).
4. Conclusion :

The methodology based on the notion of "global efficiency” enables us to build a
"good" solution to problem' (1). The weighted surri approach (GB) has an important
advantage, that is the computation of weights A, does not require any precision. We
consider only the parametric aspect of their variation. The central process can be
adjusted, depending on our particular choices and allows to imagine a great number of
variants of the GMC method. The system stores the movements of reference points in
order to resfart from any point.” Moreover, it specifies the "status" of an intermediate

solution due to A/A., which is a privileged information.

Many improvements can be made in the MMP strategy, specially in the way of
handling the "feasibility” of solutions in the new problem. Our research essentially
consists in the two following points : inter-criteria information (ie. A/A) and
characterization of efficient solutions for specific problems. The first point expresses in
fact the concept of compensation in the MMP terminology ; it is defined in our case by
the weights A, and corresponds to the trade-off between the objectives concerned. The
second point is more general in the MMP analysis ; the following questions resume the

investigation in this domain :

- What is to be done for defining the dominance relation in the case where certain
objective function are correlated (i.e there exists a dependence relation of f; and

f, for example) 7 In a such a case, have we to eliminate this redundancy ?
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- What is to be done about the dependence between two criteria and their degree
of correlation ? Have we to introduce thresholds in the definition of objective
functions, and if the response is positive, what is to be done for defining the

dominance relation with thresholds ?

In other words, in the MMP framework, if we assume independence of criteria, then
the strategy of resolution of problem (1) is the weighted sum approach. The only
problem is to define the A, ; we are not concerned by their interpretation. In the other
case, the solution to initial problem must be defined by the specification of the relative
importance of criteria (lexicographic approach for instance). At this stage, we remark
that a method based on the combination of a "local optimizer" (GRG) and certain
multiobjective routines has solved some highly nonlinear problems. We try to adapt a
special technique derived from dynamic programming and strategies of random
investigation, for improving the search of reference points and to avoid clustering of the
successive solutions, in order to guarantee the reliability of the solution selected
(sensitivity analysis) for specific functions. Another interesting point is the development
of a graphic interface so as to represent the set of non dominated solutions and to

implement the sensitivity analysis based on the specific techniques.

21



References

ABADIE J. (1978), "The GRG method for nonlinear programming”, in Proceedings of
the Urbino Conference on Software Optimization, june 1977 ; in H. H. Greenberg (ed),
Sijthoff & Noordhoff, Netherlands, 335-362.

ABADIE J., and M’SILTI H. (1988), "La programmation mathématique multicritére et
la gestion des ressources en eau", RAIRO 22/4, 363-385.

GOLDSTEIN A.A., and PRICE JF. (1970), "On descent from local minima",
Mathematics of computations 25, 569-574.

HORST R. (1988}, "Deterministic methods in constrained global optimization : some
recent advances and new fields of applications", paper presented at EURO IX
conference, in Université de Paris-Dauphine, Paris, France.

M’SILTI H., and TOLLA P. (1992), "An interactive multiobjective nonlinear
programming procedure”, ETOR,

RINNOY KAN A.H.G., and TIMMER G.T. (1989), "Global optimization", in "Nonlinear
programming”, G.L. Nemhauser et al. (eds), Handbooks in OR & MS, vol 1, Elsevier
Science Publishers B.V (North-Holland). :

STEUER R.E. (1986), Multiple Criteria Optimization : theory,l computation and
applications, John Willey, NY.

TORN A. (1983), "A sampling-search clustering approach for solving scalar (local and
global) and vector optimization problems", in C. Carlson and Y. Kochetov (eds),
"Theory and Practice of MCDM", North-Holland, Amsterdam, 119-142.

WHITE D.J (1982), Optimality and Efficiency, John Willey, NY.

22



